Abstract

Here we report a novel hybrid structure composing of microsphere array (MA), Al nanoparticles (Al-NPs), ZnO thin film (luminescence layer), Au nanoparticles (Au-NPs), and substrate (sapphire) for ultraviolet (UV) luminescence enhancement of planar wide bandgap semiconductor film. The plasmonic sandwich structure of Al-NPs/ZnO/Au-NPs boosts the hot electron state density in the conduction band by electron trapping from deep-defect level of ZnO and localized surface plasmon resonances (LSPRs) coupling around dual metallic NPs, enhancing UV emission and suppressing visible emission efficiently. The dielectric microsphere array capping on the plasmonic sandwich structure further increases UV emission intensity via photonic nanojets, optical whispering-gallery modes (WGMs), and directional antenna effect, by which the interaction between photon and exciton is strengthened. The contribution of microsphere cavity coupling with LSPRs to UV luminescence enhancement is therefore revealed. The maximum enhancement ratio of up to two orders of magnitude (~250-fold) is achieved by the optimized 5.06-μm-diameter-MA/Al-NPs/ZnO/Au-NPs/sapphire structure and the UV emission is highly directional with a divergent angle of ~5°. The present work provides a simple and easily-prepared structure incorporating optical WGMs and LSPRs to manipulate UV luminescence of planar wide-bandgap semiconductors for potential optoelectronic applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays

Lixue Yang, Yinzhou Yan, Qiang Wang, Yong Zeng, Feifei Liu, Lin Li, Yan Zhao, and Yijian Jiang
Opt. Express 25(6) 6000-6014 (2017)

Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array

Yinzhou Yan, Jinwen Liu, Cheng Xing, Qiang Wang, Yong Zeng, Yan Zhao, and Yijian Jiang
Appl. Opt. 57(27) 7740-7749 (2018)

Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays

Yinzhou Yan, Yong Zeng, Yan Wu, Yan Zhao, Lingfei Ji, Yijian Jiang, and Lin Li
Opt. Express 22(19) 23552-23564 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
    [Crossref] [PubMed]
  2. X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
    [Crossref]
  3. T. H. Yang and J. M. Wu, “Thermal stability of sol–gel p-type Al–N codoped ZnO films and electric properties of nanostructured ZnO homojunctions fabricated by spin-coating them on ZnO nanorods,” Acta Mater. 60(8), 3310–3320 (2012).
    [Crossref]
  4. P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
    [Crossref]
  5. Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
    [Crossref] [PubMed]
  6. S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, “Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane,” Nano Energy 13, 474–481 (2015).
    [Crossref]
  7. Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
    [Crossref]
  8. L. Li, T. Zhai, Y. Bando, and D. Golberg, “Recent progress of one-dimensional ZnO nanostructured solar cells,” Nano Energy 1(1), 91–106 (2012).
    [Crossref]
  9. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
    [Crossref] [PubMed]
  10. J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
    [Crossref] [PubMed]
  11. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
    [Crossref] [PubMed]
  12. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
    [Crossref]
  13. A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
    [Crossref]
  14. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
    [Crossref] [PubMed]
  15. Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
    [Crossref]
  16. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag Berlin An, (2013).
  17. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  18. V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of physics. J. Phys-Condens. Mat. 29(20), 203002 (2017).
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  20. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  21. B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
    [Crossref] [PubMed]
  22. W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
    [Crossref]
  23. C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
    [Crossref]
  24. K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
    [Crossref]
  25. F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
    [Crossref]
  26. H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
    [Crossref]
  27. S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
    [Crossref]
  28. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
    [Crossref]
  29. P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 63120 (2009).
    [Crossref]
  30. M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
    [Crossref]
  31. Y. S. Liu, H. W. Lu, X. L. Xu, M. G. Gong, L. Liu, and Z. Yang, “Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films,” Chin. Phys. Lett. 28(5), 57803 (2011).
    [Crossref]
  32. X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
    [Crossref]
  33. X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL-. Europhys. Lett. 93(5), 57009 (2011).
    [Crossref]
  34. Y. Zeng, Y. Zhao, and Y. Jiang, “Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation,” J. Alloys Compd. 625, 175–181 (2015).
    [Crossref]
  35. Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
    [Crossref]
  36. F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
    [Crossref] [PubMed]
  37. Y. Zhou, S. Chen, X. Pan, and Z. Ye, “Photoluminescence enhancement in non-polar ZnO films through metallodielectric mediated Al surface plasmons,” Opt. Lett. 43(10), 2288–2291 (2018).
    [Crossref] [PubMed]
  38. W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 26103 (2006).
    [Crossref]
  39. B. S. Luk Yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7(6), 1820 (2017).
    [Crossref]
  40. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  41. H. S. Patel, P. K. Kushwaha, and M. K. Swami, “Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere,” Opt. Commun. 415, 140–145 (2018).
    [Crossref]
  42. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  43. K. W. B. W. Garrett, C G B, “Stimulated.\ emission into optical whispering modes of spheres,” Phys. Rev. Lett. 124(6), 1807 (1961).
  44. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
    [Crossref] [PubMed]
  45. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
    [Crossref] [PubMed]
  46. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  47. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
    [Crossref] [PubMed]
  48. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
    [Crossref] [PubMed]
  49. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
    [Crossref] [PubMed]
  50. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. M. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26(7), 1473–1478 (2009).
    [Crossref]
  51. Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
    [Crossref] [PubMed]
  52. L. Yang, Y. Yan, Q. Wang, Y. Zeng, F. Liu, L. Li, Y. Zhao, and Y. Jiang, “Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays,” Opt. Express 25(6), 6000–6014 (2017).
    [Crossref] [PubMed]
  53. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
    [Crossref]
  54. Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, “Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,” Opt. Express 23(20), 25854–25865 (2015).
    [Crossref] [PubMed]
  55. C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
    [Crossref] [PubMed]
  56. T. W. Chang, X. Wang, A. Mahigir, G. Veronis, G. L. Liu, and M. R. Gartia, “Marangoni convection assisted single molecule detection with nanojet surface enhanced Raman spectroscopy,” ACS Sens. 2(8), 1133–1138 (2017).
    [Crossref] [PubMed]
  57. G. M. Das, A. B. Ringne, V. R. Dantham, R. K. Easwaran, and R. Laha, “Numerical investigations on photonic nanojet mediated surface enhanced Raman scattering and fluorescence techniques,” Opt. Express 25(17), 19822–19831 (2017).
    [Crossref] [PubMed]
  58. A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49(5), 897–902 (2018).
    [Crossref]
  59. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
    [Crossref] [PubMed]
  60. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  61. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light-Sci. 2(9), e104 (2013).
    [Crossref]
  62. P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
    [Crossref]
  63. Y. Yan, J. Liu, C. Xing, Q. Wang, Y. Zeng, Y. Zhao, and Y. Jiang, “Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array,” Appl. Opt. 57(27), 7740–7749 (2018).
    [Crossref] [PubMed]
  64. C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
    [Crossref] [PubMed]
  65. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  66. K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
    [Crossref]
  67. J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
    [Crossref] [PubMed]
  68. Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
    [Crossref] [PubMed]
  69. T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
    [Crossref] [PubMed]
  70. M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
    [Crossref]

2018 (6)

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

Y. Zhou, S. Chen, X. Pan, and Z. Ye, “Photoluminescence enhancement in non-polar ZnO films through metallodielectric mediated Al surface plasmons,” Opt. Lett. 43(10), 2288–2291 (2018).
[Crossref] [PubMed]

H. S. Patel, P. K. Kushwaha, and M. K. Swami, “Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere,” Opt. Commun. 415, 140–145 (2018).
[Crossref]

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49(5), 897–902 (2018).
[Crossref]

Y. Yan, J. Liu, C. Xing, Q. Wang, Y. Zeng, Y. Zhao, and Y. Jiang, “Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array,” Appl. Opt. 57(27), 7740–7749 (2018).
[Crossref] [PubMed]

2017 (12)

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref] [PubMed]

P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
[Crossref]

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

B. S. Luk Yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7(6), 1820 (2017).
[Crossref]

L. Yang, Y. Yan, Q. Wang, Y. Zeng, F. Liu, L. Li, Y. Zhao, and Y. Jiang, “Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays,” Opt. Express 25(6), 6000–6014 (2017).
[Crossref] [PubMed]

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

T. W. Chang, X. Wang, A. Mahigir, G. Veronis, G. L. Liu, and M. R. Gartia, “Marangoni convection assisted single molecule detection with nanojet surface enhanced Raman spectroscopy,” ACS Sens. 2(8), 1133–1138 (2017).
[Crossref] [PubMed]

G. M. Das, A. B. Ringne, V. R. Dantham, R. K. Easwaran, and R. Laha, “Numerical investigations on photonic nanojet mediated surface enhanced Raman scattering and fluorescence techniques,” Opt. Express 25(17), 19822–19831 (2017).
[Crossref] [PubMed]

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
[Crossref]

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of physics. J. Phys-Condens. Mat. 29(20), 203002 (2017).

2016 (1)

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

2015 (5)

Y. Zeng, Y. Zhao, and Y. Jiang, “Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation,” J. Alloys Compd. 625, 175–181 (2015).
[Crossref]

Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
[Crossref]

S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, “Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane,” Nano Energy 13, 474–481 (2015).
[Crossref]

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, “Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,” Opt. Express 23(20), 25854–25865 (2015).
[Crossref] [PubMed]

2014 (5)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

2013 (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light-Sci. 2(9), e104 (2013).
[Crossref]

2012 (6)

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

L. Li, T. Zhai, Y. Bando, and D. Golberg, “Recent progress of one-dimensional ZnO nanostructured solar cells,” Nano Energy 1(1), 91–106 (2012).
[Crossref]

X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

T. H. Yang and J. M. Wu, “Thermal stability of sol–gel p-type Al–N codoped ZnO films and electric properties of nanostructured ZnO homojunctions fabricated by spin-coating them on ZnO nanorods,” Acta Mater. 60(8), 3310–3320 (2012).
[Crossref]

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

2011 (6)

Y. S. Liu, H. W. Lu, X. L. Xu, M. G. Gong, L. Liu, and Z. Yang, “Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films,” Chin. Phys. Lett. 28(5), 57803 (2011).
[Crossref]

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL-. Europhys. Lett. 93(5), 57009 (2011).
[Crossref]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

2010 (2)

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

2009 (6)

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 63120 (2009).
[Crossref]

B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
[Crossref] [PubMed]

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[Crossref]

A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. M. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26(7), 1473–1478 (2009).
[Crossref]

2008 (2)

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[Crossref] [PubMed]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

2007 (2)

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

2006 (3)

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 26103 (2006).
[Crossref]

2005 (2)

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (4)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2001 (1)

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

2000 (1)

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

1998 (1)

1992 (1)

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

1961 (1)

K. W. B. W. Garrett, C G B, “Stimulated.\ emission into optical whispering modes of spheres,” Phys. Rev. Lett. 124(6), 1807 (1961).

Alivov, Y. I.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

Amendola, V.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of physics. J. Phys-Condens. Mat. 29(20), 203002 (2017).

An, J.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 26103 (2006).
[Crossref]

Aouani, H.

Aplin, D. P. R.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Artemyev, M. V.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Arya, A.

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49(5), 897–902 (2018).
[Crossref]

Asokan, K.

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Atanasov, P. A.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Avasthi, D. K.

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Avrutin, V.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

Backman, V.

Bando, Y.

L. Li, T. Zhai, Y. Bando, and D. Golberg, “Recent progress of one-dimensional ZnO nanostructured solar cells,” Nano Energy 1(1), 91–106 (2012).
[Crossref]

Bao, X. Y.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Battie, Y.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Bazioti, C.

S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
[Crossref]

Belov, P. A.

Bie, Y.

X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Bliznakova, I. A.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Bonod, N.

Boutou, V.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Cai, G. X.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL-. Europhys. Lett. 93(5), 57009 (2011).
[Crossref]

Canavese, G.

S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, “Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane,” Nano Energy 13, 474–481 (2015).
[Crossref]

Cao, G.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[Crossref]

Cauda, V.

S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, “Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane,” Nano Energy 13, 474–481 (2015).
[Crossref]

Chamorro, W.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Chang, N.

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

Chang, R. K.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Chang, T. W.

T. W. Chang, X. Wang, A. Mahigir, G. Veronis, G. L. Liu, and M. R. Gartia, “Marangoni convection assisted single molecule detection with nanojet surface enhanced Raman spectroscopy,” ACS Sens. 2(8), 1133–1138 (2017).
[Crossref] [PubMed]

Chen, F.

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

Chen, P.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Chen, S.

Chen, Z.

Cheng, P.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 63120 (2009).
[Crossref]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Chernyak, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Chiodoni, A.

S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, “Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane,” Nano Energy 13, 474–481 (2015).
[Crossref]

Cho, S. J.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

Chu, S.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Cong, C. X.

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Cui, Q.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

Dai, J.

Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

Dai, Y.

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Dandeneau, C. S.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[Crossref]

Dantham, V. R.

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49(5), 897–902 (2018).
[Crossref]

G. M. Das, A. B. Ringne, V. R. Dantham, R. K. Easwaran, and R. Laha, “Numerical investigations on photonic nanojet mediated surface enhanced Raman scattering and fluorescence techniques,” Opt. Express 25(17), 19822–19831 (2017).
[Crossref] [PubMed]

Das, G. M.

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49(5), 897–902 (2018).
[Crossref]

G. M. Das, A. B. Ringne, V. R. Dantham, R. K. Easwaran, and R. Laha, “Numerical investigations on photonic nanojet mediated surface enhanced Raman scattering and fluorescence techniques,” Opt. Express 25(17), 19822–19831 (2017).
[Crossref] [PubMed]

Dayeh, S. A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Dellis, S.

S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
[Crossref]

Deng, R.

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devilez, A.

Dikovska, A. O.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Dimitrakopulos, G. P.

S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
[Crossref]

Ding, H.

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Ding, Z.

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

Djurisic, A. B.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

Djurišic, A. B.

Dogan, S.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

Dong, P.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

Du, D.

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Easwaran, R. K.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Elazar, J. M.

Feng, C.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Feng, Q.

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Frasconi, M.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of physics. J. Phys-Condens. Mat. 29(20), 203002 (2017).

Fu, X.

X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Gachet, D.

Garrett, K. W. B. W.

K. W. B. W. Garrett, C G B, “Stimulated.\ emission into optical whispering modes of spheres,” Phys. Rev. Lett. 124(6), 1807 (1961).

Gartia, M. R.

T. W. Chang, X. Wang, A. Mahigir, G. Veronis, G. L. Liu, and M. R. Gartia, “Marangoni convection assisted single molecule detection with nanojet surface enhanced Raman spectroscopy,” ACS Sens. 2(8), 1133–1138 (2017).
[Crossref] [PubMed]

Gérard, D.

Ghanbaja, J.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Golberg, D.

L. Li, T. Zhai, Y. Bando, and D. Golberg, “Recent progress of one-dimensional ZnO nanostructured solar cells,” Nano Energy 1(1), 91–106 (2012).
[Crossref]

Gong, M. G.

Y. S. Liu, H. W. Lu, X. L. Xu, M. G. Gong, L. Liu, and Z. Yang, “Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films,” Chin. Phys. Lett. 28(5), 57803 (2011).
[Crossref]

Guan, W.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light-Sci. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Haglund, R. F.

Hill, S. C.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Hng, H. H.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
[Crossref]

Holler, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Horwat, D.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Hsieh, S. H.

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Huan, A. C. H.

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Iatì, M. A.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of physics. J. Phys-Condens. Mat. 29(20), 203002 (2017).

Janotti, A.

A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

Jaschinski, H.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Ji, L.

Jia, Y.

Jiang, C. Z.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL-. Europhys. Lett. 93(5), 57009 (2011).
[Crossref]

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

Jiang, F. Y.

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Jiang, J.

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Jiang, S.

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Jiang, Y.

Y. Yan, J. Liu, C. Xing, Q. Wang, Y. Zeng, Y. Zhao, and Y. Jiang, “Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array,” Appl. Opt. 57(27), 7740–7749 (2018).
[Crossref] [PubMed]

L. Yang, Y. Yan, Q. Wang, Y. Zeng, F. Liu, L. Li, Y. Zhao, and Y. Jiang, “Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays,” Opt. Express 25(6), 6000–6014 (2017).
[Crossref] [PubMed]

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

Y. Zeng, Y. Zhao, and Y. Jiang, “Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation,” J. Alloys Compd. 625, 175–181 (2015).
[Crossref]

Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, “Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,” Opt. Express 23(20), 25854–25865 (2015).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

Kalfagiannis, N.

S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
[Crossref]

Kanjilal, D.

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Karg, M.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref] [PubMed]

Kassavetis, S.

S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Kivshar, Y. S.

Koleva, M. E.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Kong, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

König, T. A. F.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref] [PubMed]

Koutsogeorgis, D. C.

S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
[Crossref]

Krasnok, A. E.

Krishnan, R.

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Kushwaha, P. K.

H. S. Patel, P. K. Kushwaha, and M. K. Swami, “Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere,” Opt. Commun. 415, 140–145 (2018).
[Crossref]

Laha, R.

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49(5), 897–902 (2018).
[Crossref]

G. M. Das, A. B. Ringne, V. R. Dantham, R. K. Easwaran, and R. Laha, “Numerical investigations on photonic nanojet mediated surface enhanced Raman scattering and fluorescence techniques,” Opt. Express 25(17), 19822–19831 (2017).
[Crossref] [PubMed]

Lai, C. W.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 26103 (2006).
[Crossref]

Langbein, W.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Lau, S. P.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
[Crossref]

Lawrie, B. J.

Lee, H. W.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
[Crossref]

Lee, S.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light-Sci. 2(9), e104 (2013).
[Crossref]

Leung, Y. H.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

Li, D.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 63120 (2009).
[Crossref]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Li, G.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Li, J.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Li, L.

L. Yang, Y. Yan, Q. Wang, Y. Zeng, F. Liu, L. Li, Y. Zhao, and Y. Jiang, “Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays,” Opt. Express 25(6), 6000–6014 (2017).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light-Sci. 2(9), e104 (2013).
[Crossref]

L. Li, T. Zhai, Y. Bando, and D. Golberg, “Recent progress of one-dimensional ZnO nanostructured solar cells,” Nano Energy 1(1), 91–106 (2012).
[Crossref]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Li, M.

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Li, X.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 63120 (2009).
[Crossref]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Li, Y.

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Liao, Z.

X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Lieber, C. M.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Lin, Y.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Lischka, K.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

Liu, C.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

Liu, F.

Liu, G. L.

T. W. Chang, X. Wang, A. Mahigir, G. Veronis, G. L. Liu, and M. R. Gartia, “Marangoni convection assisted single molecule detection with nanojet surface enhanced Raman spectroscopy,” ACS Sens. 2(8), 1133–1138 (2017).
[Crossref] [PubMed]

Liu, J.

Y. Yan, J. Liu, C. Xing, Q. Wang, Y. Zeng, Y. Zhao, and Y. Jiang, “Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array,” Appl. Opt. 57(27), 7740–7749 (2018).
[Crossref] [PubMed]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Liu, K. W.

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Liu, L.

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

Y. S. Liu, H. W. Lu, X. L. Xu, M. G. Gong, L. Liu, and Z. Yang, “Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films,” Chin. Phys. Lett. 28(5), 57803 (2011).
[Crossref]

Liu, S.

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Liu, T.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 63120 (2009).
[Crossref]

Liu, X.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Liu, Y. S.

Y. S. Liu, H. W. Lu, X. L. Xu, M. G. Gong, L. Liu, and Z. Yang, “Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films,” Chin. Phys. Lett. 28(5), 57803 (2011).
[Crossref]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Lo, Y. H.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Lu, H. W.

Y. S. Liu, H. W. Lu, X. L. Xu, M. G. Gong, L. Liu, and Z. Yang, “Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films,” Chin. Phys. Lett. 28(5), 57803 (2011).
[Crossref]

Lu, J.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Lu, J. F.

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

Lu, Y. F.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

Luk Yanchuk, B. S.

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Ma, C.

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Mahigir, A.

T. W. Chang, X. Wang, A. Mahigir, G. Veronis, G. L. Liu, and M. R. Gartia, “Marangoni convection assisted single molecule detection with nanojet surface enhanced Raman spectroscopy,” ACS Sens. 2(8), 1133–1138 (2017).
[Crossref] [PubMed]

Majewski, M. L.

Manohari, A. G.

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

Maragò, O. M.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of physics. J. Phys-Condens. Mat. 29(20), 203002 (2017).

Minin, I.

Minin, O.

Miroshnichenko, A. E.

Morkoç, H.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

Mu, R.

Mücklich, F.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Naciri, A. E.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Nedyalkov, N. N.

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Ni, W. H.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 26103 (2006).
[Crossref]

Ong, H. C.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 26103 (2006).
[Crossref]

Ottone, C.

S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, “Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane,” Nano Energy 13, 474–481 (2015).
[Crossref]

Özgür, Ü.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

Pan, N.

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Pan, X.

Pan, Y.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

Park, J.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Patel, H. S.

H. S. Patel, P. K. Kushwaha, and M. K. Swami, “Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere,” Opt. Commun. 415, 140–145 (2018).
[Crossref]

Patsalas, P.

S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
[Crossref]

Peng, T. C.

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

Peng, X. N.

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

Pilot, R.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of physics. J. Phys-Condens. Mat. 29(20), 203002 (2017).

Pirri, C. F.

S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, “Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane,” Nano Energy 13, 474–481 (2015).
[Crossref]

Pong, W. F.

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Popov, E.

Pramanik, M.

P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
[Crossref]

Qian, F.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Qin, F.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

Qin, F. F.

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

Qin, J.

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

Rakic, A. D.

Ramstein, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Ren, F.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL-. Europhys. Lett. 93(5), 57009 (2011).
[Crossref]

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

Ren, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Reshchikov, M. A.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

Retsch, M.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref] [PubMed]

Rigneault, H.

Ringne, A. B.

Saravanan, K.

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schmidt, T.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

Shen, Z. X.

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Shi, Z.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

Singh, C. R.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref] [PubMed]

Soci, C.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Soldera, F.

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

Song, J.

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Song, Z.

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Stassi, S.

S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, “Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane,” Nano Energy 13, 474–481 (2015).
[Crossref]

Stelling, C.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref] [PubMed]

Stout, B.

Sum, T. C.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Sun, H. D.

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Sun, J.

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Sun, X. W.

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Swami, M. K.

H. S. Patel, P. K. Kushwaha, and M. K. Swami, “Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere,” Opt. Commun. 415, 140–145 (2018).
[Crossref]

Taflove, A.

Tang, Y. D.

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Tao, P.

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Tay, B. K.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
[Crossref]

Teke, A.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

Thelakkat, M.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref] [PubMed]

Upputuri, P. K.

P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Van de Walle, C. G.

A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

Veronis, G.

T. W. Chang, X. Wang, A. Mahigir, G. Veronis, G. L. Liu, and M. R. Gartia, “Marangoni convection assisted single molecule detection with nanojet surface enhanced Raman spectroscopy,” ACS Sens. 2(8), 1133–1138 (2017).
[Crossref] [PubMed]

Wang, D.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Wang, G.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Wang, H.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

Wang, H. T.

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Wang, L.

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

Wang, Q.

Wang, S.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light-Sci. 2(9), e104 (2013).
[Crossref]

Wang, X.

T. W. Chang, X. Wang, A. Mahigir, G. Veronis, G. L. Liu, and M. R. Gartia, “Marangoni convection assisted single molecule detection with nanojet surface enhanced Raman spectroscopy,” ACS Sens. 2(8), 1133–1138 (2017).
[Crossref] [PubMed]

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Wang, Y.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Wang, Y. F.

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Wang, Y. G.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
[Crossref]

Wang, Z.

B. S. Luk Yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Opt. Mater. Express 7(6), 1820 (2017).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Wang, Z. L.

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Wannemacher, R.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Wei, M.

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

Wenger, J.

Wenger, J. M.

Woggon, U.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Wolf, J. P.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Wu, H.

X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Wu, J. M.

T. H. Yang and J. M. Wu, “Thermal stability of sol–gel p-type Al–N codoped ZnO films and electric properties of nanostructured ZnO homojunctions fabricated by spin-coating them on ZnO nanorods,” Acta Mater. 60(8), 3310–3320 (2012).
[Crossref]

Wu, W.

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

Wu, Y.

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

Xiang, B.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Xiao, X. H.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL-. Europhys. Lett. 93(5), 57009 (2011).
[Crossref]

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

Xing, C.

Xiong, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Xu, C.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
[Crossref]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Xu, C. X.

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

Xu, J.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Xu, J. B.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 26103 (2006).
[Crossref]

Xu, J. X.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL-. Europhys. Lett. 93(5), 57009 (2011).
[Crossref]

Xu, R.

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Xu, W.

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

Xu, X. L.

Y. S. Liu, H. W. Lu, X. L. Xu, M. G. Gong, L. Liu, and Z. Yang, “Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films,” Chin. Phys. Lett. 28(5), 57803 (2011).
[Crossref]

Yan, Y.

Y. Yan, J. Liu, C. Xing, Q. Wang, Y. Zeng, Y. Zhao, and Y. Jiang, “Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array,” Appl. Opt. 57(27), 7740–7749 (2018).
[Crossref] [PubMed]

L. Yang, Y. Yan, Q. Wang, Y. Zeng, F. Liu, L. Li, Y. Zhao, and Y. Jiang, “Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays,” Opt. Express 25(6), 6000–6014 (2017).
[Crossref] [PubMed]

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, “Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,” Opt. Express 23(20), 25854–25865 (2015).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light-Sci. 2(9), e104 (2013).
[Crossref]

Yang, D.

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 63120 (2009).
[Crossref]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Yang, L.

Yang, S.

Yang, T. H.

T. H. Yang and J. M. Wu, “Thermal stability of sol–gel p-type Al–N codoped ZnO films and electric properties of nanostructured ZnO homojunctions fabricated by spin-coating them on ZnO nanorods,” Acta Mater. 60(8), 3310–3320 (2012).
[Crossref]

Yang, Z.

Y. S. Liu, H. W. Lu, X. L. Xu, M. G. Gong, L. Liu, and Z. Yang, “Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films,” Chin. Phys. Lett. 28(5), 57803 (2011).
[Crossref]

Yang, Z. Y.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

Yao, B.

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

Ye, Z.

Yi, K. J.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

You, D. T.

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

Yu, D.

X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Yu, J.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Yu, S. F.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
[Crossref]

Yu, X. F.

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

Yuan, Z.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Zeng, Y.

Y. Yan, J. Liu, C. Xing, Q. Wang, Y. Zeng, Y. Zhao, and Y. Jiang, “Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array,” Appl. Opt. 57(27), 7740–7749 (2018).
[Crossref] [PubMed]

L. Yang, Y. Yan, Q. Wang, Y. Zeng, F. Liu, L. Li, Y. Zhao, and Y. Jiang, “Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays,” Opt. Express 25(6), 6000–6014 (2017).
[Crossref] [PubMed]

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

Y. Zeng, Y. Zhao, and Y. Jiang, “Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation,” J. Alloys Compd. 625, 175–181 (2015).
[Crossref]

Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, “Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,” Opt. Express 23(20), 25854–25865 (2015).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

Zhai, T.

L. Li, T. Zhai, Y. Bando, and D. Golberg, “Recent progress of one-dimensional ZnO nanostructured solar cells,” Nano Energy 1(1), 91–106 (2012).
[Crossref]

Zhang, A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Zhang, Q.

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[Crossref]

Zhang, X. H.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
[Crossref]

Zhao, H.

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Zhao, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhao, Y.

Y. Yan, J. Liu, C. Xing, Q. Wang, Y. Zeng, Y. Zhao, and Y. Jiang, “Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array,” Appl. Opt. 57(27), 7740–7749 (2018).
[Crossref] [PubMed]

L. Yang, Y. Yan, Q. Wang, Y. Zeng, F. Liu, L. Li, Y. Zhao, and Y. Jiang, “Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays,” Opt. Express 25(6), 6000–6014 (2017).
[Crossref] [PubMed]

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

Y. Zeng, Y. Zhao, and Y. Jiang, “Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation,” J. Alloys Compd. 625, 175–181 (2015).
[Crossref]

Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, “Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,” Opt. Express 23(20), 25854–25865 (2015).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

Zhou, H.

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

Zhou, W.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zhou, X.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[Crossref]

Zhou, X. D.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL-. Europhys. Lett. 93(5), 57009 (2011).
[Crossref]

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

Zhou, Y.

Y. Zhou, S. Chen, X. Pan, and Z. Ye, “Photoluminescence enhancement in non-polar ZnO films through metallodielectric mediated Al surface plasmons,” Opt. Lett. 43(10), 2288–2291 (2018).
[Crossref] [PubMed]

X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Zhu, G.

Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
[Crossref]

Zhu, Q.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

Zhu, Q. X.

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

Zhu, Z.

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

Zulehner, W.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced raman spectroscopy,” ACS Appl. Mater. Interfaces 9(38), 32896–32906 (2017).
[Crossref] [PubMed]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

ACS Nano (2)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
[Crossref] [PubMed]

ACS Sens. (1)

T. W. Chang, X. Wang, A. Mahigir, G. Veronis, G. L. Liu, and M. R. Gartia, “Marangoni convection assisted single molecule detection with nanojet surface enhanced Raman spectroscopy,” ACS Sens. 2(8), 1133–1138 (2017).
[Crossref] [PubMed]

Acta Mater. (1)

T. H. Yang and J. M. Wu, “Thermal stability of sol–gel p-type Al–N codoped ZnO films and electric properties of nanostructured ZnO homojunctions fabricated by spin-coating them on ZnO nanorods,” Acta Mater. 60(8), 3310–3320 (2012).
[Crossref]

Adv. Mater. (2)

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[Crossref]

J. Dai, C. X. Xu, and X. W. Sun, “ZnO-Microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

X. Fu, Z. Liao, Y. Zhou, H. Wu, Y. Bie, J. Xu, and D. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009).
[Crossref]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

X. H. Xiao, F. Ren, X. D. Zhou, T. C. Peng, W. Wu, X. N. Peng, X. F. Yu, and C. Z. Jiang, “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett. 97(7), 071909 (2010).
[Crossref]

Appl. Surf. Sci. (1)

M. E. Koleva, A. O. Dikovska, N. N. Nedyalkov, P. A. Atanasov, and I. A. Bliznakova, “Enhancement of ZnO photoluminescence by laser nanostructuring of Ag underlayer,” Appl. Surf. Sci. 258(23), 9181–9185 (2012).
[Crossref]

Chem. Phys. Lett. (1)

P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, “Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition,” Chem. Phys. Lett. 522, 92–95 (2012).
[Crossref]

Chin. Phys. Lett. (1)

Y. S. Liu, H. W. Lu, X. L. Xu, M. G. Gong, L. Liu, and Z. Yang, “Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films,” Chin. Phys. Lett. 28(5), 57803 (2011).
[Crossref]

EPL-. Europhys. Lett. (1)

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL-. Europhys. Lett. 93(5), 57009 (2011).
[Crossref]

J. Alloys Compd. (2)

Y. Zeng, Y. Zhao, and Y. Jiang, “Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation,” J. Alloys Compd. 625, 175–181 (2015).
[Crossref]

H. Zhou, R. Deng, Y. Li, B. Yao, J. Qin, J. Song, Y. Li, Z. Ding, and L. Liu, “Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition,” J. Alloys Compd. 705, 492–496 (2017).
[Crossref]

J. Appl. Phys. (5)

S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, “Photoluminescence enhancement of ZnO via coupling with surface plasmons on Al thin films,” J. Appl. Phys. 121(10), 103104 (2017).
[Crossref]

P. Cheng, D. Li, X. Li, T. Liu, and D. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 63120 (2009).
[Crossref]

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 41301 (2005).
[Crossref]

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[Crossref]

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 26103 (2006).
[Crossref]

J. Cryst. Growth (1)

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, “Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,” J. Cryst. Growth 259(4), 335–342 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (1)

W. Chamorro, J. Ghanbaja, Y. Battie, A. E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, “Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films,” J. Phys. Chem. C 120(51), 29405–29413 (2016).
[Crossref]

J. Raman Spectrosc. (1)

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49(5), 897–902 (2018).
[Crossref]

Journal of physics. J. Phys-Condens. Mat. (1)

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of physics. J. Phys-Condens. Mat. 29(20), 203002 (2017).

Light-Sci. (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light-Sci. 2(9), e104 (2013).
[Crossref]

Nano Energy (2)

S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, “Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane,” Nano Energy 13, 474–481 (2015).
[Crossref]

L. Li, T. Zhai, Y. Bando, and D. Golberg, “Recent progress of one-dimensional ZnO nanostructured solar cells,” Nano Energy 1(1), 91–106 (2012).
[Crossref]

Nano Lett. (2)

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission,” Nano Lett. 1(6), 309–314 (2001).
[Crossref]

Nano Res. (1)

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11(6), 3050–3064 (2018).
[Crossref]

Nanoscale (1)

F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, “Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons,” Nanoscale 10(2), 623–627 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5(1), 4953 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

H. S. Patel, P. K. Kushwaha, and M. K. Swami, “Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere,” Opt. Commun. 415, 140–145 (2018).
[Crossref]

P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
[Crossref]

Opt. Express (10)

G. M. Das, A. B. Ringne, V. R. Dantham, R. K. Easwaran, and R. Laha, “Numerical investigations on photonic nanojet mediated surface enhanced Raman scattering and fluorescence techniques,” Opt. Express 25(17), 19822–19831 (2017).
[Crossref] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, and L. Li, “Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays,” Opt. Express 22(19), 23552–23564 (2014).
[Crossref] [PubMed]

L. Yang, Y. Yan, Q. Wang, Y. Zeng, F. Liu, L. Li, Y. Zhao, and Y. Jiang, “Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays,” Opt. Express 25(6), 6000–6014 (2017).
[Crossref] [PubMed]

Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, and Y. Jiang, “Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection,” Opt. Express 23(20), 25854–25865 (2015).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

Y. Wu, Y. Dai, S. Jiang, C. Ma, Y. Lin, D. Du, Y. Wu, H. Ding, Q. Zhang, N. Pan, and X. Wang, “Interfacially Al-doped ZnO nanowires: greatly enhanced near band edge emission through suppressed electron-phonon coupling and confined optical field,” Phys. Chem. Chem. Phys. 19(14), 9537–9544 (2017).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B Condens. Matter 45(16), 8989–8994 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

K. W. B. W. Garrett, C G B, “Stimulated.\ emission into optical whispering modes of spheres,” Phys. Rev. Lett. 124(6), 1807 (1961).

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

RSC Advances (2)

F. Qin, N. Chang, C. Xu, Q. Zhu, M. Wei, Z. Zhu, F. Chen, and J. Lu, “Underlying mechanism of blue emission enhancement in Au decorated p-GaN film,” RSC Advances 7(25), 15071–15076 (2017).
[Crossref]

K. Saravanan, R. Krishnan, S. H. Hsieh, H. T. Wang, Y. F. Wang, W. F. Pong, K. Asokan, D. K. Avasthi, and D. Kanjilal, “Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films,” RSC Advances 5(51), 4813–4819 (2015).
[Crossref]

Sci. Adv. Mater. (1)

Y. Wang, C. Xu, J. Li, J. Dai, Y. Lin, G. Zhu, and J. Lu, “Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles,” Sci. Adv. Mater. 7(6), 1156–1162 (2015).
[Crossref]

Sci. Rep. (1)

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref] [PubMed]

Science (1)

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Small (1)

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

Other (1)

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag Berlin An, (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental configuration for acquisition of PL spectra from MA/Al-NPs/ZnO/Au-NPs/substrate structure. (a) Diagram of hybrid dielectric MA/metallic NPs sandwich structure and surface morphology of MA, Al-NPs, ZnO thin film and Au-NPs. (b) Schematic of spectroscopic setup. (c) XRD pattern of ZnO thin film grown on the sapphire substrate with/without Au-NPs.
Fig. 2
Fig. 2 Evolution of PL intensity with sputtering time of Au-NPs on various substrates. SEM images of (a) Au-NPs on sapphire and (b) Au-NPs on silicon structures with different sputtering time. PL spectra of ZnO thin films with/without underlying Au-NPs at different sputtering time (0 s, 10 s, 30 s, 50 s, 70 s and 90 s) on (c) sapphire and (d) silicon substrate. The insets are ERI of PL in UV and VIS bands as well as normalized ERI to VIS emission, respectively.
Fig. 3
Fig. 3 Evolution of PL intensity with sputtering time of Al-NPs on ZnO/Au-NPs/sapphire and ZnO/sapphire samples. (a) SEM images of Al-NPs with different sputtering time (24 s, 28 s, 32 s, 36 s, 40 s). (b) PL spectra of ZnO thin film with/without Al-/Au-NPs. The insets are ERIUV, ERIVIS and ERIUV/VIS, respectively.
Fig. 4
Fig. 4 Mechanism of PL enhancement in Al-NPs/ZnO/Au-NPs sandwich structure. (a) Schematic of energy coupling between LSPRs of Au/Al-NPs with UV and VIS emissions of ZnO. (b) Absorption spectra of Au- and Al-NPs from UV to VIS band.
Fig. 5
Fig. 5 PL enhancement of MA-capped Al-NPs/ZnO/Au-NPs/sapphire and corresponding ERI with various microsphere diameters. (a) PL spectra and (b) ERIs of PL in UV and VIS band using MAs with different microsphere diameters.
Fig. 6
Fig. 6 PL enhancement mechanisms by MA capped plasmonic sandwich structure. (a) Focused excitation intensity distribution at the shadow side of 5.06-μm-diameter MA. (b) Experimental PL spectra of Al-NPs/ZnO/Au-NPs/sapphire plasmonic sandwich structure using the excitation power of the 325 nm laser in the range of 2-500 μw, where the inset shows the integrated PL peak intensities at 376 nm and ~550 nm as a function of excitation power in a double logarithmic plot. (c) Optical WGMs of UV-PL emission in the MA/Al-NPs/ZnO/Au-NPs/sapphire structure. (d) Electric field intensity and far-field polar distribution of UV-PL emission from the plasmonic sandwich structure to free space with/without MA capping.
Fig. 7
Fig. 7 Normalized PL spectra and unidirectional emission from hybrid MA/Al-NPs/ZnO/Au-NPs/sapphire structure. (a) Normalized PL spectra and (b) effect of tilting angle on ERIUV/VIS in various ZnO-based luminescence setups.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ER I f = π r 2 | E( r ) | 2γ dS π r 2
ER I ex = Ω=2π | E AlNPs/ZnO/AuNPs (θ) | 2 | E MA/AlNPs/ZnO/AuNPs (θ) | 2 dΩ Ω=2π | E AlNPs/ZnO/AuNPs (θ) | 2 dΩ
ER I antenna = Ω=2π( 1cos( sin 1 ( NA ) ) ) | E MA/AlNPs/ZnO/AuNPs ( θ ) | 2 dΩ Ω=2π( 1cos( sin 1 ( NA ) ) ) | E AlNPs/ZnO/AuNPs ( θ ) | 2 dΩ
ERI=ER I f ×ER I ex ×ER I WGM ×ER I antenna
α= sin 1 ( NA n 0 )