Abstract

3D meso scale structures that can reach up to centimeters in overall size but retain micro- or nano-features, proved to be promising in various science fields ranging from micro-mechanical metamaterials to photonics and bio-medical scaffolds. In this work, we present synchronization of the linear and galvanometric scanners for efficient femtosecond 3D optical printing of objects at the meso-scale (from sub-μm to sub-cm spanning five orders of magnitude). In such configuration, the linear stages provide stitch-free structuring at nearly limitless (up to tens-of-cm) working area, while galvo-scanners allow to achieve translation velocities in the range of mm/s-cm/s without sacrificing nano-scale positioning accuracy and preserving the undistorted shape of the final print. The principle behind this approach is demonstrated, proving its inherent advantages in comparison to separate use of only linear stages or scanners. The printing rate is calculated in terms of voxels/s, showcasing the capability to maintain an optimal feature size while increasing throughput. Full capabilities of this approach are demonstrated by fabricating structures that reach millimeters in size but still retain sub-μm features: scaffolds for cell growth, microlenses, and photonic crystals. All this is combined into a benchmark structure: a meso-butterfly. Provided results show that synchronization of two scan modes is crucial for the end goal of industrial-scale implementation of this technology and makes the laser printing well aligned with similar approaches in nanofabrication by electron and ion beams.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Printing of metallic 3D micro-objects by laser induced forward transfer

Michael Zenou and Zvi Kotler
Opt. Express 24(2) 1431-1446 (2016)

High-speed two-photon polymerization 3D printing with a microchip laser at its fundamental wavelength

Dmitrii Perevoznik, Rashid Nazir, Roman Kiyan, Kestutis Kurselis, Beata Koszarna, Daniel T. Gryko, and Boris N. Chichkov
Opt. Express 27(18) 25119-25125 (2019)

Tailoring lens functionality by 3D laser printing

Shlomi Lightman, Gilad Hurvitz, Raz Gvishi, and Ady Arie
Appl. Opt. 56(32) 9038-9043 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffman, “Industry 4.0,” Bus. Inf. Syst. Eng. 6, 239–242 (2014).
    [Crossref]
  2. L. Jonušauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20, 053001 (2018).
    [Crossref]
  3. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” NanoToday 5, 435–448 (2010).
    [Crossref]
  4. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5, e16133 (2016).
    [Crossref]
  5. C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
    [Crossref]
  6. T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358, 1072–1074 (2017).
    [Crossref] [PubMed]
  7. J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, and A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7, 015015 (2015).
    [Crossref]
  8. B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
    [Crossref]
  9. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
    [Crossref]
  10. P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
    [Crossref]
  11. A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
    [Crossref] [PubMed]
  12. T. Koschny, C. M. Soukoulis, and M. Wegener, “Metamaterials in microwaves, optics, mechanics, thermodynamics, and transport,” J. Opt. 9, 084005 (2017).
    [Crossref]
  13. L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53, 125102 (2014).
    [Crossref]
  14. M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Express 7, 179–184 (2017).
    [Crossref]
  15. L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
    [Crossref]
  16. M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
    [Crossref]
  17. C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
    [Crossref]
  18. M. Lebedevaitė, J. Ostrauskaitė, E. Skliutas, and M. Malinauskas, “Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets,” Polymers 11, 116 (2019).
    [Crossref]
  19. Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
    [Crossref]
  20. L. Jiang, W. Xiong, Y. Zhou, Y. Liu, X. Huang, D. Li, T. Baldacchini, L. Jiang, and Y. Lu, “Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization,” Opt. Express 24, 13687–13701 (2016).
    [Crossref] [PubMed]
  21. J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
    [Crossref]
  22. A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
    [Crossref]
  23. H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
    [Crossref]
  24. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, and J. R. Greer, “Additive manufacturing of 3D nano-architected metals,” Nat. Commun. 9, 593 (2018).
    [Crossref] [PubMed]
  25. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
    [Crossref]
  26. L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
    [Crossref]
  27. M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys 50, 201–207 (2010).
    [Crossref]
  28. J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
    [Crossref] [PubMed]
  29. N. Alharbi, R. Osman, and D. Wismeijer, “Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations,” J. Prosthet. Dent. 115, 760–767 (2016).
    [Crossref] [PubMed]
  30. J. Ai, M. Lv, M. Jiang, J. Liu, and X. Zeng, “Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns,” Opt. Lasers Eng. 107, 335–341 (2018).
    [Crossref]
  31. X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
    [Crossref]
  32. E. Waller and G. Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers 8, 297 (2016).
    [Crossref]
  33. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
    [Crossref] [PubMed]
  34. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
    [Crossref] [PubMed]
  35. P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).
  36. A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9, 706–712 (2015).
    [Crossref]
  37. S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
    [Crossref]
  38. A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
    [Crossref]
  39. S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
    [Crossref]
  40. M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21, 20964–20973 (2013).
    [Crossref] [PubMed]
  41. C. Rensch, S. Hell, M. v. Schickfus, and S. Hunklinger, “Laser scanner for direct writing lithography,” Appl. Opt. 28, 3754–3758 (1989).
    [Crossref] [PubMed]
  42. L. Cunningham, M. Veilleux, and P. Campagnola, “Freeform multiphoton exicted microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14, 8613–8621 (2006).
    [Crossref] [PubMed]
  43. R. Nielson, B. Kaehr, and J. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5, 120–125 (2009).
    [Crossref]
  44. D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8, 458–467 (2014).
    [Crossref]
  45. L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
    [Crossref]
  46. T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, M. Malinauskas, D. Paipulas, Y. Bellouard, and V. Sirutkaitis, “Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications,” Opt. Express 25, 26280–26288 (2017).
    [Crossref]
  47. W.-H. Hsu, F. C. P. Masim, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Dynamic position shifts of X-ray emission from a water film induced by a pair of time-delayed femtosecond laser pulses,” Opt. Express 25, 24109–24118 (2017).
    [Crossref] [PubMed]
  48. E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (Pan Stanford, Singapore, 2011), 1st ed.
    [Crossref]
  49. D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution,” Nanoscale Horiz. 4, 647 (2019).
    [Crossref]
  50. A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
    [Crossref]

2019 (3)

M. Lebedevaitė, J. Ostrauskaitė, E. Skliutas, and M. Malinauskas, “Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets,” Polymers 11, 116 (2019).
[Crossref]

D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution,” Nanoscale Horiz. 4, 647 (2019).
[Crossref]

A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
[Crossref]

2018 (7)

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, and J. R. Greer, “Additive manufacturing of 3D nano-architected metals,” Nat. Commun. 9, 593 (2018).
[Crossref] [PubMed]

J. Ai, M. Lv, M. Jiang, J. Liu, and X. Zeng, “Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns,” Opt. Lasers Eng. 107, 335–341 (2018).
[Crossref]

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

L. Jonušauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20, 053001 (2018).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

2017 (11)

T. Koschny, C. M. Soukoulis, and M. Wegener, “Metamaterials in microwaves, optics, mechanics, thermodynamics, and transport,” J. Opt. 9, 084005 (2017).
[Crossref]

M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Express 7, 179–184 (2017).
[Crossref]

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
[Crossref]

T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358, 1072–1074 (2017).
[Crossref] [PubMed]

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
[Crossref]

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
[Crossref]

L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
[Crossref]

T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, M. Malinauskas, D. Paipulas, Y. Bellouard, and V. Sirutkaitis, “Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications,” Opt. Express 25, 26280–26288 (2017).
[Crossref]

W.-H. Hsu, F. C. P. Masim, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Dynamic position shifts of X-ray emission from a water film induced by a pair of time-delayed femtosecond laser pulses,” Opt. Express 25, 24109–24118 (2017).
[Crossref] [PubMed]

2016 (7)

N. Alharbi, R. Osman, and D. Wismeijer, “Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations,” J. Prosthet. Dent. 115, 760–767 (2016).
[Crossref] [PubMed]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
[Crossref]

E. Waller and G. Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers 8, 297 (2016).
[Crossref]

L. Jiang, W. Xiong, Y. Zhou, Y. Liu, X. Huang, D. Li, T. Baldacchini, L. Jiang, and Y. Lu, “Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization,” Opt. Express 24, 13687–13701 (2016).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5, e16133 (2016).
[Crossref]

A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
[Crossref] [PubMed]

2015 (3)

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, and A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7, 015015 (2015).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9, 706–712 (2015).
[Crossref]

2014 (4)

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8, 458–467 (2014).
[Crossref]

H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffman, “Industry 4.0,” Bus. Inf. Syst. Eng. 6, 239–242 (2014).
[Crossref]

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53, 125102 (2014).
[Crossref]

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

2013 (1)

2012 (3)

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

2011 (1)

2010 (5)

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys 50, 201–207 (2010).
[Crossref]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” NanoToday 5, 435–448 (2010).
[Crossref]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[Crossref]

2009 (1)

R. Nielson, B. Kaehr, and J. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5, 120–125 (2009).
[Crossref]

2008 (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

2006 (1)

1989 (1)

Accardo, A.

A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
[Crossref]

Ai, J.

J. Ai, M. Lv, M. Jiang, J. Liu, and X. Zeng, “Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns,” Opt. Lasers Eng. 107, 335–341 (2018).
[Crossref]

Alharbi, N.

N. Alharbi, R. Osman, and D. Wismeijer, “Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations,” J. Prosthet. Dent. 115, 760–767 (2016).
[Crossref] [PubMed]

Ali, S. J.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Amendt, P. A.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Aristov, A. I.

A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
[Crossref] [PubMed]

Balciunas, E.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

Balcytis, A.

Baldacchini, T.

Baltriukiene, D.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

Barner-Kowollik, C.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
[Crossref]

Bastmeyer, M.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
[Crossref]

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

Baumann, T. F.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Bayu Aji, L. B.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Bellouard, Y.

Benisty, H.

Bertels, S.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

Biener, J.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Billah, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Bityurin, N.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

Blaicher, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Blasco, E.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
[Crossref]

Blatché, M.-C.

A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
[Crossref]

Bratchikov, M.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, and A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7, 015015 (2015).
[Crossref]

Buividas, R.

L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
[Crossref]

Bukelskiene, V.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

Butkus, S.

L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
[Crossref]

T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, M. Malinauskas, D. Paipulas, Y. Bellouard, and V. Sirutkaitis, “Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications,” Opt. Express 25, 26280–26288 (2017).
[Crossref]

Caer, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Campagnola, P.

Chang, N.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Chen, H.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Chen, Q. D.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” NanoToday 5, 435–448 (2010).
[Crossref]

Chen, Q.-D.

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

Chen, R.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Chen, X.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Chichkov, B. N.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Chu, J.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

Cicha, K.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Claus, T. K.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

Corrielli, G.

A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
[Crossref]

Courson, R.

A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
[Crossref]

Cunningham, L.

Dangel, R.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Danilevicius, P.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
[Crossref] [PubMed]

Danilov, A.

A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
[Crossref] [PubMed]

Darinskas, A.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, and A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7, 015015 (2015).
[Crossref]

Dedoussis, V.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Dehaeck, S.

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

Delaittre, G.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
[Crossref]

Delalande, S.

A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, and J. R. Greer, “Additive manufacturing of 3D nano-architected metals,” Nat. Commun. 9, 593 (2018).
[Crossref] [PubMed]

Deveikyte, M.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, and A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7, 015015 (2015).
[Crossref]

Dietrich, P.-I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Do, M. T.

Dong, B.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Dong, W.-F.

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

El-Tamer, A.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

Farsari, M.

A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
[Crossref] [PubMed]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Feld, T.

H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffman, “Industry 4.0,” Bus. Inf. Syst. Eng. 6, 239–242 (2014).
[Crossref]

Fettke, P.

H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffman, “Industry 4.0,” Bus. Inf. Syst. Eng. 6, 239–242 (2014).
[Crossref]

Forien, J.-B.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Fotakis, C.

A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
[Crossref] [PubMed]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Fotakis, M. F. C.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Frenzel, T.

T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358, 1072–1074 (2017).
[Crossref] [PubMed]

Freude, W.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Freymann, G.

E. Waller and G. Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers 8, 297 (2016).
[Crossref]

Gadonas, R.

L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
[Crossref]

T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, M. Malinauskas, D. Paipulas, Y. Bellouard, and V. Sirutkaitis, “Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications,” Opt. Express 25, 26280–26288 (2017).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9, 706–712 (2015).
[Crossref]

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys 50, 201–207 (2010).
[Crossref]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[Crossref]

Gaidukeviciute, A.

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys 50, 201–207 (2010).
[Crossref]

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Gailevicius, D.

D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution,” Nanoscale Horiz. 4, 647 (2019).
[Crossref]

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
[Crossref]

Gamaly, E. G.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
[Crossref]

E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (Pan Stanford, Singapore, 2011), 1st ed.
[Crossref]

Garliauskas, M.

M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Express 7, 179–184 (2017).
[Crossref]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Gray, D.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Greer, J. R.

A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, and J. R. Greer, “Additive manufacturing of 3D nano-architected metals,” Nat. Commun. 9, 593 (2018).
[Crossref] [PubMed]

Gu, M.

A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
[Crossref]

Gu, Z.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Hahn, V.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

Hatanaka, K.

Hell, S.

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Hinze, U.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

Hoffman, M.

H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffman, “Industry 4.0,” Bus. Inf. Syst. Eng. 6, 239–242 (2014).
[Crossref]

Hofmann, A.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Hoose, T.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Hsu, W.-H.

Hu, Y.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

Huang, W.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

Huang, X.

Hunklinger, S.

Jantsch, V.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Jiang, L.

Jiang, M.

J. Ai, M. Lv, M. Jiang, J. Liu, and X. Zeng, “Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns,” Opt. Lasers Eng. 107, 335–341 (2018).
[Crossref]

Jiang, T.

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

John, S.

A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
[Crossref]

Jonavicius, T.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
[Crossref]

Jonušauskas, L.

L. Jonušauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20, 053001 (2018).
[Crossref]

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
[Crossref]

L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
[Crossref]

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53, 125102 (2014).
[Crossref]

Juodkazis, S.

D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution,” Nanoscale Horiz. 4, 647 (2019).
[Crossref]

L. Jonušauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20, 053001 (2018).
[Crossref]

L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
[Crossref]

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
[Crossref]

W.-H. Hsu, F. C. P. Masim, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Dynamic position shifts of X-ray emission from a water film induced by a pair of time-delayed femtosecond laser pulses,” Opt. Express 25, 24109–24118 (2017).
[Crossref] [PubMed]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
[Crossref]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
[Crossref] [PubMed]

Kabashin, A. V.

A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
[Crossref] [PubMed]

Kabouraki, E.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

Kadic, M.

T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358, 1072–1074 (2017).
[Crossref] [PubMed]

Kaehr, B.

R. Nielson, B. Kaehr, and J. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5, 120–125 (2009).
[Crossref]

Kar, A.

A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
[Crossref]

Karalekas, D.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Karaniauskas, A.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

Kemper, H.G.

H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffman, “Industry 4.0,” Bus. Inf. Syst. Eng. 6, 239–242 (2014).
[Crossref]

Kim, D.-P.

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

Kontenis, L.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[Crossref]

Koos, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Koschny, T.

T. Koschny, C. M. Soukoulis, and M. Wegener, “Metamaterials in microwaves, optics, mechanics, thermodynamics, and transport,” J. Opt. 9, 084005 (2017).
[Crossref]

Kudo, A.

A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, and J. R. Greer, “Additive manufacturing of 3D nano-architected metals,” Nat. Commun. 9, 593 (2018).
[Crossref] [PubMed]

Lai, N. D.

Lambert, P.

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

Lasi, H.

H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffman, “Industry 4.0,” Bus. Inf. Syst. Eng. 6, 239–242 (2014).
[Crossref]

Lebedevaite, M.

M. Lebedevaitė, J. Ostrauskaitė, E. Skliutas, and M. Malinauskas, “Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets,” Polymers 11, 116 (2019).
[Crossref]

Ledoux-Rak, I.

Lee, J.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Li, D.

Li, J.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

Li, Q.

Li, Z.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Liska, R.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Liu, D.-X.

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

Liu, J.

J. Ai, M. Lv, M. Jiang, J. Liu, and X. Zeng, “Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns,” Opt. Lasers Eng. 107, 335–341 (2018).
[Crossref]

Liu, W.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Liu, Y.

Loubinoux, I.

A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
[Crossref]

Lu, Y.

Lv, M.

J. Ai, M. Lv, M. Jiang, J. Liu, and X. Zeng, “Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns,” Opt. Lasers Eng. 107, 335–341 (2018).
[Crossref]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Machacek, T.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Maciulaitis, J.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, and A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7, 015015 (2015).
[Crossref]

Malaquin, L.

A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
[Crossref]

Malinauskas, M.

M. Lebedevaitė, J. Ostrauskaitė, E. Skliutas, and M. Malinauskas, “Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets,” Polymers 11, 116 (2019).
[Crossref]

D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution,” Nanoscale Horiz. 4, 647 (2019).
[Crossref]

L. Jonušauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20, 053001 (2018).
[Crossref]

L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
[Crossref]

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
[Crossref]

T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, M. Malinauskas, D. Paipulas, Y. Bellouard, and V. Sirutkaitis, “Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications,” Opt. Express 25, 26280–26288 (2017).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5, e16133 (2016).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9, 706–712 (2015).
[Crossref]

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53, 125102 (2014).
[Crossref]

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
[Crossref] [PubMed]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[Crossref]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys 50, 201–207 (2010).
[Crossref]

Manousidaki, M.

A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
[Crossref] [PubMed]

Masim, F. C. P.

Matulaitiene, I.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9, 706–712 (2015).
[Crossref]

Melissinaki, V.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Midorikawa, K.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8, 458–467 (2014).
[Crossref]

Mikoliunaite, L.

D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution,” Nanoscale Horiz. 4, 647 (2019).
[Crossref]

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
[Crossref]

Mironov, V.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Mizeikis, V.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
[Crossref]

Moehrle, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Muller, P.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
[Crossref]

Nguyen, T. T. N.

Ni, H.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Niaura, G.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9, 706–712 (2015).
[Crossref]

Nielson, R.

R. Nielson, B. Kaehr, and J. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5, 120–125 (2009).
[Crossref]

Niu, L.-G.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8, 458–467 (2014).
[Crossref]

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

Oakdale, J. S.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Offrein, B.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Ohrt, C.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Osellame, R.

A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
[Crossref]

Osman, R.

N. Alharbi, R. Osman, and D. Wismeijer, “Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations,” J. Prosthet. Dent. 115, 760–767 (2016).
[Crossref] [PubMed]

Ostrauskaite, J.

M. Lebedevaitė, J. Ostrauskaitė, E. Skliutas, and M. Malinauskas, “Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets,” Polymers 11, 116 (2019).
[Crossref]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Ovsianikov, A.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Padolskyte, V.

D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution,” Nanoscale Horiz. 4, 647 (2019).
[Crossref]

Paie, P.

A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
[Crossref]

Paipulas, D.

T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, M. Malinauskas, D. Paipulas, Y. Bellouard, and V. Sirutkaitis, “Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications,” Opt. Express 25, 26280–26288 (2017).
[Crossref]

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9, 706–712 (2015).
[Crossref]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[Crossref]

Park, H. S.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Perrenoud, M.

Pikulin, A.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

Piskarskas, A.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

Portela, C. M.

A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, and J. R. Greer, “Additive manufacturing of 3D nano-architected metals,” Nat. Commun. 9, 593 (2018).
[Crossref] [PubMed]

Prisbrey, S. T.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Pucher, N.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Purlys, V.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys 50, 201–207 (2010).
[Crossref]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[Crossref]

Qin, X.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Raciukaitis, G.

M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Express 7, 179–184 (2017).
[Crossref]

Reinhardt, C.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Rekštyte, S.

L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
[Crossref]

T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, M. Malinauskas, D. Paipulas, Y. Bellouard, and V. Sirutkaitis, “Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications,” Opt. Express 25, 26280–26288 (2017).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
[Crossref]

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, and A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7, 015015 (2015).
[Crossref]

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53, 125102 (2014).
[Crossref]

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

Rensch, C.

Reuter, I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Richter, B.

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
[Crossref]

Rodenas, A.

A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
[Crossref]

Rutkauskas, M.

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys 50, 201–207 (2010).
[Crossref]

Sakalauskas, D.

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
[Crossref]

Sakellari, I.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Šakirzanovas, S.

D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution,” Nanoscale Horiz. 4, 647 (2019).
[Crossref]

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
[Crossref]

Scheid, B.

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

Schickfus, M. v.

Schizas, C.

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

Shear, J.

R. Nielson, B. Kaehr, and J. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5, 120–125 (2009).
[Crossref]

Širmenis, R.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

Sirutkaitis, V.

Sirvydis, V.

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

Skliutas, E.

M. Lebedevaitė, J. Ostrauskaitė, E. Skliutas, and M. Malinauskas, “Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets,” Polymers 11, 116 (2019).
[Crossref]

Smith, R. F.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Smith, W. L.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Soukoulis, C. M.

T. Koschny, C. M. Soukoulis, and M. Wegener, “Metamaterials in microwaves, optics, mechanics, thermodynamics, and transport,” J. Opt. 9, 084005 (2017).
[Crossref]

Stampfl, J.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Stankevicius, E.

M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Express 7, 179–184 (2017).
[Crossref]

Sugioka, K.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8, 458–467 (2014).
[Crossref]

Sun, C.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Sun, H. B.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” NanoToday 5, 435–448 (2010).
[Crossref]

Sun, H.-B.

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

Sun, L.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Sun, Y.-L.

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

Terzaki, K.

A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
[Crossref] [PubMed]

Thibault, C.

A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
[Crossref]

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Tickunas, T.

Torgersen, J.

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

Troppenz, U.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Vamvakaki, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

Vamvakakian, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

van Buuren, A. W.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Veilleux, M.

Vengris, M.

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[Crossref]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Vieu, C.

A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
[Crossref]

Vyatskikh, A.

A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, and J. R. Greer, “Additive manufacturing of 3D nano-architected metals,” Nat. Commun. 9, 593 (2018).
[Crossref] [PubMed]

Waller, E.

E. Waller and G. Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers 8, 297 (2016).
[Crossref]

Wang, Y.-S.

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

Ware, H. O. T.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Wegener, M.

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
[Crossref]

T. Koschny, C. M. Soukoulis, and M. Wegener, “Metamaterials in microwaves, optics, mechanics, thermodynamics, and transport,” J. Opt. 9, 084005 (2017).
[Crossref]

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358, 1072–1074 (2017).
[Crossref] [PubMed]

Willey, T. M.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Wismeijer, D.

N. Alharbi, R. Osman, and D. Wismeijer, “Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations,” J. Prosthet. Dent. 115, 760–767 (2016).
[Crossref] [PubMed]

Worthington, M. A.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Wu, D.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8, 458–467 (2014).
[Crossref]

Wu, S.-Z.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8, 458–467 (2014).
[Crossref]

Xia, H.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” NanoToday 5, 435–448 (2010).
[Crossref]

Xiong, W.

Xu, J.

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8, 458–467 (2014).
[Crossref]

Yang, L.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

Ye, J.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Yuan, G.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Zeng, X.

J. Ai, M. Lv, M. Jiang, J. Liu, and X. Zeng, “Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns,” Opt. Lasers Eng. 107, 335–341 (2018).
[Crossref]

Zhang, D.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Zhang, H. F.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Zhang, L.

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

Zhang, X.

A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, and J. R. Greer, “Additive manufacturing of 3D nano-architected metals,” Nat. Commun. 9, 593 (2018).
[Crossref] [PubMed]

Zhang, Y. L.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” NanoToday 5, 435–448 (2010).
[Crossref]

Zhao, X.

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Zhou, Y.

Žukauskas, A.

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9, 706–712 (2015).
[Crossref]

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[Crossref]

ACS Nano (2)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakakian, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6, 2302–2311 (2012).
[Crossref] [PubMed]

Addit. Manuf. (1)

S. Dehaeck, B. Scheid, and P. Lambert, “Adaptive stitching for meso-scale printing with two-photon lithography,” Addit. Manuf. 21, 589–597 (2018).
[Crossref]

Adv. Funct. Mater. (1)

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27, 1702425 (2017).
[Crossref]

Adv. Mater. (2)

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, G. Delaittre, C. Barner-Kowollik, and M. Bastmeyer, “Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins,” Adv. Mater. 29, 1604342 (2017).
[Crossref]

Adv. Opt. Mater. (1)

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3D polymerization via polarization control,” Adv. Opt. Mater. 4,1209–1214 (2016).
[Crossref]

Angew. Chem. Int. Ed. (1)

C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, B. Richter, and M. Wegener, “3D laser micro- and nanoprinting: Challenges for chemistry,” Angew. Chem. Int. Ed. 56, 15828–15845 (2017).
[Crossref]

Appl. Opt. (1)

Biofabrication (1)

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, and A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7, 015015 (2015).
[Crossref]

Bus. Inf. Syst. Eng. (1)

H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffman, “Industry 4.0,” Bus. Inf. Syst. Eng. 6, 239–242 (2014).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

C. Schizas, V. Melissinaki, A. Gaidukevičiūtė, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, M. F. C. Fotakis, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48, 435–441 (2010).
[Crossref]

J. Biomed. Opt. (1)

J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,” J. Biomed. Opt. 17, 105008 (2012).
[Crossref] [PubMed]

J. Opt. (3)

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

L. Jonušauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20, 053001 (2018).
[Crossref]

T. Koschny, C. M. Soukoulis, and M. Wegener, “Metamaterials in microwaves, optics, mechanics, thermodynamics, and transport,” J. Opt. 9, 084005 (2017).
[Crossref]

J. Prosthet. Dent. (1)

N. Alharbi, R. Osman, and D. Wismeijer, “Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations,” J. Prosthet. Dent. 115, 760–767 (2016).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

A. Žukauskas, I. Matulaitienė, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics,” Laser Photonics Rev. 9, 706–712 (2015).
[Crossref]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8, 458–467 (2014).
[Crossref]

Light: Sci. Appl. (2)

Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu, L. Zhang, Y.-S. Wang, Q.-D. Chen, D.-P. Kim, and H.-B. Sun, “Protein-based soft micro-optics fabricated by femtosecond laser direct writing,” Light: Sci. Appl. 3, e129 (2014).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5, e16133 (2016).
[Crossref]

Lith. J. Phys (1)

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys 50, 201–207 (2010).
[Crossref]

Lith. J. Phys. (1)

A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, “Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique,” Lith. J. Phys. 50, 55–61 (2010).
[Crossref]

Mater. Sci. (1)

P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Karaniauskas, R. Širmenis, D. Baltriukienė, M. Malinauskas, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Direct laser fabrication of polymeric implants for cardiovascular surgery,” Mater. Sci. 18, 145–149 (2012).

Materials (1)

L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography,” Materials 10, 12 (2017).
[Crossref]

Nanoscale Horiz. (1)

D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution,” Nanoscale Horiz. 4, 647 (2019).
[Crossref]

NanoToday (1)

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” NanoToday 5, 435–448 (2010).
[Crossref]

Nat. Commun. (1)

A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, and J. R. Greer, “Additive manufacturing of 3D nano-architected metals,” Nat. Commun. 9, 593 (2018).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12, 241–247 (2018).
[Crossref]

Nature Photon. (1)

A. Rodenas, M. Gu, G. Corrielli, P. Paie, S. John, A. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nature Photon. 13, 105–109 (2019).
[Crossref]

Opt. Eng. (2)

L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas, “Hybrid subtractive-additive-welding microfabrication for lab-on-chip (LOC) applications via single amplified femtosecond laser source,” Opt. Eng. 56, 094108 (2017).
[Crossref]

L. Jonušauskas, S. Rekštytė, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53, 125102 (2014).
[Crossref]

Opt. Express (7)

M. Garliauskas, E. Stankevičius, and G. Račiukaitis, “Laser intensity-based geometry control of periodic submicron polymer structures fabricated by laser interference lithography,” Opt. Express 7, 179–184 (2017).
[Crossref]

L. Cunningham, M. Veilleux, and P. Campagnola, “Freeform multiphoton exicted microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14, 8613–8621 (2006).
[Crossref] [PubMed]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
[Crossref] [PubMed]

M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, “Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing,” Opt. Express 21, 20964–20973 (2013).
[Crossref] [PubMed]

L. Jiang, W. Xiong, Y. Zhou, Y. Liu, X. Huang, D. Li, T. Baldacchini, L. Jiang, and Y. Lu, “Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization,” Opt. Express 24, 13687–13701 (2016).
[Crossref] [PubMed]

W.-H. Hsu, F. C. P. Masim, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Dynamic position shifts of X-ray emission from a water film induced by a pair of time-delayed femtosecond laser pulses,” Opt. Express 25, 24109–24118 (2017).
[Crossref] [PubMed]

T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, M. Malinauskas, D. Paipulas, Y. Bellouard, and V. Sirutkaitis, “Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications,” Opt. Express 25, 26280–26288 (2017).
[Crossref]

Opt. Lasers Eng. (2)

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator,” Opt. Lasers Eng. 70, 26–32 (2015).
[Crossref]

J. Ai, M. Lv, M. Jiang, J. Liu, and X. Zeng, “Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns,” Opt. Lasers Eng. 107, 335–341 (2018).
[Crossref]

Polymers (2)

E. Waller and G. Freymann, “Spatio-temporal proximity characteristics in 3D μ-printing via multi-photon absorption,” Polymers 8, 297 (2016).
[Crossref]

M. Lebedevaitė, J. Ostrauskaitė, E. Skliutas, and M. Malinauskas, “Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets,” Polymers 11, 116 (2019).
[Crossref]

RSC Advances (1)

H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Advances 8, 20117–20123 (2018).
[Crossref]

Sci. Rep. (1)

A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, “3D plasmonic crystal metamaterials for ultra-sensitive biosensing,” Sci. Rep. 6, 25380 (2016).
[Crossref] [PubMed]

Science (1)

T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional mechanical metamaterials with a twist,” Science 358, 1072–1074 (2017).
[Crossref] [PubMed]

Small (2)

A. Accardo, M.-C. Blatché, R. Courson, I. Loubinoux, C. Thibault, L. Malaquin, and C. Vieu, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small 13, 1700621 (2017).
[Crossref]

R. Nielson, B. Kaehr, and J. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5, 120–125 (2009).
[Crossref]

Other (1)

E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (Pan Stanford, Singapore, 2011), 1st ed.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       A video demonstrating continuous writing of a ~1.25 mm sized 3D hexagonal scaffold via linear stage and galvo-scanner synchronization. The structure is formed in layer-by-layer fashion using stl model with movement being optimized using traveling sal

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of producing structures using only galvanometric scanners (a), linear stages (b) and continuous scanning via synchronization of both (c). Applying only scanning leads to stitches (black lines on the finished structure) if thesize of a structure exceeds the working field of an objective (black square). Linear positioning leads to possible loss of shape (for instance, rounded corners instead of sharp ones) when translation velocity is high (1 mm/s and more) due to stage inertia. Synchronization of both allows to continuously move the working field in relation to the sample thus avoiding stitching yet still exploiting ultra-high speed and precision of structuring by employing scanner. All the given cases are illustrated by the structures fabricated in each regime at 1 cm/s translation velocities.
Fig. 2
Fig. 2 Schematics of the Laser Nanofactory setup used in this work. Here PP is a phase plate, P denotes thin film polarizers together with PP forming a power attenuation unit, M are the mirrors, RPM - removable power meter, T - telescope, expanding laser beam 3 times, Obj - objective lens. LED illuminates the sample for real-time monitoring of the fabrication process. For wavelength tuning second harmonic crystal, harmonic generator or a parametric generator can be used.
Fig. 3
Fig. 3 (a) The resolution bridge fabricated using different translation velocities vt and measured line widths (b). A sharp decrease in line dimensions is observable. However, the aspect ratio of voxels remains in the 3-4 range. The slope = 1 isshown as an eye guide to illustrate that polymerisation of the voxel was following a sub-linear (slope <1) power (dose) dependence.
Fig. 4
Fig. 4 Plots representing Et deposition during fs exposure throughout translation of the stages. It is acquired by adding all of the fluences of single pulses dependant on their position during translation and assuming Gaussian distribution. Et in the centre of the line during formation at vt of 1 μm/s and 10000 μm/s and 10% below the damage threshold of the polymer. A substantial difference in Et and the resulting decrease in line width as vt is higher.
Fig. 5
Fig. 5 (a) A schematic representation of a voxel, fabricated line, and definitions of D and L. (b)-(d) are voxel volume VV, line volume Vl and voxels/second dependencies on the translation velocity vt respectively. Slopes corresponding to a linear and diffusional spreading (slope = 0.5) of the voxel volume are shown as eye guides. The line volume was proportional (slope = 1) to the scan speed, hence, the exposure dose.
Fig. 6
Fig. 6 (a) SEM micrograph of 1 mm long gradient chain-mail (with support walls) showcasing the capability to produce a relatively smooth surface with features that range from μm to hundreds of μm. A single working field of 125 μm is added for the reference, showcasing that the biggest rings would not fit in it. (b) Focal point movements if only the rings would be fabricated. (c) Image showing all the movements needed to produce such structure, including ones with an open shutter (yellow) and with a closed shutter (red). As movements between different parts of the take up a significant portion of the laser beam repositioning between scanning, the time needed to create such structure is 26 minutes, in comparison to 3 and a half minute needed if only the volume will be filledblue.
Fig. 7
Fig. 7 (a) - 1.5 mm scaffold for cell growth made out of non-photosensitized SZ2080. (b) - demonstration of capabilities to produce complex bio-medicine oriented structures with on-demand scalability ( Visualization 1). (c) - SEM images of 0.5 and 1 mm lenses showing no noticeable surface or other defects, as 0.5 mm lens focuses light into a near-perfect Gaussian spot (d). (e) - photos of 1 mm sized photonic crystal before development at different angles in relation to white light illumination, which results in different colours being diffracted towards the photocamera. (f) - optical microscope image of the structure, revealing no defects in the lattice, which is further proved by predictable photonic crystal diffractive pattern projected onto a screen after illumination with HeNe laser beam.
Fig. 8
Fig. 8 A mesoscale butterfly, created to demonstrate true meso-scale capabilities of synchronized linear stages and galvanometric scanners. (a) - an overall SEM view with a naked-eye view in the inset. (b) - enlarged view of suspended antennas. (c) - eye microlens array. (d) shows embedded nanolattice with a single line width of 650 nm (e).

Tables (1)

Tables Icon

Table 1 Optimized parameters for fabrication of different parts of the meso-butterfly.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V v = 4 3 π a b c = 4 3 π D 2 D 2 L 2 = 1 6 π D 2 L
( Δ ε d ) i m ω p e 2 ω 2 ν e ω = n e n c r ν e ω ,
l a b s = λ 2 π κ = n 0 λ π ( Δ ε d ) i m = 2 c n 0 ν e n c r n e
W a b s = A 0 ν e c n 0 n e n c r F p n e n c r F p ,

Metrics