Abstract

Whispering-gallery-mode resonators made of laser-active materials can serve as efficient microphotonic coherent light sources. However, the majority of experimental realizations relies on expensive pump light sources like narrow-linewidth or pulsed laser systems, which is inappropriate for most applications. In order to overcome this, we present a whispering-gallery laser system without the need for an expensive pump light source and at the same time with unprecedented laser performance: A laser-active resonator made of Nd:YVO 4 is non-resonantly excited, employing a low-cost laser diode without any external frequency stabilization, emitting up to 100 mW optical power around 810 nm wavelength. Continuous-wave single-frequency lasing at 1064 nm wavelength is achieved with directed laser light emission in the mW-regime. The temporal power and frequency stability are within ±1.5 % and ±30 MHz, respectively. Modehop-free frequency fine-tuning is achieved exceeding 11 GHz tuning range by changing the temperature of the cavity. Faster tuning can be expected when applying geometric or electro-optic instead of thermal tuning.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
LED-pumped whispering-gallery laser

Simon J. Herr, Karsten Buse, and Ingo Breunig
Photon. Res. 5(6) B34-B38 (2017)

Tunable Raman laser in a hollow bottle-like microresonator

Yuan Chen, Zhong-Hao Zhou, Chang-Ling Zou, Zhen Shen, Guang-Can Guo, and Chun-Hua Dong
Opt. Express 25(14) 16879-16887 (2017)

Self-frequency doubling in a laser-active whispering-gallery resonator

Simon J. Herr, Yannick Folwill, Karsten Buse, and Ingo Breunig
Opt. Lett. 42(13) 2627-2630 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
    [Crossref]
  2. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305 (1998).
    [Crossref]
  3. M. C. Collodo, F. Sedlmeir, B. Sprenger, S. Svitlov, L. J. Wang, and H. G. L. Schwefel, “Sub-kHz lasing of a CaF 2 whispering gallery mode resonator stabilized fiber ring laser,” Opt. Express 22, 19277–19283 (2014).
    [Crossref] [PubMed]
  4. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
    [Crossref]
  5. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
    [Crossref] [PubMed]
  6. S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
    [Crossref] [PubMed]
  7. M. Kuwata-Gonokami, S. Ozawa, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, and R. E. Slusher, “Polymer microdisk and microring lasers,” Opt. Lett. 20, 2093–2095 (1995).
    [Crossref] [PubMed]
  8. M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998).
    [Crossref]
  9. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
    [Crossref] [PubMed]
  10. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592–594 (2003).
    [Crossref] [PubMed]
  11. T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12, 392–394 (1987).
    [Crossref] [PubMed]
  12. T. Le, S. J. Schowalter, W. Rellergert, J. Jeet, G. Lin, N. Yu, and E. R. Hudson, “Low-threshold ultraviolet solid-state laser based on a Ce 3+:LiCaAlF 6 crystal resonator,” Opt. Lett. 37, 4961–4963 (2012).
    [Crossref] [PubMed]
  13. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [Crossref]
  14. H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
    [Crossref]
  15. S. J. Herr, Y. Folwill, K. Buse, and I. Breunig, “Self-frequency doubling in a laser-active whispering-gallery resonator,” Opt. Lett. 42, 2627–2630 (2017).
    [Crossref] [PubMed]
  16. J. Qin, Y. Huang, T. Liao, C. Xu, C. Ke, and Y. Duan, “1.9 μm laser and visible light emissions in Er 3+/Tm 3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source,” J. Opt. 21, 035401 (2019).
    [Crossref]
  17. S. J. Herr, K. Buse, and I. Breunig, “LED-pumped whispering-gallery laser,” Photon. Res. 5, B34–B38 (2017).
    [Crossref]
  18. X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
    [Crossref]
  19. F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
    [Crossref]
  20. F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
    [Crossref]
  21. I. Breunig, B. Sturman, F. Sedlmeir, H. G. L. Schwefel, and K. Buse, “Whispering gallery modes at the rim of an axisymmetric optical resonator: Analytical versus numerical description and comparison with experiment,” Opt. Express 21, 30683–30692 (2013).
    [Crossref]
  22. A. E. Siegman, Lasers(University Science Books, Mill Valley, Calif, 1986).
  23. H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, “Spectral parameters of Nd-doped yttrium orthovanadate crystals,” J. Appl. Phys. 88, 5134–5137 (2000).
    [Crossref]
  24. M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
    [Crossref]
  25. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO 4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
    [Crossref] [PubMed]
  26. C. S. Werner, W. Yoshiki, S. J. Herr, I. Breunig, and K. Buse, “Geometric tuning, spectroscopy using whispering-gallery resonator frequency-synthesizers,” Optica 4, 1205–1208 (2017).
    [Crossref]
  27. S. J. Herr, C. S. Werner, K. Buse, and I. Breunig, “Quasi-phase-matched self-pumped optical parametric oscillation in a micro-resonator,” Opt. Express 26, 10813–10819 (2018).
    [Crossref] [PubMed]

2019 (1)

J. Qin, Y. Huang, T. Liao, C. Xu, C. Ke, and Y. Duan, “1.9 μm laser and visible light emissions in Er 3+/Tm 3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source,” J. Opt. 21, 035401 (2019).
[Crossref]

2018 (1)

2017 (5)

2016 (1)

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

2014 (1)

2013 (2)

2012 (1)

2003 (1)

2000 (2)

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, “Spectral parameters of Nd-doped yttrium orthovanadate crystals,” J. Appl. Phys. 88, 5134–5137 (2000).
[Crossref]

1998 (2)

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305 (1998).
[Crossref]

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998).
[Crossref]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

1995 (1)

1994 (1)

M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[Crossref]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

1991 (1)

1987 (1)

1986 (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

1984 (1)

1961 (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Baer, T.

Bond, W. L.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Breunig, I.

Buse, K.

Cao, H.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Chang, R. K.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
[Crossref] [PubMed]

Chang, S.-H.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Collodo, M. C.

Dodabalapur, A.

Duan, Y.

J. Qin, Y. Huang, T. Liao, C. Xu, C. Ke, and Y. Duan, “1.9 μm laser and visible light emissions in Er 3+/Tm 3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source,” J. Opt. 21, 035401 (2019).
[Crossref]

Fang, W.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
[Crossref]

Folwill, Y.

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Gong, Q.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Gorodetsky, M. L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305 (1998).
[Crossref]

M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[Crossref]

Gu, F.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
[Crossref]

Guo, M.

H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, “Spectral parameters of Nd-doped yttrium orthovanadate crystals,” J. Appl. Phys. 88, 5134–5137 (2000).
[Crossref]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

He, L.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

Herr, S. J.

Ho, S. T.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Hollberg, L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305 (1998).
[Crossref]

Huang, Y.

J. Qin, Y. Huang, T. Liao, C. Xu, C. Ke, and Y. Duan, “1.9 μm laser and visible light emissions in Er 3+/Tm 3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source,” J. Opt. 21, 035401 (2019).
[Crossref]

Hudson, E. R.

Ilchenko, V. S.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305 (1998).
[Crossref]

M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[Crossref]

Jeet, J.

Jiang, X.-F.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Jordan, R. H.

Kaiser, W.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Katz, H. E.

Ke, C.

J. Qin, Y. Huang, T. Liao, C. Xu, C. Ke, and Y. Duan, “1.9 μm laser and visible light emissions in Er 3+/Tm 3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source,” J. Opt. 21, 035401 (2019).
[Crossref]

Kobayashi, T.

Kuwata-Gonokami, M.

Le, T.

Lefèvre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Liao, T.

J. Qin, Y. Huang, T. Liao, C. Xu, C. Ke, and Y. Duan, “1.9 μm laser and visible light emissions in Er 3+/Tm 3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source,” J. Opt. 21, 035401 (2019).
[Crossref]

Lin, G.

Lin, X.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Linghu, S.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Long, M. B.

Ma, Y.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Meng, X. L.

H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, “Spectral parameters of Nd-doped yttrium orthovanadate crystals,” J. Appl. Phys. 88, 5134–5137 (2000).
[Crossref]

Mukai, A.

Nozawa, Y.

Ozawa, S.

Özdemir, S. K.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Qian, S. X.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Qin, J.

J. Qin, Y. Huang, T. Liao, C. Xu, C. Ke, and Y. Duan, “1.9 μm laser and visible light emissions in Er 3+/Tm 3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source,” J. Opt. 21, 035401 (2019).
[Crossref]

Raimond, J.-M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

Rellergert, W.

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

Schilling, M. L.

Schowalter, S. J.

Schwefel, H. G. L.

Sedlmeir, F.

Siegman, A. E.

A. E. Siegman, Lasers(University Science Books, Mill Valley, Calif, 1986).

Slusher, R. E.

M. Kuwata-Gonokami, S. Ozawa, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, and R. E. Slusher, “Polymer microdisk and microring lasers,” Opt. Lett. 20, 2093–2095 (1995).
[Crossref] [PubMed]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Snow, J. B.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Solomon, G. S.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Sprenger, B.

Sturman, B.

Svitlov, S.

Taira, T.

Takeda, K.

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998).
[Crossref]

Tong, L.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

Tzeng, H. M.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Tzeng, H.-M.

Vahala, K. J.

Vassiliev, V. V.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305 (1998).
[Crossref]

Velichansky, V. L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305 (1998).
[Crossref]

Wall, K. F.

Wang, H.

Wang, J. Y.

H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, “Spectral parameters of Nd-doped yttrium orthovanadate crystals,” J. Appl. Phys. 88, 5134–5137 (2000).
[Crossref]

Wang, L.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Wang, L. J.

Werner, C. S.

Xia, H. R.

H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, “Spectral parameters of Nd-doped yttrium orthovanadate crystals,” J. Appl. Phys. 88, 5134–5137 (2000).
[Crossref]

Xiang, W. H.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Xiao, Y.-F.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Xie, F.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
[Crossref]

Xu, C.

J. Qin, Y. Huang, T. Liao, C. Xu, C. Ke, and Y. Duan, “1.9 μm laser and visible light emissions in Er 3+/Tm 3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source,” J. Opt. 21, 035401 (2019).
[Crossref]

Xu, J. Y.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

Yang, L.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28, 592–594 (2003).
[Crossref] [PubMed]

Yao, N.

Yarovitsky, A. V.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305 (1998).
[Crossref]

Yoshiki, W.

Yu, N.

Zeng, H.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Zhang, H. J.

H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, “Spectral parameters of Nd-doped yttrium orthovanadate crystals,” J. Appl. Phys. 88, 5134–5137 (2000).
[Crossref]

Zhu, L.

H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, “Spectral parameters of Nd-doped yttrium orthovanadate crystals,” J. Appl. Phys. 88, 5134–5137 (2000).
[Crossref]

Zhuang, S.

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, and S. Zhuang, “Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators,” Photon. Res. 5, B29–B33 (2017).
[Crossref]

Zou, C.-L.

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Appl. Phys. Lett. (2)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S.-H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000).
[Crossref]

J. Appl. Phys. (1)

H. R. Xia, X. L. Meng, M. Guo, L. Zhu, H. J. Zhang, and J. Y. Wang, “Spectral parameters of Nd-doped yttrium orthovanadate crystals,” J. Appl. Phys. 88, 5134–5137 (2000).
[Crossref]

J. Opt. (1)

J. Qin, Y. Huang, T. Liao, C. Xu, C. Ke, and Y. Duan, “1.9 μm laser and visible light emissions in Er 3+/Tm 3+ co-doped tellurite glass microspheres pumped by a broadband amplified spontaneous emission source,” J. Opt. 21, 035401 (2019).
[Crossref]

Laser Photon. Rev. (2)

X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

Light Sci. Appl. (1)

F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Opt. Commun. (2)

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158, 305 (1998).
[Crossref]

M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

Opt. Mater. (1)

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998).
[Crossref]

Optica (1)

Photon. Res. (2)

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Phys. Rev. A (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

Science (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Other (1)

A. E. Siegman, Lasers(University Science Books, Mill Valley, Calif, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Top: Illustration of a half WGR, the whispering-gallery-laser-mode cross section (red) and the excitation light (blue), which excites the laser-active WGR medium. Bottom: Magnified illustration of the excitation scheme. The focused excitation light beam (blue), propagating in x-direction overlaps with the whispering-gallery-laser-mode cross section (red). Here, the beam waist of the excitation light is smaller than the polar extent of the lasing whispering-gallery mode. The optic axis of the birefringent WGR host material is oriented in the z-direction.
Fig. 2
Fig. 2 (a) A gradient-index (GRIN) lens focuses the excitation light from a laser diode (LD 1) onto the rim of a laser-active WGR. A coupling prism extracts a fraction of the bidirectional laser oscillation. Light from a second laser diode (LD 2) heats the whole host crystal. A polarizer (Pol) is used to adjust the heating power. (b) Photograph of the WGR, the coupling prism, and the excitation light source with mounted GRIN-lens. (c) Measured focal intensity distribution of the excitation light in the x-z-plane. Propagation direction of the light is from right to left. The measurement is performed with a knife edge displaced by two high-precision stages.
Fig. 3
Fig. 3 Spectral analysis of the laser emission revealing single-frequency operation of the internal laser process. Inset: False color camera image of the emitted beam, having a TEM00-like intensity distribution, captured after collimation and focusing. Pixel size: 6.45 μm.
Fig. 4
Fig. 4 (a) Power and (b) frequency stability of the microresonator-based laser during 30 minutes run time.
Fig. 5
Fig. 5 Measured laser emission frequency shift versus optical heating power of the whispering-gallery microresonator. Inset: Optical emission spectrum during dual-mode operation, measured by means of a grating spectrometer. The separation of the two peaks is about the free spectral range of the microresonator (≈0.2 nm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P th = 2 π n l h c V p λ l λ p Q l σ em τ η .
η T α w m .
d ν l d T = ν 0 ( 1 n l d n l d T + α therm ) ( 1 + ν 0 n l d n l d ν l ) 1 .