Abstract

Heavy metal pollution is one of the main problems in water pollution, which is harmful to humans. Surface-enhanced laser-induced breakdown spectroscopy (SENLIBS) has been applied to detect trace amounts of heavy metal elements in aqueous solution; however, it is still a big challenge to explore the relationship between the LIBS detection sensitivity and the substrate’s physical properties. In this work, four typical substrates, zinc (Zn), magnesium alloy (Mg), nickel (Ni), and silicon (Si), were compared; and the mechanism of spectral enhancement by different substrates in SENLIBS was investigated. The results indicated that the limit of detection (LoD) of heavy metal elements on different substrates is positively proportional to the boiling of the substrate. That is mainly because a higher plasma excitation temperature and electron density are obtained, leading to more intense collision between particles. The signal enhancement is associated with the lower boiling point of the substrate (corresponding to a lower ablation threshold and higher ablation quantity from the substrate). As a result, the best LoD was 0.0011 mg/L for chromium (Cr) and 0.004 mg/L for lead (Pb) on an optimal Zn substrate, respectively. The LoDs were sufficiently low to meet the drinking water sanitation standard. These results showed that the detection sensitivity of heavy metal elements in aqueous solution can be improved by choosing a substrate with a lower boiling point in SENLIBS.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy

X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng
Opt. Express 24(12) 13410-13417 (2016)

Analytical-performance improvement of aqueous solution by chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy

Xinyan Yang, Xiangyou Li, Zhifeng Cui, Zhongqi Hao, Yongfeng Lu, Jingchun Huang, Guanxin Yao, and Xiaoli Wang
Appl. Opt. 57(25) 7135-7139 (2018)

On-line quantitative analysis of heavy metals in water based on laser-induced breakdown spectroscopy

N. J. Zhao, D. S. Meng, Y. Jia, M. J. Ma, L. Fang, J. G. Liu, and W. Q. Liu
Opt. Express 27(8) A495-A506 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. O. Duruibe, M. Ogwuegbu, and J. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” Int. J. Phys. Sci. 2, 112–118 (2007).
  2. A. H. Smith and C. M. Steinmaus, “Health effects of arsenic and chromium in drinking water: recent human findings,” Annu. Rev. Public Health 30(1), 107–122 (2009).
    [Crossref] [PubMed]
  3. H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, “Pyridine-2,6-diamine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples,” Int. J. Cosmet. Sci. 35(2), 176–182 (2013).
    [Crossref] [PubMed]
  4. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19(9), 1061–1083 (2004).
    [Crossref]
  5. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
    [Crossref]
  6. Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
    [Crossref]
  7. J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
    [Crossref] [PubMed]
  8. Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
    [Crossref]
  9. R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
    [Crossref] [PubMed]
  10. R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
    [Crossref] [PubMed]
  11. M. Knadel, Y. Peng, R. Gislum, and M. H. Greve, “Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination,” in 4th Global Workshop on Proximal Soil Sensing(2015).
  12. D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
    [Crossref] [PubMed]
  13. S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
    [Crossref] [PubMed]
  14. X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, “Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy,” Anal. Chem. 87(11), 5577–5583 (2015).
    [Crossref] [PubMed]
  15. P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
    [Crossref] [PubMed]
  16. T. Delgado, J. M. Vadillo, and J. J. Laserna, “Pressure effects in laser-induced plasmas of trinitrotoluene and pyrene by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(1), 33–38 (2014).
    [Crossref] [PubMed]
  17. A. Kuwako, Y. Uchida, and K. Maeda, “Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 42(30), 6052–6056 (2003).
    [Crossref] [PubMed]
  18. S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
    [Crossref] [PubMed]
  19. J. I. Yun, T. Bundschuh, V. Neck, and J. I. Kim,, “Selective Determination of Europium(III) Oxide and Hydroxide Colloids in Aqueous Solution by Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 55(3), 273–278 (2001).
    [Crossref]
  20. Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation–laser induced fluorescence ☆,” Spectrochim. Acta B At. Spectrosc. 62(12), 1443–1447 (2007).
    [Crossref]
  21. H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
    [Crossref]
  22. X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, “Simultaneous and sensitive analysis of Ag (i), Mn (ii), and Cr (iii) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent,” J. Anal. At. Spectrom. 29(6), 1098–1104 (2014).
    [Crossref]
  23. J. Cortez and C. Pasquini, “Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy,” Anal. Chem. 85(3), 1547–1554 (2013).
    [Crossref] [PubMed]
  24. A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
    [Crossref] [PubMed]
  25. D. Alamelu, A. Sarkar, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution,” Talanta 77(1), 256–261 (2008).
    [Crossref] [PubMed]
  26. Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta B At. Spectrosc. 63(1), 64–68 (2008).
    [Crossref]
  27. D. Zhu, J. Chen, J. Lu, and X. Ni, “Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent,” Anal. Methods 4(3), 819–823 (2012).
    [Crossref]
  28. C. Chen, G. Niu, Q. Shi, Q. Lin, and Y. Duan, “Laser-induced breakdown spectroscopy technique for quantitative analysis of aqueous solution using matrix conversion based on plant fiber spunlaced nonwovens,” Appl. Opt. 54(28), 8318–8325 (2015).
    [Crossref] [PubMed]
  29. Y. Yu, W. Zhou, H. Qian, X. Su, and K. Ren, “Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate,” Plasma Sci. Technol. 16(7), 683–687 (2014).
    [Crossref]
  30. X. Wen, Q. Lin, G. Niu, Q. Shi, and Y. Duan, “Emission enhancement of laser-induced breakdown spectroscopy for aqueous sample analysis based on Au nanoparticles and solid-phase substrate,” Appl. Opt. 55(24), 6706–6712 (2016).
    [Crossref] [PubMed]
  31. Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface,” J. Anal. At. Spectrom. 23(6), 871–875 (2008).
    [Crossref]
  32. X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 24(12), 13410–13417 (2016).
    [Crossref] [PubMed]
  33. D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, “Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 113, 70–78 (2015).
    [Crossref]
  34. M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
    [Crossref]
  35. M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid-liquid microextraction for metals enrichment: a useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
    [Crossref] [PubMed]
  36. R. L. Vander Wal, T. M. Ticich, J. R. West, and P. A. Householder, “Trace metal detection by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53(10), 1226–1236 (1999).
    [Crossref]
  37. J. J. L. L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta B At. Spectrosc. 53(5), 723–730 (1998).
    [Crossref]
  38. E. C. Benck, “Plasma diagnostic techniques,” Phys. Today 19(9), 94–95 (1966).
    [Crossref]
  39. N. S. Tan Halid, R. Zainal, and Y. Mat Daud, “Estimation of Temperature and Electron Density in Stainless Steel Plasma Using Laser Induced Breakdown Spectroscopy,” Jurnal Teknologi 781–5 (2016).
  40. L. Caneve, F. Colao, R. Fantoni, and V. Spizzichino, “Laser ablation of copper based alloys by single and double pulse laser induced breakdown spectroscopy,” Appl. Phys., A Mater. Sci. Process. 85(2), 151–157 (2006).
    [Crossref]
  41. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55(10), 1297–1303 (2001).
    [Crossref]
  42. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta B At. Spectrosc. 63(2), 312–323 (2008).
    [Crossref]

2019 (2)

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

2018 (2)

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

2017 (1)

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (5)

D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, “Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 113, 70–78 (2015).
[Crossref]

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid-liquid microextraction for metals enrichment: a useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref] [PubMed]

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

C. Chen, G. Niu, Q. Shi, Q. Lin, and Y. Duan, “Laser-induced breakdown spectroscopy technique for quantitative analysis of aqueous solution using matrix conversion based on plant fiber spunlaced nonwovens,” Appl. Opt. 54(28), 8318–8325 (2015).
[Crossref] [PubMed]

X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, “Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy,” Anal. Chem. 87(11), 5577–5583 (2015).
[Crossref] [PubMed]

2014 (4)

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

T. Delgado, J. M. Vadillo, and J. J. Laserna, “Pressure effects in laser-induced plasmas of trinitrotoluene and pyrene by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(1), 33–38 (2014).
[Crossref] [PubMed]

Y. Yu, W. Zhou, H. Qian, X. Su, and K. Ren, “Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate,” Plasma Sci. Technol. 16(7), 683–687 (2014).
[Crossref]

X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, “Simultaneous and sensitive analysis of Ag (i), Mn (ii), and Cr (iii) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent,” J. Anal. At. Spectrom. 29(6), 1098–1104 (2014).
[Crossref]

2013 (3)

J. Cortez and C. Pasquini, “Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy,” Anal. Chem. 85(3), 1547–1554 (2013).
[Crossref] [PubMed]

M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, “Pyridine-2,6-diamine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples,” Int. J. Cosmet. Sci. 35(2), 176–182 (2013).
[Crossref] [PubMed]

2012 (1)

D. Zhu, J. Chen, J. Lu, and X. Ni, “Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent,” Anal. Methods 4(3), 819–823 (2012).
[Crossref]

2011 (1)

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

2009 (2)

A. H. Smith and C. M. Steinmaus, “Health effects of arsenic and chromium in drinking water: recent human findings,” Annu. Rev. Public Health 30(1), 107–122 (2009).
[Crossref] [PubMed]

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

2008 (5)

D. Alamelu, A. Sarkar, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution,” Talanta 77(1), 256–261 (2008).
[Crossref] [PubMed]

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta B At. Spectrosc. 63(1), 64–68 (2008).
[Crossref]

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface,” J. Anal. At. Spectrom. 23(6), 871–875 (2008).
[Crossref]

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta B At. Spectrosc. 63(2), 312–323 (2008).
[Crossref]

2007 (2)

J. O. Duruibe, M. Ogwuegbu, and J. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” Int. J. Phys. Sci. 2, 112–118 (2007).

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation–laser induced fluorescence ☆,” Spectrochim. Acta B At. Spectrosc. 62(12), 1443–1447 (2007).
[Crossref]

2006 (2)

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

L. Caneve, F. Colao, R. Fantoni, and V. Spizzichino, “Laser ablation of copper based alloys by single and double pulse laser induced breakdown spectroscopy,” Appl. Phys., A Mater. Sci. Process. 85(2), 151–157 (2006).
[Crossref]

2004 (1)

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19(9), 1061–1083 (2004).
[Crossref]

2003 (1)

2001 (3)

1999 (1)

1998 (1)

J. J. L. L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta B At. Spectrosc. 53(5), 723–730 (1998).
[Crossref]

1966 (1)

E. C. Benck, “Plasma diagnostic techniques,” Phys. Today 19(9), 94–95 (1966).
[Crossref]

Aggarwal, S. K.

D. Alamelu, A. Sarkar, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution,” Talanta 77(1), 256–261 (2008).
[Crossref] [PubMed]

Aguirre, M. A.

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid-liquid microextraction for metals enrichment: a useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref] [PubMed]

M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Alamelu, D.

D. Alamelu, A. Sarkar, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution,” Talanta 77(1), 256–261 (2008).
[Crossref] [PubMed]

Almodóvar, F.

M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Amini, M. M.

H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, “Pyridine-2,6-diamine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples,” Int. J. Cosmet. Sci. 35(2), 176–182 (2013).
[Crossref] [PubMed]

Angel, S. M.

Bae, D.

D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, “Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 113, 70–78 (2015).
[Crossref]

Benck, E. C.

E. C. Benck, “Plasma diagnostic techniques,” Phys. Today 19(9), 94–95 (1966).
[Crossref]

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Bundschuh, T.

Cabalin, J. J. L. L. M.

J. J. L. L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta B At. Spectrosc. 53(5), 723–730 (1998).
[Crossref]

Canals, A.

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid-liquid microextraction for metals enrichment: a useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref] [PubMed]

M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Caneve, L.

L. Caneve, F. Colao, R. Fantoni, and V. Spizzichino, “Laser ablation of copper based alloys by single and double pulse laser induced breakdown spectroscopy,” Appl. Phys., A Mater. Sci. Process. 85(2), 151–157 (2006).
[Crossref]

Chaker, M.

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Chen, C.

Chen, J.

D. Zhu, J. Chen, J. Lu, and X. Ni, “Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent,” Anal. Methods 4(3), 819–823 (2012).
[Crossref]

Chen, Z.

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface,” J. Anal. At. Spectrom. 23(6), 871–875 (2008).
[Crossref]

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta B At. Spectrosc. 63(1), 64–68 (2008).
[Crossref]

Cheng, X.

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Colao, F.

L. Caneve, F. Colao, R. Fantoni, and V. Spizzichino, “Laser ablation of copper based alloys by single and double pulse laser induced breakdown spectroscopy,” Appl. Phys., A Mater. Sci. Process. 85(2), 151–157 (2006).
[Crossref]

Correll, T.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19(9), 1061–1083 (2004).
[Crossref]

Cortez, J.

J. Cortez and C. Pasquini, “Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy,” Anal. Chem. 85(3), 1547–1554 (2013).
[Crossref] [PubMed]

Cristoforetti, G.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta B At. Spectrosc. 63(2), 312–323 (2008).
[Crossref]

Delgado, T.

Duan, Y.

X. Wen, Q. Lin, G. Niu, Q. Shi, and Y. Duan, “Emission enhancement of laser-induced breakdown spectroscopy for aqueous sample analysis based on Au nanoparticles and solid-phase substrate,” Appl. Opt. 55(24), 6706–6712 (2016).
[Crossref] [PubMed]

C. Chen, G. Niu, Q. Shi, Q. Lin, and Y. Duan, “Laser-induced breakdown spectroscopy technique for quantitative analysis of aqueous solution using matrix conversion based on plant fiber spunlaced nonwovens,” Appl. Opt. 54(28), 8318–8325 (2015).
[Crossref] [PubMed]

X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, “Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy,” Anal. Chem. 87(11), 5577–5583 (2015).
[Crossref] [PubMed]

X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, “Simultaneous and sensitive analysis of Ag (i), Mn (ii), and Cr (iii) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent,” J. Anal. At. Spectrom. 29(6), 1098–1104 (2014).
[Crossref]

Duruibe, J. O.

J. O. Duruibe, M. Ogwuegbu, and J. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” Int. J. Phys. Sci. 2, 112–118 (2007).

Ebrahimzadeh, H.

H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, “Pyridine-2,6-diamine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples,” Int. J. Cosmet. Sci. 35(2), 176–182 (2013).
[Crossref] [PubMed]

Egwurugwu, J.

J. O. Duruibe, M. Ogwuegbu, and J. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” Int. J. Phys. Sci. 2, 112–118 (2007).

Eland, K. L.

Fantoni, R.

L. Caneve, F. Colao, R. Fantoni, and V. Spizzichino, “Laser ablation of copper based alloys by single and double pulse laser induced breakdown spectroscopy,” Appl. Phys., A Mater. Sci. Process. 85(2), 151–157 (2006).
[Crossref]

Fedosejevs, R.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation–laser induced fluorescence ☆,” Spectrochim. Acta B At. Spectrosc. 62(12), 1443–1447 (2007).
[Crossref]

Fukami, K.

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

Garen, W.

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

Gibb, E.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19(9), 1061–1083 (2004).
[Crossref]

Gislum, R.

M. Knadel, Y. Peng, R. Gislum, and M. H. Greve, “Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination,” in 4th Global Workshop on Proximal Soil Sensing(2015).

Godwal, Y.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation–laser induced fluorescence ☆,” Spectrochim. Acta B At. Spectrosc. 62(12), 1443–1447 (2007).
[Crossref]

Gornushkin, I. B.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19(9), 1061–1083 (2004).
[Crossref]

Greve, M. H.

M. Knadel, Y. Peng, R. Gislum, and M. H. Greve, “Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination,” in 4th Global Workshop on Proximal Soil Sensing(2015).

Guo, L.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Guo, L. B.

Guo, Y.

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Han, S. C.

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

Han, S. H.

D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, “Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 113, 70–78 (2015).
[Crossref]

Hao, Z.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Hao, Z. Q.

Hidalgo, M.

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid-liquid microextraction for metals enrichment: a useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref] [PubMed]

M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Householder, P. A.

Kim, J. I.

Kim, T. H.

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

Knadel, M.

M. Knadel, Y. Peng, R. Gislum, and M. H. Greve, “Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination,” in 4th Global Workshop on Proximal Soil Sensing(2015).

Koch, S.

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

Koda, R.

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Kuwako, A.

Laserna, J. J.

T. Delgado, J. M. Vadillo, and J. J. Laserna, “Pressure effects in laser-induced plasmas of trinitrotoluene and pyrene by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(1), 33–38 (2014).
[Crossref] [PubMed]

J. J. L. L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta B At. Spectrosc. 53(5), 723–730 (1998).
[Crossref]

Laville, S.

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Lee, D. H.

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

Lee, Y.

D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, “Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 113, 70–78 (2015).
[Crossref]

Legnaioli, S.

M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta B At. Spectrosc. 63(2), 312–323 (2008).
[Crossref]

Li, C.

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Li, C. M.

Li, H.

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface,” J. Anal. At. Spectrom. 23(6), 871–875 (2008).
[Crossref]

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta B At. Spectrosc. 63(1), 64–68 (2008).
[Crossref]

Li, J.

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Li, J. M.

Li, K. H.

Li, R.

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface,” J. Anal. At. Spectrom. 23(6), 871–875 (2008).
[Crossref]

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta B At. Spectrosc. 63(1), 64–68 (2008).
[Crossref]

Li, X.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Li, X. Y.

Lin, Q.

X. Wen, Q. Lin, G. Niu, Q. Shi, and Y. Duan, “Emission enhancement of laser-induced breakdown spectroscopy for aqueous sample analysis based on Au nanoparticles and solid-phase substrate,” Appl. Opt. 55(24), 6706–6712 (2016).
[Crossref] [PubMed]

C. Chen, G. Niu, Q. Shi, Q. Lin, and Y. Duan, “Laser-induced breakdown spectroscopy technique for quantitative analysis of aqueous solution using matrix conversion based on plant fiber spunlaced nonwovens,” Appl. Opt. 54(28), 8318–8325 (2015).
[Crossref] [PubMed]

X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, “Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy,” Anal. Chem. 87(11), 5577–5583 (2015).
[Crossref] [PubMed]

X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, “Simultaneous and sensitive analysis of Ag (i), Mn (ii), and Cr (iii) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent,” J. Anal. At. Spectrom. 29(6), 1098–1104 (2014).
[Crossref]

Liu, M.

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta B At. Spectrosc. 63(1), 64–68 (2008).
[Crossref]

Loudyi, H.

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Lu, J.

D. Zhu, J. Chen, J. Lu, and X. Ni, “Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent,” Anal. Methods 4(3), 819–823 (2012).
[Crossref]

Lu, Y.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Lu, Y. F.

Lui, S. L.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation–laser induced fluorescence ☆,” Spectrochim. Acta B At. Spectrosc. 62(12), 1443–1447 (2007).
[Crossref]

Maeda, K.

Mat Daud, Y.

N. S. Tan Halid, R. Zainal, and Y. Mat Daud, “Estimation of Temperature and Electron Density in Stainless Steel Plasma Using Laser Induced Breakdown Spectroscopy,” Jurnal Teknologi 781–5 (2016).

Matsumoto, A.

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

Moazzen, E.

H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, “Pyridine-2,6-diamine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples,” Int. J. Cosmet. Sci. 35(2), 176–182 (2013).
[Crossref] [PubMed]

Mönch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Nam, S. H.

D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, “Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 113, 70–78 (2015).
[Crossref]

Neck, V.

Neu, W.

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

Ni, X.

D. Zhu, J. Chen, J. Lu, and X. Ni, “Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent,” Anal. Methods 4(3), 819–823 (2012).
[Crossref]

Nishi, N.

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

Niu, G.

Noll, R.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Ogata, Y. H.

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

Ogwuegbu, M.

J. O. Duruibe, M. Ogwuegbu, and J. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” Int. J. Phys. Sci. 2, 112–118 (2007).

Omenetto, N.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19(9), 1061–1083 (2004).
[Crossref]

Palleschi, V.

M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta B At. Spectrosc. 63(2), 312–323 (2008).
[Crossref]

Pasquini, C.

J. Cortez and C. Pasquini, “Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy,” Anal. Chem. 85(3), 1547–1554 (2013).
[Crossref] [PubMed]

Peng, Y.

M. Knadel, Y. Peng, R. Gislum, and M. H. Greve, “Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination,” in 4th Global Workshop on Proximal Soil Sensing(2015).

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Qian, H.

Y. Yu, W. Zhou, H. Qian, X. Su, and K. Ren, “Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate,” Plasma Sci. Technol. 16(7), 683–687 (2014).
[Crossref]

Ren, K.

Y. Yu, W. Zhou, H. Qian, X. Su, and K. Ren, “Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate,” Plasma Sci. Technol. 16(7), 683–687 (2014).
[Crossref]

Reuter, R.

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

Rifaï, K.

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Sabsabi, M.

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Sadeghi, O.

H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, “Pyridine-2,6-diamine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples,” Int. J. Cosmet. Sci. 35(2), 176–182 (2013).
[Crossref] [PubMed]

Sakka, T.

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

Salvetti, A.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta B At. Spectrosc. 63(2), 312–323 (2008).
[Crossref]

Sarkar, A.

D. Alamelu, A. Sarkar, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution,” Talanta 77(1), 256–261 (2008).
[Crossref] [PubMed]

Selva, E. J.

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid-liquid microextraction for metals enrichment: a useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref] [PubMed]

Shen, M.

X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy,” Opt. Express 24(12), 13410–13417 (2016).
[Crossref] [PubMed]

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Shi, L.

X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, “Simultaneous and sensitive analysis of Ag (i), Mn (ii), and Cr (iii) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent,” J. Anal. At. Spectrom. 29(6), 1098–1104 (2014).
[Crossref]

Shi, Q.

Smith, A. H.

A. H. Smith and C. M. Steinmaus, “Health effects of arsenic and chromium in drinking water: recent human findings,” Annu. Rev. Public Health 30(1), 107–122 (2009).
[Crossref] [PubMed]

Smith, B. W.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19(9), 1061–1083 (2004).
[Crossref]

Spizzichino, V.

L. Caneve, F. Colao, R. Fantoni, and V. Spizzichino, “Laser ablation of copper based alloys by single and double pulse laser induced breakdown spectroscopy,” Appl. Phys., A Mater. Sci. Process. 85(2), 151–157 (2006).
[Crossref]

Steinmaus, C. M.

A. H. Smith and C. M. Steinmaus, “Health effects of arsenic and chromium in drinking water: recent human findings,” Annu. Rev. Public Health 30(1), 107–122 (2009).
[Crossref] [PubMed]

Stratis, D. N.

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Su, X.

Y. Yu, W. Zhou, H. Qian, X. Su, and K. Ren, “Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate,” Plasma Sci. Technol. 16(7), 683–687 (2014).
[Crossref]

Tamura, A.

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

Tan Halid, N. S.

N. S. Tan Halid, R. Zainal, and Y. Mat Daud, “Estimation of Temperature and Electron Density in Stainless Steel Plasma Using Laser Induced Breakdown Spectroscopy,” Jurnal Teknologi 781–5 (2016).

Tang, S.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

Tang, Y.

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

Taschuk, M. T.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation–laser induced fluorescence ☆,” Spectrochim. Acta B At. Spectrosc. 62(12), 1443–1447 (2007).
[Crossref]

Thornton, B.

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

Ticich, T. M.

Tognoni, E.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta B At. Spectrosc. 63(2), 312–323 (2008).
[Crossref]

Tsui, Y. Y.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation–laser induced fluorescence ☆,” Spectrochim. Acta B At. Spectrosc. 62(12), 1443–1447 (2007).
[Crossref]

Uchida, Y.

Vadillo, J. M.

Vander Wal, R. L.

Vidal, F.

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Wang, X.

X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, “Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy,” Anal. Chem. 87(11), 5577–5583 (2015).
[Crossref] [PubMed]

X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, “Simultaneous and sensitive analysis of Ag (i), Mn (ii), and Cr (iii) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent,” J. Anal. At. Spectrom. 29(6), 1098–1104 (2014).
[Crossref]

Wei, Y.

X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, “Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy,” Anal. Chem. 87(11), 5577–5583 (2015).
[Crossref] [PubMed]

Wen, X.

West, J. R.

Winefordner, J. D.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19(9), 1061–1083 (2004).
[Crossref]

Yang, P.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

Yang, X.

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Yang, X. Y.

Yi, R.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Yi, R. X.

Yoo, J.

D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, “Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 113, 70–78 (2015).
[Crossref]

Yu, H.

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

Yu, Y.

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

Y. Yu, W. Zhou, H. Qian, X. Su, and K. Ren, “Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate,” Plasma Sci. Technol. 16(7), 683–687 (2014).
[Crossref]

Yuan, R.

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

Yun, J. I.

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

J. I. Yun, T. Bundschuh, V. Neck, and J. I. Kim,, “Selective Determination of Europium(III) Oxide and Hydroxide Colloids in Aqueous Solution by Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 55(3), 273–278 (2001).
[Crossref]

Zainal, R.

N. S. Tan Halid, R. Zainal, and Y. Mat Daud, “Estimation of Temperature and Electron Density in Stainless Steel Plasma Using Laser Induced Breakdown Spectroscopy,” Jurnal Teknologi 781–5 (2016).

Zeng, X.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Zeng, X. Y.

Zhang, J.

X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, “Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy,” Anal. Chem. 87(11), 5577–5583 (2015).
[Crossref] [PubMed]

Zhang, W.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

Zhao, F.

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface,” J. Anal. At. Spectrom. 23(6), 871–875 (2008).
[Crossref]

Zhao, N.

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Zhou, R.

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Zhou, W.

Y. Yu, W. Zhou, H. Qian, X. Su, and K. Ren, “Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate,” Plasma Sci. Technol. 16(7), 683–687 (2014).
[Crossref]

Zhu, D.

D. Zhu, J. Chen, J. Lu, and X. Ni, “Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent,” Anal. Methods 4(3), 819–823 (2012).
[Crossref]

Zhu, X.

X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, “Simultaneous and sensitive analysis of Ag (i), Mn (ii), and Cr (iii) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent,” J. Anal. At. Spectrom. 29(6), 1098–1104 (2014).
[Crossref]

Zhu, Z.

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

Zou, X.

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Anal. Bioanal. Chem. (1)

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

Anal. Chem. (7)

J. Cortez and C. Pasquini, “Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy,” Anal. Chem. 85(3), 1547–1554 (2013).
[Crossref] [PubMed]

A. Matsumoto, A. Tamura, R. Koda, K. Fukami, Y. H. Ogata, N. Nishi, B. Thornton, and T. Sakka, “On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential,” Anal. Chem. 87(3), 1655–1661 (2015).
[Crossref] [PubMed]

J. Li, Z. Zhu, R. Zhou, N. Zhao, R. Yi, X. Yang, X. Li, L. Guo, X. Zeng, and Y. Lu, “Determination of carbon content in steels using laser-induced breakdown spectroscopy assisted with laser-induced radical fluorescence,” Anal. Chem. 89(15), 8134–8139 (2017).
[Crossref] [PubMed]

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80(6), 1995–2000 (2008).
[Crossref] [PubMed]

X. Wang, Y. Wei, Q. Lin, J. Zhang, and Y. Duan, “Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy,” Anal. Chem. 87(11), 5577–5583 (2015).
[Crossref] [PubMed]

R. Yi, X. Yang, R. Zhou, J. Li, H. Yu, Z. Hao, L. Guo, X. Li, Y. Lu, and X. Zeng, “Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method,” Anal. Chem. 90(11), 7080–7085 (2018).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

R. Yuan, Y. Tang, Z. Zhu, Z. Hao, J. Li, H. Yu, Y. Yu, L. Guo, X. Zeng, and Y. Lu, “Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration,” Anal. Chim. Acta 1064, 11–16 (2019).
[Crossref] [PubMed]

Anal. Methods (1)

D. Zhu, J. Chen, J. Lu, and X. Ni, “Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent,” Anal. Methods 4(3), 819–823 (2012).
[Crossref]

Annu. Rev. Public Health (1)

A. H. Smith and C. M. Steinmaus, “Health effects of arsenic and chromium in drinking water: recent human findings,” Annu. Rev. Public Health 30(1), 107–122 (2009).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys., A Mater. Sci. Process. (1)

L. Caneve, F. Colao, R. Fantoni, and V. Spizzichino, “Laser ablation of copper based alloys by single and double pulse laser induced breakdown spectroscopy,” Appl. Phys., A Mater. Sci. Process. 85(2), 151–157 (2006).
[Crossref]

Appl. Spectrosc. (4)

Food Chem. (1)

P. Yang, R. Zhou, W. Zhang, R. Yi, S. Tang, L. Guo, Z. Hao, X. Li, Y. Lu, and X. Zeng, “High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy,” Food Chem. 272, 323–328 (2019).
[Crossref] [PubMed]

Int. J. Cosmet. Sci. (1)

H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, “Pyridine-2,6-diamine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples,” Int. J. Cosmet. Sci. 35(2), 176–182 (2013).
[Crossref] [PubMed]

Int. J. Phys. Sci. (1)

J. O. Duruibe, M. Ogwuegbu, and J. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” Int. J. Phys. Sci. 2, 112–118 (2007).

J. Anal. At. Spectrom. (6)

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Z. Zhu, J. Li, Y. Guo, X. Cheng, Y. Tang, L. Guo, X. Li, Y. Lu, and X. Zeng, “Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 205–209 (2018).
[Crossref]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19(9), 1061–1083 (2004).
[Crossref]

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

X. Wang, L. Shi, Q. Lin, X. Zhu, and Y. Duan, “Simultaneous and sensitive analysis of Ag (i), Mn (ii), and Cr (iii) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent,” J. Anal. At. Spectrom. 29(6), 1098–1104 (2014).
[Crossref]

Z. Chen, H. Li, F. Zhao, and R. Li, “Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface,” J. Anal. At. Spectrom. 23(6), 871–875 (2008).
[Crossref]

Jurnal Teknologi (1)

N. S. Tan Halid, R. Zainal, and Y. Mat Daud, “Estimation of Temperature and Electron Density in Stainless Steel Plasma Using Laser Induced Breakdown Spectroscopy,” Jurnal Teknologi 781–5 (2016).

Opt. Express (1)

Phys. Today (1)

E. C. Benck, “Plasma diagnostic techniques,” Phys. Today 19(9), 94–95 (1966).
[Crossref]

Plasma Sci. Technol. (1)

Y. Yu, W. Zhou, H. Qian, X. Su, and K. Ren, “Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate,” Plasma Sci. Technol. 16(7), 683–687 (2014).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (7)

D. Bae, S. H. Nam, S. H. Han, J. Yoo, and Y. Lee, “Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 113, 70–78 (2015).
[Crossref]

M. A. Aguirre, S. Legnaioli, F. Almodóvar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Z. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta B At. Spectrosc. 63(1), 64–68 (2008).
[Crossref]

J. J. L. L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochim. Acta B At. Spectrosc. 53(5), 723–730 (1998).
[Crossref]

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation–laser induced fluorescence ☆,” Spectrochim. Acta B At. Spectrosc. 62(12), 1443–1447 (2007).
[Crossref]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy,” Spectrochim. Acta B At. Spectrosc. 63(2), 312–323 (2008).
[Crossref]

Talanta (2)

D. Alamelu, A. Sarkar, and S. K. Aggarwal, “Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution,” Talanta 77(1), 256–261 (2008).
[Crossref] [PubMed]

M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, “Dispersive liquid-liquid microextraction for metals enrichment: a useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis,” Talanta 131, 348–353 (2015).
[Crossref] [PubMed]

Other (1)

M. Knadel, Y. Peng, R. Gislum, and M. H. Greve, “Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination,” in 4th Global Workshop on Proximal Soil Sensing(2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 The sample pretreatment procedures.
Fig. 3
Fig. 3 Emission spectral intensity of Cr I 425.43 nm (a, 0.6 mg/L Cr of CrCl3) and 405.78 nm (b, 0.6 mg/L Pb of Pb(NO3)2) prepared on Zn, Mg, Ni, and Si substrates.
Fig. 4
Fig. 4 Calibration curves of Cr I 425.43 nm (a) and Pb I 405.78 nm (b) for Zn, Mg, Ni, and Si substrates.
Fig. 5
Fig. 5 The relationship between the LoDs of Cr I 425.43 nm (a) and Pb I 405.78 nm (b) obtained on different substrates and the boiling point.
Fig. 6
Fig. 6 The relationship between the boiling point and plasma excitation temperature (0.6 mg/L Cr of CrCl3).
Fig. 7
Fig. 7 The relationship between the boiling point and Δ λ 1/2 (∝ electron density, 0.6 mg/L Cr of CrCl3).

Tables (4)

Tables Icon

Table 1 Boiling points of the substrates in this work [37].

Tables Icon

Table 2 Concentrations of Cr and Pb in an aqueous solution.

Tables Icon

Table 3 Comparison of LoDs, RSDs, and RMSECVs for the Cr and Pb elements on different substrates.

Tables Icon

Table 4 A comparison of the LoD values of the present work and other reported works.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ln I mn g m A mn = 1 k B T E m +ln F C S U S (T) ,
Δ λ 1/2 ( A )=2W( N e 10 16 ) N e λ 1/2 ,

Metrics