Abstract

Beam steering is essential for a variety of optical applications such as communication, LIDAR, and imaging. Microelectromechanical system (MEMS) mirrors are an effective method of achieving modest speeds and angular range at low cost. Typically there are a number of tradeoffs considered when designing a tip-tilt mirror, such as tilt angle and speed. For example, many mirrors are designed to scan at their resonant frequency to achieve large angles. This is effective for a scanning mode; however, this makes the device slow and ineffective as a galvo (quasi-static). Here, we present a magnetic MEMS mirror with extreme quasi-static mechanical tilt angles of ±60° (±120° optical) about two rotation axes. This micromirror enables full hemispheric optical coverage without compromising speed; settling in 4.5 ms using advanced drive techniques. This mirror will enable new applications for MEMS micromirrors previously thought impossible due to their limited angular range and speed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability

Jessica Morrison, Matthias Imboden, Thomas D.C. Little, and D. J. Bishop
Opt. Express 23(7) 9555-9566 (2015)

Optical coherence tomography endoscopic probe based on a tilted MEMS mirror

Can Duan, Quentin Tanguy, Antonio Pozzi, and Huikai Xie
Biomed. Opt. Express 7(9) 3345-3354 (2016)

Wide-angle structured light with a scanning MEMS mirror in liquid

Xiaoyang Zhang, Sanjeev J. Koppal, Rui Zhang, Liang Zhou, Elizabeth Butler, and Huikai Xie
Opt. Express 24(4) 3479-3487 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Oh, Z. Cao, E. Tangdiongga, and T. Koonen, “Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks,” Opt. Express 24, 19211–19227 (2016).
    [Crossref] [PubMed]
  2. A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
    [Crossref]
  3. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photonics Technol. Lett. 23, 519–521 (2011).
    [Crossref]
  4. P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical wireless communication with adaptive focus and MEMS-based beam steering,” IEEE Photonics Technol. Lett. 25, 1428–1431 (2013).
    [Crossref]
  5. C. Pollock, J. Morrison, M. Imboden, T. Little, and D. Bishop, “Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication,” Opt. Express 25, 971–980 (2017).
    [Crossref]
  6. R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
    [Crossref]
  7. W. Zhang, “LIDAR-based road and road-edge detection,” in 2010 IEEE Intelligent Vehicles Symposium, (IEEE, 2010), pp. 845–848.
    [Crossref]
  8. A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” in Proc. SPIE, (2016), 9832.
  9. W. Mellette and J. E. Ford, “Scaling limits of MEMS beam-steering switches for data center networks,” J. Light. Technol. 33, 3308–3318 (2015).
    [Crossref]
  10. Z. Qiu and W. Piyawattanametha, “MEMS-based medical endomicroscopes,” IEEE J. Sel. Top. Quantum Electron. 21, 376–391 (2015).
    [Crossref]
  11. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
    [Crossref] [PubMed]
  12. O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe,“MEMS Optical: from micromirrors to complex systems,” J. Microelectromech. Syst. 23, 517–538 (2014).
    [Crossref]
  13. S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: a review,” J. Microelectromech. Syst. 23, 259–275 (2014).
    [Crossref]
  14. M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
    [Crossref]
  15. S. Desai, A. Netravali, and M. Thompson, “Carbon fibers as a novel material for high-performance microelectromechanical systems (MEMS),” J. Micromech. Microeng. 16, 1403–1407 (2006).
    [Crossref]
  16. X. Zhang, S. J. Koppal, R. Zhang, L. Zhou, E. Butler, and H. Xie, “Wide-angle structured light with a scanning MEMS mirror in liquid,” Opt. Express 24, 3479–3487 (2016).
    [Crossref] [PubMed]
  17. T. Naono, T. Fujii, M. Esashi, and S. Tanaka, “A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film,” J. Micromech. Microeng.24 (2014).
    [Crossref]
  18. J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
    [Crossref] [PubMed]
  19. W. Makishi, Y. Kawai, and M. Esashi, “Magnetic torque driving 2D micro scanner with a non-resonant large scan angle,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (IEEE, 2009), pp. 904–907.
    [Crossref]
  20. S. Jeon and H. Toshiyoshi, “MEMS tracking mirror system for a bidirectional free-space optical link,” Appl. optics 56, 6720–6727 (2017).
    [Crossref]
  21. L. Wu and H. Xie, “A scanning micromirror with stationary rotation axis and dual reflective surfaces for 360° forward-view endoscopic imaging,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (2009), pp. 2222–2225.
    [Crossref]
  22. D. Koester, A. Cowen, and R. Mahadevan, “PolyMUMPs design handbook,” MEMSCAP Inc (2013).
  23. A. Stange, M. Imboden, J. Javor, L. K. Barrett, and D. J. Bishop, “Building a casimir metrology platform with a commercial MEMS sensor,” Microsyst. Nanoeng. 5, 1 (2019).
  24. A. French,Vibrations and Waves(W. W. Norton & Companyed., 1971), reprint ed.
  25. C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
    [Crossref]

2019 (1)

A. Stange, M. Imboden, J. Javor, L. K. Barrett, and D. J. Bishop, “Building a casimir metrology platform with a commercial MEMS sensor,” Microsyst. Nanoeng. 5, 1 (2019).

2018 (1)

C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
[Crossref]

2017 (2)

S. Jeon and H. Toshiyoshi, “MEMS tracking mirror system for a bidirectional free-space optical link,” Appl. optics 56, 6720–6727 (2017).
[Crossref]

C. Pollock, J. Morrison, M. Imboden, T. Little, and D. Bishop, “Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication,” Opt. Express 25, 971–980 (2017).
[Crossref]

2016 (3)

2015 (4)

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
[Crossref]

W. Mellette and J. E. Ford, “Scaling limits of MEMS beam-steering switches for data center networks,” J. Light. Technol. 33, 3308–3318 (2015).
[Crossref]

Z. Qiu and W. Piyawattanametha, “MEMS-based medical endomicroscopes,” IEEE J. Sel. Top. Quantum Electron. 21, 376–391 (2015).
[Crossref]

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

2014 (3)

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe,“MEMS Optical: from micromirrors to complex systems,” J. Microelectromech. Syst. 23, 517–538 (2014).
[Crossref]

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: a review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref] [PubMed]

2013 (1)

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical wireless communication with adaptive focus and MEMS-based beam steering,” IEEE Photonics Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

2012 (1)

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

2011 (1)

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photonics Technol. Lett. 23, 519–521 (2011).
[Crossref]

2006 (1)

S. Desai, A. Netravali, and M. Thompson, “Carbon fibers as a novel material for high-performance microelectromechanical systems (MEMS),” J. Micromech. Microeng. 16, 1403–1407 (2006).
[Crossref]

Akbulut, M.

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

Atwood, B. H.

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” in Proc. SPIE, (2016), 9832.

Bai, X.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Baran, U.

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: a review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

Barrett, L. K.

A. Stange, M. Imboden, J. Javor, L. K. Barrett, and D. J. Bishop, “Building a casimir metrology platform with a commercial MEMS sensor,” Microsyst. Nanoeng. 5, 1 (2019).

Bifano, T. G.

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

Bishop, D.

C. Pollock, J. Morrison, M. Imboden, T. Little, and D. Bishop, “Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication,” Opt. Express 25, 971–980 (2017).
[Crossref]

Bishop, D. J.

A. Stange, M. Imboden, J. Javor, L. K. Barrett, and D. J. Bishop, “Building a casimir metrology platform with a commercial MEMS sensor,” Microsyst. Nanoeng. 5, 1 (2019).

C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
[Crossref]

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

Brandl, P.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical wireless communication with adaptive focus and MEMS-based beam steering,” IEEE Photonics Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Butler, E.

Cable, A. E.

Cao, Z.

Chang, J.

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

Chiles, L.

C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
[Crossref]

Choi, W.

Cowen, A.

D. Koester, A. Cowen, and R. Mahadevan, “PolyMUMPs design handbook,” MEMSCAP Inc (2013).

Dammann, J. F.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Desai, S.

S. Desai, A. Netravali, and M. Thompson, “Carbon fibers as a novel material for high-performance microelectromechanical systems (MEMS),” J. Micromech. Microeng. 16, 1403–1407 (2006).
[Crossref]

Duker, J. S.

Esashi, M.

T. Naono, T. Fujii, M. Esashi, and S. Tanaka, “A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film,” J. Micromech. Microeng.24 (2014).
[Crossref]

W. Makishi, Y. Kawai, and M. Esashi, “Magnetic torque driving 2D micro scanner with a non-resonant large scan angle,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (IEEE, 2009), pp. 904–907.
[Crossref]

Faulkner, G.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
[Crossref]

Ford, J. E.

W. Mellette and J. E. Ford, “Scaling limits of MEMS beam-steering switches for data center networks,” J. Light. Technol. 33, 3308–3318 (2015).
[Crossref]

French, A.

A. French,Vibrations and Waves(W. W. Norton & Companyed., 1971), reprint ed.

Fujii, T.

T. Naono, T. Fujii, M. Esashi, and S. Tanaka, “A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film,” J. Micromech. Microeng.24 (2014).
[Crossref]

Fujimoto, J. G.

Gaberl, W.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical wireless communication with adaptive focus and MEMS-based beam steering,” IEEE Photonics Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Giza, M. M.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Godil, A. A.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe,“MEMS Optical: from micromirrors to complex systems,” J. Microelectromech. Syst. 23, 517–538 (2014).
[Crossref]

Gomez, A.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
[Crossref]

Holmstrom, S. T. S.

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: a review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

Hornegger, J.

Howe, R. T.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe,“MEMS Optical: from micromirrors to complex systems,” J. Microelectromech. Syst. 23, 517–538 (2014).
[Crossref]

Imboden, M.

A. Stange, M. Imboden, J. Javor, L. K. Barrett, and D. J. Bishop, “Building a casimir metrology platform with a commercial MEMS sensor,” Microsyst. Nanoeng. 5, 1 (2019).

C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
[Crossref]

C. Pollock, J. Morrison, M. Imboden, T. Little, and D. Bishop, “Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication,” Opt. Express 25, 971–980 (2017).
[Crossref]

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

Javor, J.

A. Stange, M. Imboden, J. Javor, L. K. Barrett, and D. J. Bishop, “Building a casimir metrology platform with a commercial MEMS sensor,” Microsyst. Nanoeng. 5, 1 (2019).

C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
[Crossref]

Jayaraman, V.

Jeon, S.

S. Jeon and H. Toshiyoshi, “MEMS tracking mirror system for a bidirectional free-space optical link,” Appl. optics 56, 6720–6727 (2017).
[Crossref]

Kasturi, A.

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” in Proc. SPIE, (2016), 9832.

Kawai, Y.

W. Makishi, Y. Kawai, and M. Esashi, “Magnetic torque driving 2D micro scanner with a non-resonant large scan angle,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (IEEE, 2009), pp. 904–907.
[Crossref]

Koester, D.

D. Koester, A. Cowen, and R. Mahadevan, “PolyMUMPs design handbook,” MEMSCAP Inc (2013).

Koonen, T.

Koppal, S. J.

Kraus, M. F.

Lawler, W. B.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Lee, L. P.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe,“MEMS Optical: from micromirrors to complex systems,” J. Microelectromech. Syst. 23, 517–538 (2014).
[Crossref]

Lim, C.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photonics Technol. Lett. 23, 519–521 (2011).
[Crossref]

Little, T.

C. Pollock, J. Morrison, M. Imboden, T. Little, and D. Bishop, “Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication,” Opt. Express 25, 971–980 (2017).
[Crossref]

Little, T. D. C.

Liu, J. J.

Lowell, E.

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

Lu, C. D.

Mahadevan, R.

D. Koester, A. Cowen, and R. Mahadevan, “PolyMUMPs design handbook,” MEMSCAP Inc (2013).

Mahapatra, K.

C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
[Crossref]

Makishi, W.

W. Makishi, Y. Kawai, and M. Esashi, “Magnetic torque driving 2D micro scanner with a non-resonant large scan angle,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (IEEE, 2009), pp. 904–907.
[Crossref]

Mellette, W.

W. Mellette and J. E. Ford, “Scaling limits of MEMS beam-steering switches for data center networks,” J. Light. Technol. 33, 3308–3318 (2015).
[Crossref]

Milanovic, V.

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” in Proc. SPIE, (2016), 9832.

Morrison, J.

C. Pollock, J. Morrison, M. Imboden, T. Little, and D. Bishop, “Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication,” Opt. Express 25, 971–980 (2017).
[Crossref]

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

J. Morrison, M. Imboden, T. D. C. Little, and D. J. Bishop, “Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability,” Opt. Express 23, 9555–9566 (2015).
[Crossref] [PubMed]

Moss, R.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Naono, T.

T. Naono, T. Fujii, M. Esashi, and S. Tanaka, “A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film,” J. Micromech. Microeng.24 (2014).
[Crossref]

Netravali, A.

S. Desai, A. Netravali, and M. Thompson, “Carbon fibers as a novel material for high-performance microelectromechanical systems (MEMS),” J. Micromech. Microeng. 16, 1403–1407 (2006).
[Crossref]

Nirmalathas, A.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photonics Technol. Lett. 23, 519–521 (2011).
[Crossref]

O’Brien, D.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
[Crossref]

Oh, C. W.

Peter, Y. A.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe,“MEMS Optical: from micromirrors to complex systems,” J. Microelectromech. Syst. 23, 517–538 (2014).
[Crossref]

Piyawattanametha, W.

Z. Qiu and W. Piyawattanametha, “MEMS-based medical endomicroscopes,” IEEE J. Sel. Top. Quantum Electron. 21, 376–391 (2015).
[Crossref]

Pollock, C.

C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
[Crossref]

C. Pollock, J. Morrison, M. Imboden, T. Little, and D. Bishop, “Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication,” Opt. Express 25, 971–980 (2017).
[Crossref]

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

Polzer, A.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical wireless communication with adaptive focus and MEMS-based beam steering,” IEEE Photonics Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Potsaid, B.

Qiu, Z.

Z. Qiu and W. Piyawattanametha, “MEMS-based medical endomicroscopes,” IEEE J. Sel. Top. Quantum Electron. 21, 376–391 (2015).
[Crossref]

Quesada, E.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Quintana, C.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
[Crossref]

Sato, M.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
[Crossref]

Schidl, S.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical wireless communication with adaptive focus and MEMS-based beam steering,” IEEE Photonics Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Shi, K.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
[Crossref]

Skafidas, E.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photonics Technol. Lett. 23, 519–521 (2011).
[Crossref]

Solgaard, O.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe,“MEMS Optical: from micromirrors to complex systems,” J. Microelectromech. Syst. 23, 517–538 (2014).
[Crossref]

Stange, A.

A. Stange, M. Imboden, J. Javor, L. K. Barrett, and D. J. Bishop, “Building a casimir metrology platform with a commercial MEMS sensor,” Microsyst. Nanoeng. 5, 1 (2019).

C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
[Crossref]

Stann, B. L.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Stark, T.

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

Sudharsanan, R.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Tanaka, S.

T. Naono, T. Fujii, M. Esashi, and S. Tanaka, “A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film,” J. Micromech. Microeng.24 (2014).
[Crossref]

Tangdiongga, E.

Thompson, M.

S. Desai, A. Netravali, and M. Thompson, “Carbon fibers as a novel material for high-performance microelectromechanical systems (MEMS),” J. Micromech. Microeng. 16, 1403–1407 (2006).
[Crossref]

Thomsen, B. C.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
[Crossref]

Toshiyoshi, H.

S. Jeon and H. Toshiyoshi, “MEMS tracking mirror system for a bidirectional free-space optical link,” Appl. optics 56, 6720–6727 (2017).
[Crossref]

Urey, H.

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: a review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

Wang, K.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photonics Technol. Lett. 23, 519–521 (2011).
[Crossref]

Wu, L.

L. Wu and H. Xie, “A scanning micromirror with stationary rotation axis and dual reflective surfaces for 360° forward-view endoscopic imaging,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (2009), pp. 2222–2225.
[Crossref]

Xie, H.

X. Zhang, S. J. Koppal, R. Zhang, L. Zhou, E. Butler, and H. Xie, “Wide-angle structured light with a scanning MEMS mirror in liquid,” Opt. Express 24, 3479–3487 (2016).
[Crossref] [PubMed]

L. Wu and H. Xie, “A scanning micromirror with stationary rotation axis and dual reflective surfaces for 360° forward-view endoscopic imaging,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (2009), pp. 2222–2225.
[Crossref]

Yang, J.

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” in Proc. SPIE, (2016), 9832.

Yuan, P.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Zappe, H.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe,“MEMS Optical: from micromirrors to complex systems,” J. Microelectromech. Syst. 23, 517–538 (2014).
[Crossref]

Zhang, R.

Zhang, W.

W. Zhang, “LIDAR-based road and road-edge detection,” in 2010 IEEE Intelligent Vehicles Symposium, (IEEE, 2010), pp. 845–848.
[Crossref]

Zhang, X.

Zhou, L.

Zimmermann, H.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical wireless communication with adaptive focus and MEMS-based beam steering,” IEEE Photonics Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

Appl. optics (1)

S. Jeon and H. Toshiyoshi, “MEMS tracking mirror system for a bidirectional free-space optical link,” Appl. optics 56, 6720–6727 (2017).
[Crossref]

Biomed. Opt. Express (1)

IEEE Control. Syst. Mag. (1)

M. Imboden, J. Chang, C. Pollock, E. Lowell, M. Akbulut, J. Morrison, T. Stark, T. G. Bifano, and D. J. Bishop, “High-speed control of electromechanical transduction,” IEEE Control. Syst. Mag. 36, 48–76 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Qiu and W. Piyawattanametha, “MEMS-based medical endomicroscopes,” IEEE J. Sel. Top. Quantum Electron. 21, 376–391 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, “Beyond 100-Gb/s indoor wide field-of-view optical wireless communications,” IEEE Photonics Technol. Lett. 27, 367–370 (2015).
[Crossref]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communication system for indoor applications,” IEEE Photonics Technol. Lett. 23, 519–521 (2011).
[Crossref]

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical wireless communication with adaptive focus and MEMS-based beam steering,” IEEE Photonics Technol. Lett. 25, 1428–1431 (2013).
[Crossref]

J. Light. Technol. (1)

W. Mellette and J. E. Ford, “Scaling limits of MEMS beam-steering switches for data center networks,” J. Light. Technol. 33, 3308–3318 (2015).
[Crossref]

J. Microelectromech. Syst. (3)

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe,“MEMS Optical: from micromirrors to complex systems,” J. Microelectromech. Syst. 23, 517–538 (2014).
[Crossref]

S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: a review,” J. Microelectromech. Syst. 23, 259–275 (2014).
[Crossref]

C. Pollock, M. Imboden, A. Stange, J. Javor, K. Mahapatra, L. Chiles, and D. J. Bishop, “Engineered PWM drives for achieving rapid step and settle times for MEMS actuation,” J. Microelectromech. Syst. 27, 513–520 (2018).
[Crossref]

J. Micromech. Microeng. (1)

S. Desai, A. Netravali, and M. Thompson, “Carbon fibers as a novel material for high-performance microelectromechanical systems (MEMS),” J. Micromech. Microeng. 16, 1403–1407 (2006).
[Crossref]

Microsyst. Nanoeng. (1)

A. Stange, M. Imboden, J. Javor, L. K. Barrett, and D. J. Bishop, “Building a casimir metrology platform with a commercial MEMS sensor,” Microsyst. Nanoeng. 5, 1 (2019).

Opt. Express (4)

Proc. SPIE (1)

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning ladar system for robotic applications,” Proc. SPIE,  8379837903 (2012).
[Crossref]

Other (7)

W. Zhang, “LIDAR-based road and road-edge detection,” in 2010 IEEE Intelligent Vehicles Symposium, (IEEE, 2010), pp. 845–848.
[Crossref]

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-borne lidar with MEMS mirror-based scanning capability,” in Proc. SPIE, (2016), 9832.

W. Makishi, Y. Kawai, and M. Esashi, “Magnetic torque driving 2D micro scanner with a non-resonant large scan angle,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (IEEE, 2009), pp. 904–907.
[Crossref]

L. Wu and H. Xie, “A scanning micromirror with stationary rotation axis and dual reflective surfaces for 360° forward-view endoscopic imaging,” in TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, (2009), pp. 2222–2225.
[Crossref]

D. Koester, A. Cowen, and R. Mahadevan, “PolyMUMPs design handbook,” MEMSCAP Inc (2013).

T. Naono, T. Fujii, M. Esashi, and S. Tanaka, “A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film,” J. Micromech. Microeng.24 (2014).
[Crossref]

A. French,Vibrations and Waves(W. W. Norton & Companyed., 1971), reprint ed.

Supplementary Material (3)

NameDescription
» Visualization 1       Circular scan of the mirror. The mirror is actuated by applying out of phase sinusoidal signals with equal frequencies (0.2 Hz) to the X and Y coils.
» Visualization 2       Raster type scan of the mirror. The mirror is actuated by applying sinusoidal signals with different frequencies (1.5 and 0.15 Hz) to the X and Y coils.
» Visualization 3       High speed video of the mirror's response to a single and double step. The video was recorded at 6000 fps and played back at 30 fps (factor of 200 slower). This video uses a different mirror than the rest of the article and visualizations.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Overview of MEMS Mirror Design. (a) False color SEM image of the MEMS magnet mirror comprising four bimorphs that lift a polysilicon platform 450 μm off the substrate. A 250 μm cube N50 magnet is attached to the platform using a custom pick-and-place micro-gluing technique and a gold plated mirror is glued on top of the magnet using the same gluing technique. The image has been edited to remove debris and excess glue from the device. (b) False color SEM image of the MEMS magnet mirror from a different angle. To achieve this angle the die is mounted 90° in the SEM. The mirror tilt seen in this figure is due to gravity. (c) Illustration of the experimental setup with the N-S axis of the magnet orthogonal to the substrate. The MEMS mirror assembly is positioned between a pair of electromagnets configured to generate a controllable uniform magnetic field to steer the mirror. A microscope is used for the static measurements and a position sensitive detector (PSD) and laser for the dynamic measurements.
Fig. 2
Fig. 2 (a) Normalized simulation of the magnetic field generated by four electromagnet in a configuration similar to the experimental setup. The color map and arrows represent the amplitude and direction of the B field respectively. All four electromagnets are powered equally and in this configuration provide a uniform B field in the center pointing towards the northwest corner of the figure. (b) Optical image of the MEMS die and coils used during the experiments. (c) Close-up view of the 2 mm x 2 mm area centered around the micro-magnet in Fig. 2(a). Figure 2(c) illustrates how the the mirror/micro-magnet assembly (at scale) tilts to align its magnetic moment, M, with the imposed B field. The uniformity of the field in Fig. 2(c) is characterized by an amplitude range of 0.17 |B|max to 0.18 |B|max and a direction range of 40° to 50°.
Fig. 3
Fig. 3 Quasi-Static Response. (a) Series of images of the mirror from an optical microscope is used to measure the angle and direction of the mirror. In each image, with the exception of the center, the mirror is tilted more than 45° in its respective direction. (b) Plot of tilt angle versus the adjusted current. The angles are measured by analyzing images similar to those shown in a. The black line fits the data to the equation displayed. The inset data is collected while driving the Y coils and the angle is measured via a more conventional approach using a PSD. (c) Polar plot of the mirror’s angle (radial dimension) and steering direction (angular dimension) using the same data presented in Fig. 3(b). The blue and orange data represent positions by only controlling the X and Y coils, whereas the green data uses a combination of the two to steer to an off-axis position.
Fig. 4
Fig. 4 The frequency response by driving only the Y coils using a sinusoidal input and sweeping the frequency from 5 to 250 Hz. The plot has been normalized to the Y tilt amplitude at 5 Hz. The inset is a closer look at the frequency range near the resonant peak.
Fig. 5
Fig. 5 Step response and advanced drives. (a) The blue and orange solid lines are the X and Y responses to a step to the Y coils. The gold and green dotted lines are the X and Y response to a double step to the Y coils. (b) Closer look at the response from a single step input, a double step input and a one sided overdrive. The vertical dashed lines are added to guide the eye to half the period of the system in orange and the response time of the double step and overdrive in green and purple. The responses in Figs. 5(a) and 5(b) are normalized to the Y steady state angles, corresponding to approximately 5° optical for the single step and 10° optical for the double step and overdrive. (c) The input drives for the responses in Fig. 5(b). The voltages are normalized to the steady state voltage which are approximately 5 - 10 mV.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = α θ cos  θ

Metrics