Abstract

Here, we demonstrate a polarized high-energy soliton synthesis technique for deep-brain 3-photon microscopy (3PM) excited at the 1700-nm window. Through coherent combining, we generate linearly polarized high-energy solitons whose energy is twice as high than those of each linearly polarized solitons. Due to the nonlinear origin of signals, both measured 3-photon fluorescence signal and third-harmonic signals are thus boosted by ~8 times in a tissue phantom. Using this technique, we further demonstrate 3PM of sulforhodamine 101 labeled vasculature 1600 μm in the mouse brain in vivo, which cannot be achieved by single-polarized soliton excitation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Deep-brain 2-photon fluorescence microscopy in vivo excited at the 1700  nm window

Hui Cheng, Shen Tong, Xiangquan Deng, Hongji Liu, Yu Du, Chen He, Ping Qiu, and Ke Wang
Opt. Lett. 44(17) 4432-4435 (2019)

Measurements of multiphoton action cross sections for multiphoton microscopy

Li-Chung Cheng, Nicholas G. Horton, Ke Wang, Shean-Jen Chen, and Chris Xu
Biomed. Opt. Express 5(10) 3427-3433 (2014)

Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy

Kriti Charan, Bo Li, Mengran Wang, Charles P. Lin, and Chris Xu
Biomed. Opt. Express 9(5) 2304-2311 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
    [Crossref] [PubMed]
  3. S. Liebscher and M. Meyer-Luehmann, “A peephole into the brain: neuropathological features of Alzheimer’s disease revealed by in vivo two-photon imaging,” Front. Psychiatry 3, 26 (2012).
    [Crossref] [PubMed]
  4. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  5. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  6. M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, “In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy,” Biophys. J. 100(5), 1362–1371 (2011).
    [Crossref] [PubMed]
  7. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
    [Crossref] [PubMed]
  8. L. C. Cheng, N. G. Horton, K. Wang, S. J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
    [Crossref] [PubMed]
  9. W. Wen, Y. Wang, H. Liu, K. Wang, P. Qiu, and K. Wang, “Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses,” J. Biophotonics 11(1), e201700121 (2018).
    [Crossref] [PubMed]
  10. T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
    [Crossref] [PubMed]
  11. K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics,” IEEE J. Sel. Top. Quant. 20(2), 6800311 (2014).
    [Crossref]
  12. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
    [Crossref] [PubMed]
  13. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
    [Crossref] [PubMed]
  14. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref] [PubMed]
  15. K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
    [Crossref] [PubMed]
  16. D. Sinefeld, H. P. Paudel, D. G. Ouzounov, T. G. Bifano, and C. Xu, “Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence,” Opt. Express 23(24), 31472–31483 (2015).
    [Crossref] [PubMed]
  17. C. J. Saraceno, O. H. Heckl, C. R. Baer, T. Südmeyer, and U. Keller, “Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers,” Opt. Express 19(2), 1395–1407 (2011).
    [Crossref] [PubMed]
  18. N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers,” IEEE Photonic. Tech. L. 11(4), 421–423 (1999).
    [Crossref]
  19. Y. Du, Z. Zhuang, J. He, H. Liu, P. Qiu, and K. Wang, “Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging,” J. Biophotonics 11(9), e201800071 (2018).
    [Crossref] [PubMed]
  20. Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
    [Crossref]
  21. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
    [Crossref] [PubMed]
  22. A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
    [Crossref] [PubMed]
  23. F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
    [Crossref] [PubMed]
  24. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
    [Crossref] [PubMed]
  25. H. Liu, J. Wang, X. Peng, Z. Zhuang, P. Qiu, and K. Wang, “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window,” J. Biophotonics 11(7), e201700351 (2018).
    [Crossref] [PubMed]
  26. K. Wang, W. Wen, H. Liu, Y. Du, Z. Zhuang, and P. Qiu, “Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm,” IEEE Photonics J. 10(3), 3900607 (2018).
    [Crossref]

2019 (1)

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

2018 (5)

W. Wen, Y. Wang, H. Liu, K. Wang, P. Qiu, and K. Wang, “Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses,” J. Biophotonics 11(1), e201700121 (2018).
[Crossref] [PubMed]

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

Y. Du, Z. Zhuang, J. He, H. Liu, P. Qiu, and K. Wang, “Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging,” J. Biophotonics 11(9), e201800071 (2018).
[Crossref] [PubMed]

H. Liu, J. Wang, X. Peng, Z. Zhuang, P. Qiu, and K. Wang, “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window,” J. Biophotonics 11(7), e201700351 (2018).
[Crossref] [PubMed]

K. Wang, W. Wen, H. Liu, Y. Du, Z. Zhuang, and P. Qiu, “Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm,” IEEE Photonics J. 10(3), 3900607 (2018).
[Crossref]

2017 (1)

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

2016 (1)

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

2015 (1)

2014 (2)

L. C. Cheng, N. G. Horton, K. Wang, S. J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics,” IEEE J. Sel. Top. Quant. 20(2), 6800311 (2014).
[Crossref]

2013 (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

2012 (2)

S. Liebscher and M. Meyer-Luehmann, “A peephole into the brain: neuropathological features of Alzheimer’s disease revealed by in vivo two-photon imaging,” Front. Psychiatry 3, 26 (2012).
[Crossref] [PubMed]

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

2011 (2)

M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, “In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy,” Biophys. J. 100(5), 1362–1371 (2011).
[Crossref] [PubMed]

C. J. Saraceno, O. H. Heckl, C. R. Baer, T. Südmeyer, and U. Keller, “Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers,” Opt. Express 19(2), 1395–1407 (2011).
[Crossref] [PubMed]

2009 (1)

2006 (2)

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
[Crossref] [PubMed]

2004 (2)

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[Crossref] [PubMed]

A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[Crossref] [PubMed]

2003 (2)

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

1999 (1)

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers,” IEEE Photonic. Tech. L. 11(4), 421–423 (1999).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1986 (1)

Albrieux, M.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Appaix, F.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Baer, C. R.

Beaurepaire, E.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Bifano, T. G.

Boisseau, S.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Charan, K.

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics,” IEEE J. Sel. Top. Quant. 20(2), 6800311 (2014).
[Crossref]

Chen, S. J.

Cheng, L. C.

Cheng, Y. T.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Combettes, L.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Cruz-Hernández, J. C.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Débarre, D.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Denk, W.

Depaulis, A.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Du, Y.

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

K. Wang, W. Wen, H. Liu, Y. Du, Z. Zhuang, and P. Qiu, “Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm,” IEEE Photonics J. 10(3), 3900607 (2018).
[Crossref]

Y. Du, Z. Zhuang, J. He, H. Liu, P. Qiu, and K. Wang, “Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging,” J. Biophotonics 11(9), e201800071 (2018).
[Crossref] [PubMed]

Durst, M. E.

Fabre, A.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Fachima, R.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[Crossref] [PubMed]

Farrar, M. J.

M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, “In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy,” Biophys. J. 100(5), 1362–1371 (2011).
[Crossref] [PubMed]

Feng, D. D.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Fetcho, J. R.

M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, “In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy,” Biophys. J. 100(5), 1362–1371 (2011).
[Crossref] [PubMed]

Gan, M.

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

Girod, S.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Gordon, J. P.

Goto, T.

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers,” IEEE Photonic. Tech. L. 11(4), 421–423 (1999).
[Crossref]

Guillemain, I.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Hasan, M. T.

He, J.

Y. Du, Z. Zhuang, J. He, H. Liu, P. Qiu, and K. Wang, “Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging,” J. Biophotonics 11(9), e201800071 (2018).
[Crossref] [PubMed]

Heckl, O. H.

Helmchen, F.

A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[Crossref] [PubMed]

Horton, N.

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics,” IEEE J. Sel. Top. Quant. 20(2), 6800311 (2014).
[Crossref]

Horton, N. G.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

L. C. Cheng, N. G. Horton, K. Wang, S. J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Keller, U.

Kerr, J. N. D.

A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[Crossref] [PubMed]

Kirchhoff, F.

A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Liebscher, S.

S. Liebscher and M. Meyer-Luehmann, “A peephole into the brain: neuropathological features of Alzheimer’s disease revealed by in vivo two-photon imaging,” Front. Psychiatry 3, 26 (2012).
[Crossref] [PubMed]

Liu, H.

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

K. Wang, W. Wen, H. Liu, Y. Du, Z. Zhuang, and P. Qiu, “Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm,” IEEE Photonics J. 10(3), 3900607 (2018).
[Crossref]

H. Liu, J. Wang, X. Peng, Z. Zhuang, P. Qiu, and K. Wang, “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window,” J. Biophotonics 11(7), e201700351 (2018).
[Crossref] [PubMed]

W. Wen, Y. Wang, H. Liu, K. Wang, P. Qiu, and K. Wang, “Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses,” J. Biophotonics 11(1), e201700121 (2018).
[Crossref] [PubMed]

Y. Du, Z. Zhuang, J. He, H. Liu, P. Qiu, and K. Wang, “Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging,” J. Biophotonics 11(9), e201800071 (2018).
[Crossref] [PubMed]

Maurin, M.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Meyer-Luehmann, M.

S. Liebscher and M. Meyer-Luehmann, “A peephole into the brain: neuropathological features of Alzheimer’s disease revealed by in vivo two-photon imaging,” Front. Psychiatry 3, 26 (2012).
[Crossref] [PubMed]

Nimmerjahn, A.

A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[Crossref] [PubMed]

Nishimura, N.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Nishizawa, N.

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers,” IEEE Photonic. Tech. L. 11(4), 421–423 (1999).
[Crossref]

Okamura, R.

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers,” IEEE Photonic. Tech. L. 11(4), 421–423 (1999).
[Crossref]

Oron, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[Crossref] [PubMed]

Ouzounov, D. G.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

D. Sinefeld, H. P. Paudel, D. G. Ouzounov, T. G. Bifano, and C. Xu, “Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence,” Opt. Express 23(24), 31472–31483 (2015).
[Crossref] [PubMed]

Paudel, H. P.

Pena, A. M.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Peng, X.

H. Liu, J. Wang, X. Peng, Z. Zhuang, P. Qiu, and K. Wang, “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window,” J. Biophotonics 11(7), e201700351 (2018).
[Crossref] [PubMed]

Qiu, P.

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

K. Wang, W. Wen, H. Liu, Y. Du, Z. Zhuang, and P. Qiu, “Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm,” IEEE Photonics J. 10(3), 3900607 (2018).
[Crossref]

H. Liu, J. Wang, X. Peng, Z. Zhuang, P. Qiu, and K. Wang, “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window,” J. Biophotonics 11(7), e201700351 (2018).
[Crossref] [PubMed]

W. Wen, Y. Wang, H. Liu, K. Wang, P. Qiu, and K. Wang, “Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses,” J. Biophotonics 11(1), e201700121 (2018).
[Crossref] [PubMed]

Y. Du, Z. Zhuang, J. He, H. Liu, P. Qiu, and K. Wang, “Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging,” J. Biophotonics 11(9), e201800071 (2018).
[Crossref] [PubMed]

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Raz, S.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[Crossref] [PubMed]

Reimer, J.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Römer, J.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Saraceno, C. J.

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, “In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy,” Biophys. J. 100(5), 1362–1371 (2011).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Schanne-Klein, M. C.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Schnitzer, M. J.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

Silberberg, Y.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[Crossref] [PubMed]

Sinefeld, D.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Südmeyer, T.

Supatto, W.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Tal, E.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[Crossref] [PubMed]

Theer, P.

Tolias, A. S.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Tong, S.

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

van der Sanden, B.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Vial, J. C.

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Wang, J.

H. Liu, J. Wang, X. Peng, Z. Zhuang, P. Qiu, and K. Wang, “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window,” J. Biophotonics 11(7), e201700351 (2018).
[Crossref] [PubMed]

Wang, K.

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

H. Liu, J. Wang, X. Peng, Z. Zhuang, P. Qiu, and K. Wang, “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window,” J. Biophotonics 11(7), e201700351 (2018).
[Crossref] [PubMed]

K. Wang, W. Wen, H. Liu, Y. Du, Z. Zhuang, and P. Qiu, “Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm,” IEEE Photonics J. 10(3), 3900607 (2018).
[Crossref]

W. Wen, Y. Wang, H. Liu, K. Wang, P. Qiu, and K. Wang, “Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses,” J. Biophotonics 11(1), e201700121 (2018).
[Crossref] [PubMed]

W. Wen, Y. Wang, H. Liu, K. Wang, P. Qiu, and K. Wang, “Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses,” J. Biophotonics 11(1), e201700121 (2018).
[Crossref] [PubMed]

Y. Du, Z. Zhuang, J. He, H. Liu, P. Qiu, and K. Wang, “Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging,” J. Biophotonics 11(9), e201800071 (2018).
[Crossref] [PubMed]

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

L. C. Cheng, N. G. Horton, K. Wang, S. J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics,” IEEE J. Sel. Top. Quant. 20(2), 6800311 (2014).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wang, M.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Wang, T.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Wang, Y.

W. Wen, Y. Wang, H. Liu, K. Wang, P. Qiu, and K. Wang, “Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses,” J. Biophotonics 11(1), e201700121 (2018).
[Crossref] [PubMed]

Wang, Y. X.

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wen, W.

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

K. Wang, W. Wen, H. Liu, Y. Du, Z. Zhuang, and P. Qiu, “Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm,” IEEE Photonics J. 10(3), 3900607 (2018).
[Crossref]

W. Wen, Y. Wang, H. Liu, K. Wang, P. Qiu, and K. Wang, “Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses,” J. Biophotonics 11(1), e201700121 (2018).
[Crossref] [PubMed]

Wen, W. H.

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, “In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy,” Biophys. J. 100(5), 1362–1371 (2011).
[Crossref] [PubMed]

Wong, A. W.

Wu, C.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

Wu, C. H.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

Xu, C.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

D. Sinefeld, H. P. Paudel, D. G. Ouzounov, T. G. Bifano, and C. Xu, “Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence,” Opt. Express 23(24), 31472–31483 (2015).
[Crossref] [PubMed]

L. C. Cheng, N. G. Horton, K. Wang, S. J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics,” IEEE J. Sel. Top. Quant. 20(2), 6800311 (2014).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Yelin, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[Crossref] [PubMed]

Zhai, P.

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Zhang, B.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

Zhang, Y.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

Zhuang, Z.

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

K. Wang, W. Wen, H. Liu, Y. Du, Z. Zhuang, and P. Qiu, “Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm,” IEEE Photonics J. 10(3), 3900607 (2018).
[Crossref]

H. Liu, J. Wang, X. Peng, Z. Zhuang, P. Qiu, and K. Wang, “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window,” J. Biophotonics 11(7), e201700351 (2018).
[Crossref] [PubMed]

Y. Du, Z. Zhuang, J. He, H. Liu, P. Qiu, and K. Wang, “Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging,” J. Biophotonics 11(9), e201800071 (2018).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, “In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy,” Biophys. J. 100(5), 1362–1371 (2011).
[Crossref] [PubMed]

Front. Psychiatry (1)

S. Liebscher and M. Meyer-Luehmann, “A peephole into the brain: neuropathological features of Alzheimer’s disease revealed by in vivo two-photon imaging,” Front. Psychiatry 3, 26 (2012).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quant. (1)

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced Fiber Soliton Sources for Nonlinear Deep Tissue Imaging in Biophotonics,” IEEE J. Sel. Top. Quant. 20(2), 6800311 (2014).
[Crossref]

IEEE Photonic. Tech. L. (1)

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers,” IEEE Photonic. Tech. L. 11(4), 421–423 (1999).
[Crossref]

IEEE Photonics J. (1)

K. Wang, W. Wen, H. Liu, Y. Du, Z. Zhuang, and P. Qiu, “Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm,” IEEE Photonics J. 10(3), 3900607 (2018).
[Crossref]

J. Biophotonics (4)

H. Liu, J. Wang, X. Peng, Z. Zhuang, P. Qiu, and K. Wang, “Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window,” J. Biophotonics 11(7), e201700351 (2018).
[Crossref] [PubMed]

Y. Du, Z. Zhuang, J. He, H. Liu, P. Qiu, and K. Wang, “Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging,” J. Biophotonics 11(9), e201800071 (2018).
[Crossref] [PubMed]

K. Wang, Y. Du, H. Liu, M. Gan, S. Tong, W. Wen, Z. Zhuang, and P. Qiu, “Visualizing the “sandwich” structure of osteocytes in their native environment deep in bone in vivo,” J. Biophotonics 12(4), e201800360 (2019).
[Crossref] [PubMed]

W. Wen, Y. Wang, H. Liu, K. Wang, P. Qiu, and K. Wang, “Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses,” J. Biophotonics 11(1), e201700121 (2018).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Struct. Biol. (1)

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Methods (4)

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

A. Nimmerjahn, F. Kirchhoff, J. N. D. Kerr, and F. Helmchen, “Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo,” Nat. Methods 1(1), 31–37 (2004).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

PLoS One (1)

F. Appaix, S. Girod, S. Boisseau, J. Römer, J. C. Vial, M. Albrieux, M. Maurin, A. Depaulis, I. Guillemain, and B. van der Sanden, “Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes,” PLoS One 7(4), e35169 (2012).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic for the polarized soliton synthesis.
Fig. 2
Fig. 2 Experimental setup for polarized soliton synthesis. HWP: half-wave plate, M: silver-coated mirror, PBS: polarizing beamsplitter cube, L1 and L2: focusing and collimating lens, LPF: long-pass filter.
Fig. 3
Fig. 3 Measured soliton spectra (a) and corresponding interferometric autocorrelation traces (b) for the horizontal (green), vertical (blue), and synthesized (red) solitons.
Fig. 4
Fig. 4 3-photon fluorescence imaging of the tissue phantom at a depth of 1200 μm below the cover glass/tissue phantom interface, excited with horizontal (a), vertical (b), and synthesized (c) solitons, respectively. The signal level in the encircled areas were analyzed and compared. Scale bar: 10 μm. Color bar applies to all three images.
Fig. 5
Fig. 5 3-photon fluorescence (red) and THG (green) imaging of the mouse brain in vivo at a depth of 940 μm below the surface of the brain, excited with horizontal, vertical and synthesized solitons as indicated. Fluorescence in the circles and THG in the squares were analyzed. Pixel size: 512x512; scale bar: 10 μm; frame rate: 4s/frame. Color bars apply to all three images.
Fig. 6
Fig. 6 3-photon fluorescence imaging of the mouse brain in vivo at a depth of 1596 μm to 1602 μm below the surface of the brain, excited with horizontal, vertical and synthesized solitons as indicated. Pixel size: 512x512; scale bar: 50 μm; frame rate: 8s/frame. Each image is an average z-projection of 4 frames. Color bar applies to all three images.

Tables (1)

Tables Icon

Table 1 Summary of the soliton and imaging results for Fig. 5

Metrics