Abstract

We present a 100 kHz broadband vibrational sum-frequency generation (VSFG) spectrometer operating in the 5.7-10.5 µm (950-1750 cm−1) wavelength range. The mid-infrared beam of the system is obtained from a collinear, type-I LiGaS2-crystal-based optical parametric amplifier seeded by a supercontinuum and pumped directly by 180 fs, ~32 µJ, 1.03 µm pulses from an Yb:KGd(WO4)2 laser system. Up to 0.5 µJ mid-infrared pulses with durations below 100 fs were obtained after dispersion compensation utilizing bulk materials. We demonstrate the utility of the spectrometer by recording high-resolution, low-noise vibrational spectra of Langmuir-Blodgett supported lipid monolayers on CaF2. The presented VSFG spectrometer scheme offers superior signal-to-noise ratios and constitutes a high-efficiency, low-cost, easy-to-use alternative to traditional schemes relying on optical parametric amplification followed by difference frequency generation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
100-kHz, dual-beam OPA delivering high-quality, 5-cycle angular-dispersion-compensated mid-infrared idler pulses at 3.1 µm

Zsuzsanna Heiner, Valentin Petrov, Günter Steinmeyer, Marc J. J. Vrakking, and Mark Mero
Opt. Express 26(20) 25793-25804 (2018)

Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in LiGaS2

Bo-Han Chen, Emanuel Wittmann, Yuya Morimoto, Peter Baum, and Eberhard Riedle
Opt. Express 27(15) 21306-21318 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. M. Luther, K. M. Tracy, M. Gerrity, S. Brown, and A. T. Krummel, “2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source,” Opt. Express 24(4), 4117–4127 (2016).
    [Crossref] [PubMed]
  2. Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
    [Crossref]
  3. P. M. Donaldson, G. M. Greetham, D. J. Shaw, A. W. Parker, and M. Towrie, “A 100 kHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers,” J. Phys. Chem. A 122(3), 780–787 (2018).
    [Crossref] [PubMed]
  4. Y. V. Aulin, A. Tuladhar, and E. Borguet, “Ultrabroadband mid-infrared noncollinear difference frequency generation in a silver thiogallate crystal,” Opt. Lett. 43(18), 4402–4405 (2018).
    [Crossref] [PubMed]
  5. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  6. K. Kato, K. Miyata, L. Isaenko, S. Lobanov, V. Vedenyapin, and V. Petrov, “Phase-matching properties of LiGaS2 in the 1.025-10.5910 μm spectral range,” Opt. Lett. 42(21), 4363–4366 (2017).
    [Crossref] [PubMed]
  7. K. Kato, N. Umemura, L. Isaenko, S. Lobanov, V. Vedenyapin, K. Miyata, and V. Petrov, “Thermo-optic dispersion formula for LiGaS2,” Appl. Opt. 58(6), 1519–1521 (2019).
    [Crossref] [PubMed]
  8. S. B. Penwell, L. Whaley-Mayda, and A. Tokmakoff, “Single-stage MHz mid-IR OPA using LiGaS2and a fiber laser pump source,” Opt. Lett. 43(6), 1363–1366 (2018).
    [Crossref] [PubMed]
  9. M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
    [Crossref] [PubMed]
  10. X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B Condens. Matter 35(6), 3047–3050 (1987).
    [Crossref] [PubMed]
  11. H.-F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66(1), 189–216 (2015).
    [Crossref] [PubMed]
  12. S. M. Baumler and H. C. Allen, “Chapter 5 - Vibrational spectroscopy of gas–liquid interfaces,” in Physical chemistry of gas-liquid interfaces, J. A. Faust and J. E. House, eds. (Elsevier, 2018), pp. 105–133.
  13. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23(20), 1594–1596 (1998).
    [Crossref] [PubMed]
  14. C. S. Tian and Y. R. Shen, “Recent progress on sum-frequency spectroscopy,” Surf. Sci. Rep. 69(2-3), 105–131 (2014).
    [Crossref]
  15. F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
    [Crossref] [PubMed]
  16. F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. Lett. 23(14), 1117–1119 (1998).
    [Crossref] [PubMed]
  17. M. Nejbauer and C. Radzewicz, “Efficient spectral shift and compression of femtosecond pulses by parametric amplification of chirped light,” Opt. Express 20(3), 2136–2142 (2012).
    [Crossref] [PubMed]
  18. C. Manzoni and G. Cerullo, “Design criteria for ultrafast optical parametric amplifiers,” J. Opt. 18(10), 103501 (2016).
    [Crossref]
  19. L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B=In,Ga; C=S,Se,Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids 352(23-25), 2439–2443 (2006).
    [Crossref]
  20. Z. Heiner, V. Petrov, G. Steinmeyer, M. J. J. Vrakking, and M. Mero, “100-kHz, dual-beam OPA delivering high-quality, 5-cycle angular-dispersion-compensated mid-infrared idler pulses at 3.1 µm,” Opt. Express 26(20), 25793–25804 (2018).
    [Crossref] [PubMed]
  21. B. Li, X. Lu, X. Han, F.-G. Wu, J. N. Myers, and Z. Chen, “Interfacial Fresnel coefficients and molecular structures of model cell membranes: from a lipid monolayer to a lipid bilayer,” J. Phys. Chem. C 118(49), 28631–28639 (2014).
    [Crossref]
  22. P. B. Miranda and Y. R. Shen, “Liquid interfaces: a study by sum-frequency vibrational spectroscopy,” J. Phys. Chem. B 103(17), 3292–3307 (1999).
    [Crossref]
  23. L. M. Hanssen and C. Zhu, “Wavenumber standards for mid-infrared spectrometry,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (John Wiley & Sons Ltd, 2002).
  24. G. Roberts, ed., Langmuir-Blodgett films (Springer, 1990).
  25. H. Motschmann and H. Mohwald, “Langmuir–Blodgett Films,” in Handbook of Applied Surface and Colloid Chemistry, K. Holmberg, ed. (John Wiley & Sons, Ltd., 2001).
  26. F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “High-resolution and high-repetition-rate vibrational sum-frequency generation spectroscopy of one- and two-component phosphatidylcholine monolayers,” Anal. Bioanal. Chem. (2019), doi:.
    [Crossref]
  27. J. F. D. Liljeblad, V. Bulone, M. W. Rutland, and C. M. Johnson, “Supported phospholipid monolayers. The molecular structure investigated by vibrational sum frequency spectroscopy,” J. Phys. Chem. C 115(21), 10617–10629 (2011).
    [Crossref]
  28. G. Ma and H. C. Allen, “DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy,” Langmuir 22(12), 5341–5349 (2006).
    [Crossref] [PubMed]
  29. G. Ma, J. Liu, L. Fu, and E. C. Y. Yan, “Probing water and biomolecules at the air-water interface with a broad bandwidth vibrational sum frequency generation spectrometer from 3800 to 900 cm(-1).,” Appl. Spectrosc. 63(5), 528–537 (2009).
    [Crossref] [PubMed]
  30. S. Pullanchery, T. Yang, and P. S. Cremer, “Introduction of positive charges into zwitterionic phospholipid monolayers disrupts water structure whereas negative charges enhances it,” J. Phys. Chem. B 122(51), 12260–12270 (2018).
    [Crossref] [PubMed]

2019 (1)

2018 (7)

S. B. Penwell, L. Whaley-Mayda, and A. Tokmakoff, “Single-stage MHz mid-IR OPA using LiGaS2and a fiber laser pump source,” Opt. Lett. 43(6), 1363–1366 (2018).
[Crossref] [PubMed]

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

P. M. Donaldson, G. M. Greetham, D. J. Shaw, A. W. Parker, and M. Towrie, “A 100 kHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers,” J. Phys. Chem. A 122(3), 780–787 (2018).
[Crossref] [PubMed]

Y. V. Aulin, A. Tuladhar, and E. Borguet, “Ultrabroadband mid-infrared noncollinear difference frequency generation in a silver thiogallate crystal,” Opt. Lett. 43(18), 4402–4405 (2018).
[Crossref] [PubMed]

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, G. Steinmeyer, M. J. J. Vrakking, and M. Mero, “100-kHz, dual-beam OPA delivering high-quality, 5-cycle angular-dispersion-compensated mid-infrared idler pulses at 3.1 µm,” Opt. Express 26(20), 25793–25804 (2018).
[Crossref] [PubMed]

S. Pullanchery, T. Yang, and P. S. Cremer, “Introduction of positive charges into zwitterionic phospholipid monolayers disrupts water structure whereas negative charges enhances it,” J. Phys. Chem. B 122(51), 12260–12270 (2018).
[Crossref] [PubMed]

2017 (2)

K. Kato, K. Miyata, L. Isaenko, S. Lobanov, V. Vedenyapin, and V. Petrov, “Phase-matching properties of LiGaS2 in the 1.025-10.5910 μm spectral range,” Opt. Lett. 42(21), 4363–4366 (2017).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

2016 (2)

2015 (2)

H.-F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66(1), 189–216 (2015).
[Crossref] [PubMed]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

2014 (2)

C. S. Tian and Y. R. Shen, “Recent progress on sum-frequency spectroscopy,” Surf. Sci. Rep. 69(2-3), 105–131 (2014).
[Crossref]

B. Li, X. Lu, X. Han, F.-G. Wu, J. N. Myers, and Z. Chen, “Interfacial Fresnel coefficients and molecular structures of model cell membranes: from a lipid monolayer to a lipid bilayer,” J. Phys. Chem. C 118(49), 28631–28639 (2014).
[Crossref]

2012 (1)

2011 (1)

J. F. D. Liljeblad, V. Bulone, M. W. Rutland, and C. M. Johnson, “Supported phospholipid monolayers. The molecular structure investigated by vibrational sum frequency spectroscopy,” J. Phys. Chem. C 115(21), 10617–10629 (2011).
[Crossref]

2009 (1)

2006 (2)

G. Ma and H. C. Allen, “DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy,” Langmuir 22(12), 5341–5349 (2006).
[Crossref] [PubMed]

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B=In,Ga; C=S,Se,Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids 352(23-25), 2439–2443 (2006).
[Crossref]

1999 (1)

P. B. Miranda and Y. R. Shen, “Liquid interfaces: a study by sum-frequency vibrational spectroscopy,” J. Phys. Chem. B 103(17), 3292–3307 (1999).
[Crossref]

1998 (2)

1987 (1)

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B Condens. Matter 35(6), 3047–3050 (1987).
[Crossref] [PubMed]

Allen, H. C.

G. Ma and H. C. Allen, “DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy,” Langmuir 22(12), 5341–5349 (2006).
[Crossref] [PubMed]

Arisholm, G.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Aulin, Y. V.

Borguet, E.

Boscheron, A. C. L.

Brown, S.

Bulone, V.

J. F. D. Liljeblad, V. Bulone, M. W. Rutland, and C. M. Johnson, “Supported phospholipid monolayers. The molecular structure investigated by vibrational sum frequency spectroscopy,” J. Phys. Chem. C 115(21), 10617–10629 (2011).
[Crossref]

Cerullo, G.

C. Manzoni and G. Cerullo, “Design criteria for ultrafast optical parametric amplifiers,” J. Opt. 18(10), 103501 (2016).
[Crossref]

Chen, Z.

B. Li, X. Lu, X. Han, F.-G. Wu, J. N. Myers, and Z. Chen, “Interfacial Fresnel coefficients and molecular structures of model cell membranes: from a lipid monolayer to a lipid bilayer,” J. Phys. Chem. C 118(49), 28631–28639 (2014).
[Crossref]

Cremer, P. S.

S. Pullanchery, T. Yang, and P. S. Cremer, “Introduction of positive charges into zwitterionic phospholipid monolayers disrupts water structure whereas negative charges enhances it,” J. Phys. Chem. B 122(51), 12260–12270 (2018).
[Crossref] [PubMed]

Donaldson, P. M.

P. M. Donaldson, G. M. Greetham, D. J. Shaw, A. W. Parker, and M. Towrie, “A 100 kHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers,” J. Phys. Chem. A 122(3), 780–787 (2018).
[Crossref] [PubMed]

Dorchies, F.

Fu, L.

H.-F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66(1), 189–216 (2015).
[Crossref] [PubMed]

G. Ma, J. Liu, L. Fu, and E. C. Y. Yan, “Probing water and biomolecules at the air-water interface with a broad bandwidth vibrational sum frequency generation spectrometer from 3800 to 900 cm(-1).,” Appl. Spectrosc. 63(5), 528–537 (2009).
[Crossref] [PubMed]

Gan, W.

H.-F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66(1), 189–216 (2015).
[Crossref] [PubMed]

Gerrity, M.

Greetham, G. M.

P. M. Donaldson, G. M. Greetham, D. J. Shaw, A. W. Parker, and M. Towrie, “A 100 kHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers,” J. Phys. Chem. A 122(3), 780–787 (2018).
[Crossref] [PubMed]

Habel, F.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Han, X.

B. Li, X. Lu, X. Han, F.-G. Wu, J. N. Myers, and Z. Chen, “Interfacial Fresnel coefficients and molecular structures of model cell membranes: from a lipid monolayer to a lipid bilayer,” J. Phys. Chem. C 118(49), 28631–28639 (2014).
[Crossref]

Hartung, A.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Heiner, Z.

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, G. Steinmeyer, M. J. J. Vrakking, and M. Mero, “100-kHz, dual-beam OPA delivering high-quality, 5-cycle angular-dispersion-compensated mid-infrared idler pulses at 3.1 µm,” Opt. Express 26(20), 25793–25804 (2018).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “High-resolution and high-repetition-rate vibrational sum-frequency generation spectroscopy of one- and two-component phosphatidylcholine monolayers,” Anal. Bioanal. Chem. (2019), doi:.
[Crossref]

Hussain, S. A.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Husson, D.

Isaenko, L.

Johnson, C. M.

J. F. D. Liljeblad, V. Bulone, M. W. Rutland, and C. M. Johnson, “Supported phospholipid monolayers. The molecular structure investigated by vibrational sum frequency spectroscopy,” J. Phys. Chem. C 115(21), 10617–10629 (2011).
[Crossref]

Kato, K.

Kneipp, J.

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “High-resolution and high-repetition-rate vibrational sum-frequency generation spectroscopy of one- and two-component phosphatidylcholine monolayers,” Anal. Bioanal. Chem. (2019), doi:.
[Crossref]

Krausz, F.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Krinitsin, P.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B=In,Ga; C=S,Se,Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids 352(23-25), 2439–2443 (2006).
[Crossref]

Krummel, A. T.

Li, B.

B. Li, X. Lu, X. Han, F.-G. Wu, J. N. Myers, and Z. Chen, “Interfacial Fresnel coefficients and molecular structures of model cell membranes: from a lipid monolayer to a lipid bilayer,” J. Phys. Chem. C 118(49), 28631–28639 (2014).
[Crossref]

Liljeblad, J. F. D.

J. F. D. Liljeblad, V. Bulone, M. W. Rutland, and C. M. Johnson, “Supported phospholipid monolayers. The molecular structure investigated by vibrational sum frequency spectroscopy,” J. Phys. Chem. C 115(21), 10617–10629 (2011).
[Crossref]

Liu, J.

Lobanov, S.

Lu, X.

B. Li, X. Lu, X. Han, F.-G. Wu, J. N. Myers, and Z. Chen, “Interfacial Fresnel coefficients and molecular structures of model cell membranes: from a lipid monolayer to a lipid bilayer,” J. Phys. Chem. C 118(49), 28631–28639 (2014).
[Crossref]

Luther, B. M.

Ma, G.

G. Ma, J. Liu, L. Fu, and E. C. Y. Yan, “Probing water and biomolecules at the air-water interface with a broad bandwidth vibrational sum frequency generation spectrometer from 3800 to 900 cm(-1).,” Appl. Spectrosc. 63(5), 528–537 (2009).
[Crossref] [PubMed]

G. Ma and H. C. Allen, “DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy,” Langmuir 22(12), 5341–5349 (2006).
[Crossref] [PubMed]

Malka, V.

Manzoni, C.

C. Manzoni and G. Cerullo, “Design criteria for ultrafast optical parametric amplifiers,” J. Opt. 18(10), 103501 (2016).
[Crossref]

Mero, M.

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, G. Steinmeyer, M. J. J. Vrakking, and M. Mero, “100-kHz, dual-beam OPA delivering high-quality, 5-cycle angular-dispersion-compensated mid-infrared idler pulses at 3.1 µm,” Opt. Express 26(20), 25793–25804 (2018).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “High-resolution and high-repetition-rate vibrational sum-frequency generation spectroscopy of one- and two-component phosphatidylcholine monolayers,” Anal. Bioanal. Chem. (2019), doi:.
[Crossref]

Migus, A.

Miranda, P. B.

P. B. Miranda and Y. R. Shen, “Liquid interfaces: a study by sum-frequency vibrational spectroscopy,” J. Phys. Chem. B 103(17), 3292–3307 (1999).
[Crossref]

Miyata, K.

Modena, A.

Myers, J. N.

B. Li, X. Lu, X. Han, F.-G. Wu, J. N. Myers, and Z. Chen, “Interfacial Fresnel coefficients and molecular structures of model cell membranes: from a lipid monolayer to a lipid bilayer,” J. Phys. Chem. C 118(49), 28631–28639 (2014).
[Crossref]

Nejbauer, M.

Parker, A. W.

P. M. Donaldson, G. M. Greetham, D. J. Shaw, A. W. Parker, and M. Towrie, “A 100 kHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers,” J. Phys. Chem. A 122(3), 780–787 (2018).
[Crossref] [PubMed]

Penwell, S. B.

Pervak, V.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Petralli-Mallow, T. P.

Petrov, V.

K. Kato, N. Umemura, L. Isaenko, S. Lobanov, V. Vedenyapin, K. Miyata, and V. Petrov, “Thermo-optic dispersion formula for LiGaS2,” Appl. Opt. 58(6), 1519–1521 (2019).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, G. Steinmeyer, M. J. J. Vrakking, and M. Mero, “100-kHz, dual-beam OPA delivering high-quality, 5-cycle angular-dispersion-compensated mid-infrared idler pulses at 3.1 µm,” Opt. Express 26(20), 25793–25804 (2018).
[Crossref] [PubMed]

K. Kato, K. Miyata, L. Isaenko, S. Lobanov, V. Vedenyapin, and V. Petrov, “Phase-matching properties of LiGaS2 in the 1.025-10.5910 μm spectral range,” Opt. Lett. 42(21), 4363–4366 (2017).
[Crossref] [PubMed]

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B=In,Ga; C=S,Se,Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids 352(23-25), 2439–2443 (2006).
[Crossref]

Pronin, O.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Pullanchery, S.

S. Pullanchery, T. Yang, and P. S. Cremer, “Introduction of positive charges into zwitterionic phospholipid monolayers disrupts water structure whereas negative charges enhances it,” J. Phys. Chem. B 122(51), 12260–12270 (2018).
[Crossref] [PubMed]

Radzewicz, C.

Raoult, F.

Richter, L. J.

Rutland, M. W.

J. F. D. Liljeblad, V. Bulone, M. W. Rutland, and C. M. Johnson, “Supported phospholipid monolayers. The molecular structure investigated by vibrational sum frequency spectroscopy,” J. Phys. Chem. C 115(21), 10617–10629 (2011).
[Crossref]

Sauteret, C.

Schunemann, P. G.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Seidel, M.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Shaw, D. J.

P. M. Donaldson, G. M. Greetham, D. J. Shaw, A. W. Parker, and M. Towrie, “A 100 kHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers,” J. Phys. Chem. A 122(3), 780–787 (2018).
[Crossref] [PubMed]

Shen, Y. R.

C. S. Tian and Y. R. Shen, “Recent progress on sum-frequency spectroscopy,” Surf. Sci. Rep. 69(2-3), 105–131 (2014).
[Crossref]

P. B. Miranda and Y. R. Shen, “Liquid interfaces: a study by sum-frequency vibrational spectroscopy,” J. Phys. Chem. B 103(17), 3292–3307 (1999).
[Crossref]

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B Condens. Matter 35(6), 3047–3050 (1987).
[Crossref] [PubMed]

Steinmeyer, G.

Stephenson, J. C.

Suhr, H.

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B Condens. Matter 35(6), 3047–3050 (1987).
[Crossref] [PubMed]

Tian, C. S.

C. S. Tian and Y. R. Shen, “Recent progress on sum-frequency spectroscopy,” Surf. Sci. Rep. 69(2-3), 105–131 (2014).
[Crossref]

Tokmakoff, A.

Towrie, M.

P. M. Donaldson, G. M. Greetham, D. J. Shaw, A. W. Parker, and M. Towrie, “A 100 kHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers,” J. Phys. Chem. A 122(3), 780–787 (2018).
[Crossref] [PubMed]

Tracy, K. M.

Trubetskov, M.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Tuladhar, A.

Umemura, N.

Vedenyapin, V.

Velarde, L.

H.-F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66(1), 189–216 (2015).
[Crossref] [PubMed]

Vrakking, M. J. J.

Wang, H.-F.

H.-F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66(1), 189–216 (2015).
[Crossref] [PubMed]

Whaley-Mayda, L.

Wu, F.-G.

B. Li, X. Lu, X. Han, F.-G. Wu, J. N. Myers, and Z. Chen, “Interfacial Fresnel coefficients and molecular structures of model cell membranes: from a lipid monolayer to a lipid bilayer,” J. Phys. Chem. C 118(49), 28631–28639 (2014).
[Crossref]

Xiao, X.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Yan, E. C. Y.

Yang, T.

S. Pullanchery, T. Yang, and P. S. Cremer, “Introduction of positive charges into zwitterionic phospholipid monolayers disrupts water structure whereas negative charges enhances it,” J. Phys. Chem. B 122(51), 12260–12270 (2018).
[Crossref] [PubMed]

Yelisseyev, A.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B=In,Ga; C=S,Se,Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids 352(23-25), 2439–2443 (2006).
[Crossref]

Yesudas, F.

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “High-resolution and high-repetition-rate vibrational sum-frequency generation spectroscopy of one- and two-component phosphatidylcholine monolayers,” Anal. Bioanal. Chem. (2019), doi:.
[Crossref]

Zawilski, K. T.

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Zhu, X. D.

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B Condens. Matter 35(6), 3047–3050 (1987).
[Crossref] [PubMed]

Zondy, J. J.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B=In,Ga; C=S,Se,Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids 352(23-25), 2439–2443 (2006).
[Crossref]

Annu. Rev. Phys. Chem. (1)

H.-F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66(1), 189–216 (2015).
[Crossref] [PubMed]

APL Photonics (1)

Z. Heiner, V. Petrov, and M. Mero, “Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy,” APL Photonics 2(6), 066102 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (1)

J. Chem. Phys. (1)

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz,” J. Chem. Phys. 148(10), 104702 (2018).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B=In,Ga; C=S,Se,Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids 352(23-25), 2439–2443 (2006).
[Crossref]

J. Opt. (1)

C. Manzoni and G. Cerullo, “Design criteria for ultrafast optical parametric amplifiers,” J. Opt. 18(10), 103501 (2016).
[Crossref]

J. Phys. Chem. A (1)

P. M. Donaldson, G. M. Greetham, D. J. Shaw, A. W. Parker, and M. Towrie, “A 100 kHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers,” J. Phys. Chem. A 122(3), 780–787 (2018).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

P. B. Miranda and Y. R. Shen, “Liquid interfaces: a study by sum-frequency vibrational spectroscopy,” J. Phys. Chem. B 103(17), 3292–3307 (1999).
[Crossref]

S. Pullanchery, T. Yang, and P. S. Cremer, “Introduction of positive charges into zwitterionic phospholipid monolayers disrupts water structure whereas negative charges enhances it,” J. Phys. Chem. B 122(51), 12260–12270 (2018).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

J. F. D. Liljeblad, V. Bulone, M. W. Rutland, and C. M. Johnson, “Supported phospholipid monolayers. The molecular structure investigated by vibrational sum frequency spectroscopy,” J. Phys. Chem. C 115(21), 10617–10629 (2011).
[Crossref]

B. Li, X. Lu, X. Han, F.-G. Wu, J. N. Myers, and Z. Chen, “Interfacial Fresnel coefficients and molecular structures of model cell membranes: from a lipid monolayer to a lipid bilayer,” J. Phys. Chem. C 118(49), 28631–28639 (2014).
[Crossref]

Langmuir (1)

G. Ma and H. C. Allen, “DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy,” Langmuir 22(12), 5341–5349 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. B Condens. Matter (1)

X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B Condens. Matter 35(6), 3047–3050 (1987).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Sci. Adv. (1)

M. Seidel, X. Xiao, S. A. Hussain, G. Arisholm, A. Hartung, K. T. Zawilski, P. G. Schunemann, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, and F. Krausz, “Multi-watt, multi-octave, mid-infrared femtosecond source,” Sci. Adv. 4(4), q1526 (2018).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

C. S. Tian and Y. R. Shen, “Recent progress on sum-frequency spectroscopy,” Surf. Sci. Rep. 69(2-3), 105–131 (2014).
[Crossref]

Other (5)

S. M. Baumler and H. C. Allen, “Chapter 5 - Vibrational spectroscopy of gas–liquid interfaces,” in Physical chemistry of gas-liquid interfaces, J. A. Faust and J. E. House, eds. (Elsevier, 2018), pp. 105–133.

L. M. Hanssen and C. Zhu, “Wavenumber standards for mid-infrared spectrometry,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (John Wiley & Sons Ltd, 2002).

G. Roberts, ed., Langmuir-Blodgett films (Springer, 1990).

H. Motschmann and H. Mohwald, “Langmuir–Blodgett Films,” in Handbook of Applied Surface and Colloid Chemistry, K. Holmberg, ed. (John Wiley & Sons, Ltd., 2001).

F. Yesudas, M. Mero, J. Kneipp, and Z. Heiner, “High-resolution and high-repetition-rate vibrational sum-frequency generation spectroscopy of one- and two-component phosphatidylcholine monolayers,” Anal. Bioanal. Chem. (2019), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic layout of the BB-VSFG spectrometer. (a) Broadband MIR and narrowband visible pulse generation units. (b) VSFG unit. BS: beam sampler, PR: partial reflector, WP: half-wave plate, P: polarizing beam splitter, WLC: white light continuum generation unit, LPF: long-pass filter, SPF: short-pass filter, L: lens, BD: beam dump. DM1: dichroic mirror, high reflection (HR) at 1.03 μm and high transmission (HT) at >1.1 μm, DM2: dichroic ZnSe mirror, HR at 1.0-1.2 μm, and HT at 6-12 μm, Ge: germanium-based pulse compression unit. All lenses, wave plates, and filters are AR-coated.
Fig. 2
Fig. 2 (a) Spectral tunability of the broadband MIR pulses obtained with an optical spectrum analyzer. (b) Chirp-compensated idler average power as a function of center wavelength.
Fig. 3
Fig. 3 X-FROG data obtained for the compressed, 109, 98, and 112 fs idler pulses at 7.2, 7.8, and 8.2 µm, respectively. Measured and retrieved (left column) X-FROG spectrograms, and reconstructed temporal (middle column) and spectral (right column) pulse intensity and phase. The directly measured spectrum is shown by the symbols (right column, grey circles), and the symbols in the temporal intensity curves (middle column, blue circles) are the corresponding Fourier transform. The FROG-error of the reconstruction for a grid size of 256 × 256 points was 0.0017, 0.0017, and 0.0014 at 7.2, 7.8, and 8.2 µm, respectively. The inset in the middle graph shows the Gaussian near-field spatial beam profile of the 0.5 µJ pulses at 7.8 µm with a 1/e2 diameter of 7.4 and 6.0 mm in the horizontal and vertical plane (i.e., parallel to the y principal axis of LGS), respectively.
Fig. 4
Fig. 4 Normalized VSFG spectra of a DPPC monolayer at the air-solid interface using (a,c) SSP and (b,d) PPP polarization combinations at a pulse repetition rate of 100 kHz obtained at a central MIR frequency of 1180 cm−1 (i.e., 8.47 µm). The acquired 20 single spectra are shown in (c,d), and the averages of them are displayed in (a,b). The acquisition time was 30 seconds per spectrum. The signal-to-noise ratio is 262 and 70 in (a) and (b), respectively. The dashed lines in (a) and (b) show the MIR reference spectrum obtained on a GaAs surface.

Metrics