Abstract

We present here an optical approach to boost the apparent pixel density by utilizing the superimposition of two shifted-pixel grids generated by a Pancharatnam-Berry deflector (PBD). The content of the two shifted pixel grids are presented to the observer’s eye simultaneously using a polarization-multiplexing method. Considering the compact and lightweight nature of PBD, this approach has potential applications in near-eye display systems. Moreover, the same concept can be extended to projection displays with proper modifications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Foveated imaging for near-eye displays

Guanjun Tan, Yun-Han Lee, Tao Zhan, Jilin Yang, Sheng Liu, Dongfeng Zhao, and Shin-Tson Wu
Opt. Express 26(19) 25076-25085 (2018)

Wavelength-multiplexed multi-focal-plane seethrough near-eye displays

Tao Zhan, Junyu Zou, Matthew Lu, Enguo Chen, and Shin-Tson Wu
Opt. Express 27(20) 27507-27513 (2019)

Enhancing the resolution of a near-eye display with a Pancharatnam–Berry phase deflector

Yun-Han Lee, Tao Zhan, and Shin-Tson Wu
Opt. Lett. 42(22) 4732-4735 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Anthes, R. J. García-Hernández, M. Wiedemann, and D. Kranzlmüller, “State of the art of virtual reality technology,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–19.
    [Crossref]
  2. C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
    [Crossref]
  3. S.-J. K. Park, M. Ryu, C.-S. Hwang, S. Yang, C. Byun, J.-I. Lee, J. Shin, S. M. Yoon, H. Y. Chu, K. I. Cho, L. Lee, M. S. Oh, and S. Im, “42.3: Transparent ZnO thin film transistor for the application of high aperture ratio bottom emission AM‐OLED display,” SID Int. Symp. Dig. Tech. Pap. 39(1), 629–632.
  4. B. T. Mitchell, “Foveated display eye-tracking system and method,” U.S. patent 7,872,635 (Jan. 18, 2011).
  5. G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
    [Crossref] [PubMed]
  6. O. A. O. Sahlsten, K. Melakari, M. Ollila, and V. Miettinen, “Gaze-tracking system and method of tracking user’s gaze”, U.S. patent Application 2018/0157910A1 (Jun. 7,2018).
  7. W. Allen and R. Ulichney, “47.4: Invited paper: Wobulation: Doubling the addressed resolution of projection displays,” SID Int. Symp. Dig. Tech. Pap. 36, 1514–1517 (2005).
    [Crossref]
  8. F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
    [Crossref]
  9. F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
    [Crossref]
  10. Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
    [Crossref]
  11. B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 79 (2012).
    [Crossref]
  12. Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
    [Crossref] [PubMed]
  13. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. Sect. A Phys. Sci. 44(5), 247–262 (1956).
    [Crossref]
  14. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984).
    [Crossref]
  15. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).
  16. N. Tabiryan, D. Roberts, D. Steeves, and B. Kimball, “4G optics: new technology extends limits to the extremes,” Photon. Spectra 51, 46–50 (2017).
  17. Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
    [Crossref]
  18. T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
    [Crossref]
  19. M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Appl. Opt. 17(11), 1757–1759 (1978).
    [Crossref] [PubMed]
  20. H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
    [Crossref] [PubMed]
  21. T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
    [Crossref] [PubMed]
  22. Y. H. Lee, G. Tan, Y. Kun, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
    [Crossref]
  23. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  24. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
    [Crossref]
  25. T. Zhan, J. Xiong, Y. H. Lee, R. Chen, and S. T. Wu, “Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography,” Opt. Express 27(3), 2632–2642 (2019).
    [Crossref] [PubMed]
  26. N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays,” U.S. patent 9,983,479 (May 29, 2018).
  27. J. Kim and M. J. Escuti, “Polarization grating exposure method with easily tunable period via dual rotating polarization grating masks,” J. Opt. Soc. Am. B 36(5), D42–D46 (2019).
    [Crossref]
  28. M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
    [Crossref]
  29. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  30. N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Cycloidal diffractive waveplate and method of manufacture,” U.S. patent 9,658,512 (May 23, 2017).
  31. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
    [Crossref] [PubMed]
  32. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  33. G. P. Bell, R. Craig, R. Paxton, G. Wong, and D. Galbraith, 25.4: Invited paper: Beyond flat panels —Multi layer displays with real depth,” SID Int. Symp. Dig. Tech. Pap. 39(1), 352–355 (2008).

2019 (3)

2018 (4)

T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
[Crossref] [PubMed]

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Y. H. Lee, G. Tan, Y. Kun, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

2017 (4)

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

N. Tabiryan, D. Roberts, D. Steeves, and B. Kimball, “4G optics: new technology extends limits to the extremes,” Photon. Spectra 51, 46–50 (2017).

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (1)

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

2012 (2)

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 79 (2012).
[Crossref]

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

2010 (1)

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

2009 (2)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

2008 (2)

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984).
[Crossref]

1978 (1)

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. Sect. A Phys. Sci. 44(5), 247–262 (1956).
[Crossref]

Anthes, C.

C. Anthes, R. J. García-Hernández, M. Wiedemann, and D. Kranzlmüller, “State of the art of virtual reality technology,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–19.
[Crossref]

Balram, N.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Berry, M. V.

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984).
[Crossref]

Chen, H.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

Chen, R.

Escuti, M. J.

Furuya, M.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

García-Hernández, R. J.

C. Anthes, R. J. García-Hernández, M. Wiedemann, and D. Kranzlmüller, “State of the art of virtual reality technology,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–19.
[Crossref]

Gauza, S.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Gopi, M.

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 79 (2012).
[Crossref]

Gou, F.

T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Heide, F.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Jung, S. H.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Kanazawa, M.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

Kang, I. B.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Kautz, J.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Kim, J.

Kimball, B.

N. Tabiryan, D. Roberts, D. Steeves, and B. Kimball, “4G optics: new technology extends limits to the extremes,” Photon. Spectra 51, 46–50 (2017).

Kimball, B. R.

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

Komanduri, R. K.

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

Kranzlmüller, D.

C. Anthes, R. J. García-Hernández, M. Wiedemann, and D. Kranzlmüller, “State of the art of virtual reality technology,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–19.
[Crossref]

Kudenov, M. W.

Kun, Y.

Y. H. Lee, G. Tan, Y. Kun, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Kusakabe, Y.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

Lanman, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Lee, G.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Lee, S. L.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Lee, Y. H.

T. Zhan, J. Xiong, Y. H. Lee, R. Chen, and S. T. Wu, “Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography,” Opt. Express 27(3), 2632–2642 (2019).
[Crossref] [PubMed]

T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
[Crossref] [PubMed]

Y. H. Lee, G. Tan, Y. Kun, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
[Crossref] [PubMed]

Li, M. C.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Li, Y.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

Liu, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Liu, S.

Luebke, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Majumder, A.

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 79 (2012).
[Crossref]

Miskiewicz, M. N.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

Moharam, M. G.

Nersisyan, S. R.

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

Nojiri, Y.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

Oh, C.

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. Sect. A Phys. Sci. 44(5), 247–262 (1956).
[Crossref]

Peng, F.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Pulli, K.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Reddy, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Roberts, D.

N. Tabiryan, D. Roberts, D. Steeves, and B. Kimball, “4G optics: new technology extends limits to the extremes,” Photon. Spectra 51, 46–50 (2017).

Sajadi, B.

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 79 (2012).
[Crossref]

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Steeves, D.

N. Tabiryan, D. Roberts, D. Steeves, and B. Kimball, “4G optics: new technology extends limits to the extremes,” Photon. Spectra 51, 46–50 (2017).

Steeves, D. M.

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

Tabiryan, N.

N. Tabiryan, D. Roberts, D. Steeves, and B. Kimball, “4G optics: new technology extends limits to the extremes,” Photon. Spectra 51, 46–50 (2017).

Tabiryan, N. V.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

Tan, G.

T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
[Crossref] [PubMed]

Y. H. Lee, G. Tan, Y. Kun, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Vieri, C.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Wand, M.

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Weng, Y.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

Wiedemann, M.

C. Anthes, R. J. García-Hernández, M. Wiedemann, and D. Kranzlmüller, “State of the art of virtual reality technology,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–19.
[Crossref]

Wu, S. T.

T. Zhan, J. Xiong, Y. H. Lee, R. Chen, and S. T. Wu, “Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography,” Opt. Express 27(3), 2632–2642 (2019).
[Crossref] [PubMed]

T. Zhan, Y. H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S. T. Wu, “Pancharatnam-Berry optical elements for head-up and near-eye Displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
[Crossref] [PubMed]

T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

Y. H. Lee, G. Tan, Y. Kun, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
[Crossref] [PubMed]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

Xiong, J.

Xu, D.

Yang, J.

Yang, J. Y.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Yin, K.

Yoon, S. Y.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Yoshimura, M.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

Young, L.

Zhan, T.

Zhang, N.

Zhao, D.

Zou, J.

ACM Trans. Graph. (2)

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 79 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

J. Appl. Phys. (1)

F. Peng, H. Chen, F. Gou, Y. H. Lee, M. Wand, M. C. Li, S. L. Lee, and S. T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121(2), 023108 (2017).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Soc. Inf. Disp. (3)

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 ″1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Y. H. Lee, G. Tan, Y. Kun, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Opt. Data Process. Storage (1)

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Photonics News (1)

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

Optica (1)

Photon. Spectra (1)

N. Tabiryan, D. Roberts, D. Steeves, and B. Kimball, “4G optics: new technology extends limits to the extremes,” Photon. Spectra 51, 46–50 (2017).

Proc. Indian Acad. Sci. Sect. A Phys. Sci. (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. Sect. A Phys. Sci. 44(5), 247–262 (1956).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984).
[Crossref]

Proc. SPIE (1)

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

Other (8)

N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays,” U.S. patent 9,983,479 (May 29, 2018).

N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Cycloidal diffractive waveplate and method of manufacture,” U.S. patent 9,658,512 (May 23, 2017).

G. P. Bell, R. Craig, R. Paxton, G. Wong, and D. Galbraith, 25.4: Invited paper: Beyond flat panels —Multi layer displays with real depth,” SID Int. Symp. Dig. Tech. Pap. 39(1), 352–355 (2008).

O. A. O. Sahlsten, K. Melakari, M. Ollila, and V. Miettinen, “Gaze-tracking system and method of tracking user’s gaze”, U.S. patent Application 2018/0157910A1 (Jun. 7,2018).

W. Allen and R. Ulichney, “47.4: Invited paper: Wobulation: Doubling the addressed resolution of projection displays,” SID Int. Symp. Dig. Tech. Pap. 36, 1514–1517 (2005).
[Crossref]

S.-J. K. Park, M. Ryu, C.-S. Hwang, S. Yang, C. Byun, J.-I. Lee, J. Shin, S. M. Yoon, H. Y. Chu, K. I. Cho, L. Lee, M. S. Oh, and S. Im, “42.3: Transparent ZnO thin film transistor for the application of high aperture ratio bottom emission AM‐OLED display,” SID Int. Symp. Dig. Tech. Pap. 39(1), 629–632.

B. T. Mitchell, “Foveated display eye-tracking system and method,” U.S. patent 7,872,635 (Jan. 18, 2011).

C. Anthes, R. J. García-Hernández, M. Wiedemann, and D. Kranzlmüller, “State of the art of virtual reality technology,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–19.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram describing the principle of resolution enhancement by the shifted superimposition method. (a) From the perspective of pixel, each original pixel (green) with pitch P is separated diagonally into two virtual pixels (blue and yellow). (b) From the panel perspective, the original panel is split into two virtual panels. (c) A new pixel grid (orange) with half a pixel pitch (P/2) is formed by superimposition of two virtual panels.
Fig. 2
Fig. 2 A typical optical design for virtual reality. Pixel locations in the panel are mapped to different directions of nearly collimated beams by the lens.
Fig. 3
Fig. 3 Illustration of orientation distribution of local liquid crystal anisotropy director in a polymer PBD. The thickness d satisfies the half-wave plate condition and the period Λ is determined by the desired separation angle of the two virtual pixel grids.
Fig. 4
Fig. 4 Schematic illustration of the resolution enhanced near-eye display system based on polarization multiplexing. PBD: Pancharatnam-Berry deflector; L: lens; and PML: polarization modulation layer.
Fig. 5
Fig. 5 Polarization holography setup for generating the LC orientation pattern in PBD devices.
Fig. 6
Fig. 6 (a) Pixel illustration and (b) mapping matrix construction for image generation.
Fig. 7
Fig. 7 (a) Schematic illustration and (b) experimental implementation of the polarization modulation layer. The polarization orientation angle of the light from the display is rotated by the polarization rotator. Then a quarter-wave plate is utilized to convert the TE/TM ratio to RCP/LCP ratio, for the desired separation ratio after PBD.
Fig. 8
Fig. 8 Images captured through a camera with (a) original and (b) enhanced resolution of a “Siemens star” resolution target and an athletic shirt. The screen door effect is reduced, and the pixel density is doubled simultaneously.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

argmin RT 2 ,R=M[ V 1 V 2 ],T=[ T 1 T 2 T K ],

Metrics