Abstract

A second-order nonlinearity was induced in silica fibers poled by exposure to ultraviolet (UV) radiation and simultaneous high voltage applied to internal electrodes. The UV light source was a tubular lamp with spectral peak at 254 nm. The highest second-order nonlinear coefficient measured through the linear electro-optic effect was 0.062 pm/V. The erasure of the recorded voltage with UV excitation was studied, and the stability of the poled fiber at a temperature exceeding ~400 K was investigated. By eliminating the use of a focused laser beam as excitation source, the technique enables poling many pieces of fiber in parallel.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical creation and erasure of the linear electrooptical effect in silica fiber

Alexandre R. Camara, João M. B. Pereira, Oleksandr Tarasenko, Walter Margulis, and Isabel C. S. Carvalho
Opt. Express 23(14) 18060-18069 (2015)

200-m optical fiber with an integrated electrode and its poling

Kenneth Lee, Peifang Hu, Justin L. Blows, David Thorncraft, and John Baxter
Opt. Lett. 29(18) 2124-2126 (2004)

Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes

Niklas Myrén, Håkan Olsson, Lars Norin, Niclas Sjödin, Per Helander, Jan Svennebrink, and Walter Margulis
Opt. Express 12(25) 6093-6099 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [Crossref] [PubMed]
  2. X. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
    [Crossref]
  3. S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
    [Crossref]
  4. P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14(11), 3170–3179 (1997).
    [Crossref]
  5. P. S. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31(1), 62–63 (1995).
    [Crossref]
  6. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34(16), 2483–2485 (2009).
    [Crossref] [PubMed]
  7. P. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30(16), 1345–1347 (1994).
    [Crossref]
  8. K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
    [Crossref] [PubMed]
  9. W. Q. Zhang, S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Lead silicate microstructured optical fibres for electro-optical applications,” Opt. Express 21(25), 31309–31317 (2013).
    [Crossref] [PubMed]
  10. M.-V. Bergot, M. C. Farries, M. E. Fermann, L. Li, L. J. Poyntz-Wright, P. St. J. Russell, and A. Smithson, “Generation of permanent optically induced second-order nonlinearities in optical fibers by poling,” Opt. Lett. 13(7), 592–594 (1988).
    [Crossref] [PubMed]
  11. A. R. Camara, J. M. B. Pereira, O. Tarasenko, W. Margulis, and I. C. S. Carvalho, “Optical creation and erasure of the linear electrooptical effect in silica fiber,” Opt. Express 23(14), 18060–18069 (2015).
    [Crossref] [PubMed]
  12. T. Fujiwara, T. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
    [Crossref]
  13. C. Corbari, P. G. Kazansky, S. A. Slattery, and D. N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86(7), 071106 (2005).
    [Crossref]
  14. Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
    [Crossref]
  15. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express 12(25), 6093–6099 (2004).
    [Crossref] [PubMed]
  16. M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
    [Crossref] [PubMed]
  17. O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett. 32(11), 1356–1358 (2007).
    [Crossref] [PubMed]
  18. A. C. Liu, J. F. Digonnet, and G. S. Kino, “Measurement of the dc Kerr and electrostrictive phase modulation in silica,” J. Opt. Soc. Am. B 18(2), 187–194 (2001).
    [Crossref]
  19. W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009).
    [Crossref] [PubMed]
  20. O. Tarasenko and W. Margulis, “The effect of the electrode curvature on the field in internal electrode fibers,” IEEE Photonics Technol. Lett. 27(20), 2131–2133 (2015).
    [Crossref]
  21. F. Ouellette, K. O. Hill, and D. C. Johnson, “Light-induced erasure of self-organized χ((2)) gratings in optical fibers,” Opt. Lett. 13(6), 515–517 (1988).
    [Crossref] [PubMed]
  22. A. Krotkus and W. Margulis, “Investigations of the preparation process for efficient second-harmonic generation in optical fibers,” Appl. Phys. Lett. 52(23), 1942–1944 (1988).
    [Crossref]
  23. A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
    [Crossref]
  24. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
    [Crossref]
  25. P. Gouvêa and W. Margulis, “Annealing experiments in frequency-doubling fibers,” J. Opt. Soc. Am. B 11(8), 1515–1518 (1994).
    [Crossref]
  26. D. Wong, W. Xu, S. C. Fleming, R. S. Hall, and M. Janos, “Recent results with thermal poling of fibre,” Proc. SPIE 3542, 120–123 (1998).
    [Crossref]

2015 (2)

A. R. Camara, J. M. B. Pereira, O. Tarasenko, W. Margulis, and I. C. S. Carvalho, “Optical creation and erasure of the linear electrooptical effect in silica fiber,” Opt. Express 23(14), 18060–18069 (2015).
[Crossref] [PubMed]

O. Tarasenko and W. Margulis, “The effect of the electrode curvature on the field in internal electrode fibers,” IEEE Photonics Technol. Lett. 27(20), 2131–2133 (2015).
[Crossref]

2013 (1)

2011 (1)

2009 (2)

2008 (1)

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[Crossref]

2007 (1)

2005 (1)

C. Corbari, P. G. Kazansky, S. A. Slattery, and D. N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86(7), 071106 (2005).
[Crossref]

2004 (1)

2002 (1)

2001 (1)

2000 (1)

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

1998 (2)

D. Wong, W. Xu, S. C. Fleming, R. S. Hall, and M. Janos, “Recent results with thermal poling of fibre,” Proc. SPIE 3542, 120–123 (1998).
[Crossref]

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

1997 (1)

1996 (1)

X. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

1995 (2)

P. S. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31(1), 62–63 (1995).
[Crossref]

T. Fujiwara, T. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

1994 (3)

P. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30(16), 1345–1347 (1994).
[Crossref]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

P. Gouvêa and W. Margulis, “Annealing experiments in frequency-doubling fibers,” J. Opt. Soc. Am. B 11(8), 1515–1518 (1994).
[Crossref]

1991 (1)

1988 (3)

Albert, J.

An, H.

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[Crossref]

Bayon, J.

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Bergot, M.-V.

Berlemont, D.

Bernage, P.

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Blanchetiere, C.

Brueck, S. R. J.

X. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[Crossref] [PubMed]

Callender, C. L.

Camara, A. R.

Canagasabey, A.

Carvalho, I. C. S.

Claesson, A.

Corbari, C.

Delevaque, E.

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Dianov, E. M.

Digonnet, J. F.

Dong, L.

P. S. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31(1), 62–63 (1995).
[Crossref]

P. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30(16), 1345–1347 (1994).
[Crossref]

Douay, M.

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Ebendorff-Heidepriem, H.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Farries, M. C.

Fermann, M. E.

Fleming, S.

T. Fujiwara, T. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Fleming, S. C.

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[Crossref]

D. Wong, W. Xu, S. C. Fleming, R. S. Hall, and M. Janos, “Recent results with thermal poling of fibre,” Proc. SPIE 3542, 120–123 (1998).
[Crossref]

Fokine, M.

Fujiwara, T.

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

T. Fujiwara, T. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Gladyshev, A. V.

Gouvêa, P.

Guillemet, S.

Hall, R. S.

D. Wong, W. Xu, S. C. Fleming, R. S. Hall, and M. Janos, “Recent results with thermal poling of fibre,” Proc. SPIE 3542, 120–123 (1998).
[Crossref]

Helander, P.

Hernandez, Y.

Hill, K. O.

Ibsen, M.

Ikushima, A. J.

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

Jacob, S.

Janos, M.

D. Wong, W. Xu, S. C. Fleming, R. S. Hall, and M. Janos, “Recent results with thermal poling of fibre,” Proc. SPIE 3542, 120–123 (1998).
[Crossref]

Johnson, D. C.

Kazansky, P.

P. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30(16), 1345–1347 (1994).
[Crossref]

Kazansky, P. G.

Kazansky, P. S.

P. S. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31(1), 62–63 (1995).
[Crossref]

Kino, G. S.

Kjellberg, L.

Kosolapov, A.

Krotkus, A.

A. Krotkus and W. Margulis, “Investigations of the preparation process for efficient second-harmonic generation in optical fibers,” Appl. Phys. Lett. 52(23), 1942–1944 (1988).
[Crossref]

Krummenacher, L.

Ledderhof, C.

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Li, L.

Liegeois, F.

Liu, A. C.

Loisel, B.

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Long, X.

X. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

Manning, S.

Margulis, W.

A. R. Camara, J. M. B. Pereira, O. Tarasenko, W. Margulis, and I. C. S. Carvalho, “Optical creation and erasure of the linear electrooptical effect in silica fiber,” Opt. Express 23(14), 18060–18069 (2015).
[Crossref] [PubMed]

O. Tarasenko and W. Margulis, “The effect of the electrode curvature on the field in internal electrode fibers,” IEEE Photonics Technol. Lett. 27(20), 2131–2133 (2015).
[Crossref]

W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009).
[Crossref] [PubMed]

O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett. 32(11), 1356–1358 (2007).
[Crossref] [PubMed]

N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express 12(25), 6093–6099 (2004).
[Crossref] [PubMed]

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
[Crossref] [PubMed]

P. Gouvêa and W. Margulis, “Annealing experiments in frequency-doubling fibers,” J. Opt. Soc. Am. B 11(8), 1515–1518 (1994).
[Crossref]

A. Krotkus and W. Margulis, “Investigations of the preparation process for efficient second-harmonic generation in optical fibers,” Appl. Phys. Lett. 52(23), 1942–1944 (1988).
[Crossref]

Martinelli, G.

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Monro, T. M.

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Mukherjee, N.

Myers, R. A.

X. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[Crossref] [PubMed]

Myrén, N.

Niay, P.

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Nikogosyan, D. N.

C. Corbari, P. G. Kazansky, S. A. Slattery, and D. N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86(7), 071106 (2005).
[Crossref]

Nilsson, L. E.

Norin, L.

Olsson, H.

Ouellette, F.

Pannell, C. N.

P. S. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31(1), 62–63 (1995).
[Crossref]

Pereira, J. M. B.

Poignant, H.

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Poole, S.

T. Fujiwara, T. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Poyntz-Wright, L. J.

Pruneri, V.

Quiquempois, Y.

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Russell, P. St. J.

P. S. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31(1), 62–63 (1995).
[Crossref]

P. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30(16), 1345–1347 (1994).
[Crossref]

M.-V. Bergot, M. C. Farries, M. E. Fermann, L. Li, L. J. Poyntz-Wright, P. St. J. Russell, and A. Smithson, “Generation of permanent optically induced second-order nonlinearities in optical fibers by poling,” Opt. Lett. 13(7), 592–594 (1988).
[Crossref] [PubMed]

Saito, K.

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

Sceats, M.

T. Fujiwara, T. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Sjödin, N.

Slattery, S. A.

C. Corbari, P. G. Kazansky, S. A. Slattery, and D. N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86(7), 071106 (2005).
[Crossref]

Smelser, C. W.

Smithson, A.

Svennebrink, J.

Tarasenko, O.

Wong, D.

D. Wong, W. Xu, S. C. Fleming, R. S. Hall, and M. Janos, “Recent results with thermal poling of fibre,” Proc. SPIE 3542, 120–123 (1998).
[Crossref]

Wong, T.

T. Fujiwara, T. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Xu, W.

D. Wong, W. Xu, S. C. Fleming, R. S. Hall, and M. Janos, “Recent results with thermal poling of fibre,” Proc. SPIE 3542, 120–123 (1998).
[Crossref]

Yadav, K.

Yashkov, M. V.

Zhang, W. Q.

Zhao, Y.

T. Fujiwara, T. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Appl. Phys. Lett. (2)

C. Corbari, P. G. Kazansky, S. A. Slattery, and D. N. Nikogosyan, “Ultraviolet poling of pure fused silica by high-intensity femtosecond radiation,” Appl. Phys. Lett. 86(7), 071106 (2005).
[Crossref]

A. Krotkus and W. Margulis, “Investigations of the preparation process for efficient second-harmonic generation in optical fibers,” Appl. Phys. Lett. 52(23), 1942–1944 (1988).
[Crossref]

Electron. Lett. (3)

P. S. Kazansky, P. St. J. Russell, L. Dong, and C. N. Pannell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31(1), 62–63 (1995).
[Crossref]

P. Kazansky, L. Dong, and P. St. J. Russell, “Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibres,” Electron. Lett. 30(16), 1345–1347 (1994).
[Crossref]

T. Fujiwara, T. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (2)

X. Long, R. A. Myers, and S. R. J. Brueck, “A poled electrooptic fiber,” IEEE Photonics Technol. Lett. 8(2), 227–229 (1996).
[Crossref]

O. Tarasenko and W. Margulis, “The effect of the electrode curvature on the field in internal electrode fibers,” IEEE Photonics Technol. Lett. 27(20), 2131–2133 (2015).
[Crossref]

J. Appl. Phys. (2)

A. J. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” J. Appl. Phys. 88(3), 1201–1213 (2000).
[Crossref]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

J. Ceram. Soc. Jpn. (1)

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Express (5)

Opt. Lett. (6)

Opt. Mater. (1)

Y. Quiquempois, G. Martinelli, P. Bernage, M. Douay, P. Niay, E. Delevaque, H. Poignant, B. Loisel, and J. Bayon, “Study of organized χ(2) susceptibility in germanosilicate optical fibers,” Opt. Mater. 9(1–4), 361–367 (1998).
[Crossref]

Proc. SPIE (1)

D. Wong, W. Xu, S. C. Fleming, R. S. Hall, and M. Janos, “Recent results with thermal poling of fibre,” Proc. SPIE 3542, 120–123 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) Microscope image showing cross-section of fiber used for UV poling. b) Experimental setup to pole (with DC) and to characterize (with pulses) the active fiber.
Fig. 2
Fig. 2 a) Oscilloscope traces showing the pulsed voltage applied to the active device (red), and the photodetector signal (blue). b) Best fit (red) of Eq. (5) to the experimental data points from the photodetector signal (blue).
Fig. 3
Fig. 3 a) Two-dimensional map of the electric potential in the fiber used, when biased to 5 kV. The black solid line indicates the potential along the x-axis on the scale shown on the right-hand side of the plot. The dimensions of the fiber are given in microns. b) 2D map of the x-component of the electric field when the fiber is biased to 5 kV. The black solid line shows the field amplitude along the x-axis.
Fig. 4
Fig. 4 Amplitude of optical signal switched by Sagnac interferometer when voltage pulses are applied to a piece of fiber poled with 5 kV DC for 64 minutes. The solid (red) curve is the best fit to the data using Eq. (5).
Fig. 5
Fig. 5 a) Second-order nonlinearity evolution with UV-poling at 7 kV. The graphic in the inset shows the complete evaluation of χ(2) after 128 minutes of poling. b) χ(2) dependence on voltage for 64 minutes of poling time. The (red) curve represents the best linear fit.
Fig. 6
Fig. 6 Photodetector intensity decay in a UV erasure.
Fig. 7
Fig. 7 a) Time dependence of the optical signal measured for different temperatures; on the right axis of the graph, for comparison, is the associated χ(2) value in fm/V. b) χ(2) time dependence for a fiber treated at 130°C, the χ(2) determination is performed at room temperature.

Tables (1)

Tables Icon

Table 1 Second-order nonlinear coefficient calculated with different poling voltages, and time.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ(E)=2πn(E)L/λ,
n(E)= n 0 + χ (2) n 0 E+ 3 χ (3) 2 n 0 E 2 +,
φ(E)= φ 0 + 3πL χ (3) n 0 λ E 2 ,with: φ 0 = 2πL λ n 0 .
I out = I in { 1+cos[ Δφ(E) ] }.
I out I in =1+cos[ 3πL χ (3) n 0 λ ( V rec + V app d ) 2 φ 0 ' ],
χ (2) =3 χ (3) V rec /d.

Metrics