Abstract

We experimentally demonstrate a novel liquid crystal on silicon (LCoS)-based programmable spectral processor, including two cascaded photonic configurations, to realize the state of polarization (SOP) manipulation in the spatial and spectral domain. As the final SOP at each wavelength is linear polarization with a manageable polarization direction, a broadband linear polarizer is used to filter the undesired wavelengths. The polarization manipulation only needs to be implemented along the dispersion direction with a 1D-LCoS. The programmable spectral processor can experimentally reach an intensity modulation depth of 46.4 dB with less than 1 dB polarization-dependent loss (PDL). Moreover, arbitrary power spectral distribution can be obtained with around 40 dB channel isolation. In particular, our experimental results verify that the proposed setup can achieve the adjustable central wavelength and tunable filtering at a resolution of 0.08 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband polarization correction with programmable liquid-crystal modulator arrays

M. Akbulut, R. Nelson, A. M. Weiner, P. Cronin, and P. J. Miller
Opt. Lett. 29(10) 1129-1131 (2004)

Programmable optical parallel processor based upon polarization modulation: cascade operations

Masashi Hashimoto, Ken-ichi Kitayama, and Naohisa Mukohzaka
Appl. Opt. 28(20) 4305-4312 (1989)

Influence of the incident angle in the performance of Liquid Crystal on Silicon displays

A. Lizana, N. Martin, M. Estapé, E. Fernández, I. Moreno, A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel
Opt. Express 17(10) 8491-8505 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. Rudnick, A. Tolmachev, D. Sinefeld, O. Golani, S. Ben-Ezra, M. Nazarathy, and D. M. Marom, “Sub-GHz resolution photonic spectral processor and its system applications,” J. Lightwave Technol. 35(11), 2218–2226 (2017).
    [Crossref]
  2. K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightwave Technol. 35(4), 596–606 (2017).
    [Crossref]
  3. K. Sorimoto, K. Tanizawa, H. Uetsuka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, and H. Tsuda, “Compact and phase-error-robust multilayered AWG-based wavelength selective switch driven by a single LCOS,” Opt. Express 21(14), 17131–17149 (2013).
    [Crossref] [PubMed]
  4. H. Hu, D. Kong, E. Palushani, M. Galili, H. C. H. Mulvad, and L. K. Oxenløwe, “320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT,” Opt. Express 22(1), 110–118 (2014).
    [Crossref] [PubMed]
  5. J. Pupeikis, N. Bigler, S. Hrisafov, C. R. Phillips, and U. Keller, “Programmable pulse shaping for time-gated amplifiers,” Opt. Express 27(1), 175–184 (2019).
    [Crossref] [PubMed]
  6. X. Wang and N. Wada, “Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application,” Opt. Express 15(12), 7319–7326 (2007).
    [Crossref] [PubMed]
  7. T. Yeminy, D. Sadot, and Z. Zalevsky, “Spectral and temporal stealthy fiber-optic communication using sampling and phase encoding,” Opt. Express 19(21), 20182–20198 (2011).
    [Crossref] [PubMed]
  8. D. Sinefeld, C. R. Doerr, and D. M. Marom, “A photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” Opt. Express 19(15), 14532–14541 (2011).
    [Crossref] [PubMed]
  9. E. Wohlgemuth, Y. Yoffe, T. Yeminy, Z. Zalevsky, and D. Sadot, “Demonstration of coherent stealthy and encrypted transmission for data center interconnection,” Opt. Express 26(6), 7638–7645 (2018).
    [Crossref] [PubMed]
  10. D. M. Marom, P. D. Colbourne, A. D’Errico, N. K. Fontaine, Y. Ikuma, R. Proietti, L. Zong, J. M. Rivas-Moscoso, and I. Tomkos, “Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking,” J. Opt. Commun. Netw. 9(1), 1–26 (2017).
    [Crossref]
  11. H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches,” Opt. Express 24(11), 12240–12253 (2016).
    [Crossref] [PubMed]
  12. N. Goldshtein, D. Sinefeld, O. Golani, R. Rudnick, L. Pascar, R. Zektzer, and D. M. Marom, “Fine resolution photonic spectral processor using a waveguide grating router with permanent phase trimming,” J. Lightwave Technol. 34(2), 379–385 (2016).
    [Crossref]
  13. S. Asraf, T. Yeminy, D. Sadot, and Z. Zalevsky, “Proof of concept for ultrahigh resolution photonic spectral processor,” Opt. Express 26(19), 25013–25019 (2018).
    [Crossref] [PubMed]
  14. D. Sinefeld, S. Ben-Ezra, and D. M. Marom, “Nyquist-WDM filter shaping with a high-resolution colorless photonic spectral processor,” Opt. Lett. 38(17), 3268–3271 (2013).
    [Crossref] [PubMed]
  15. E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express 20(16), 17843–17855 (2012).
    [Crossref] [PubMed]
  16. S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength welective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference,(Optical Society of America, 2011), paper OTuM3.
  17. R. Rudnick, L. Pascar, B. Frenkel, and D. M. Marom, “Polarization diverse fine resolution photonic spectral processor,” in Optical Fiber Communication Conference and Exhibition (IEEE, 2016), paper W1E.4.
    [Crossref]
  18. D. Sinefeld and D. M. Marom, “Insertion loss and crosstalk analysis of a fiber switch based on a pixelized phase modulator,” J. Lightwave Technol. 29(1), 69–77 (2011).
    [Crossref]
  19. T. Lu, M. Pivnenko, B. Robertson, and D. Chu, “Pixel-level fringing-effect model to describe the phase profile and diffraction efficiency of a liquid crystal on silicon device,” Appl. Opt. 54(19), 5903–5910 (2015).
    [Crossref] [PubMed]
  20. Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
    [Crossref]
  21. M. Nakajima, K. Suzuki, K. Seno, T. Goh, R. Kasahara, M. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Optical Fiber Communication Conference and Exhibition, (IEEE, 2018), paper W1E.2.
    [Crossref]
  22. M. Nakajima, K. Suzuki, K. Yamaguchi, H. Ono, T. Goh, M. I. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Multilane photonic spectral processor integrated in a spatial and planar optical circuit for a space-division multiplexing network,” J. Lightwave Technol. 36(2), 309–317 (2018).
    [Crossref]
  23. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  24. Z. Hong, L. Zhu, S. Fu, M. Tang, P. Shum, and D. Liu, “A robust and fast polarimeter based on spatial phase modulation of liquid crystal on silicon (LCoS),” in Asia Communications and Photonics Conference, (ACP, 2015), paper AM1A.3.
    [Crossref]
  25. X. Zheng, A. Lizana, A. Peinado, C. Ramírez, J. L. Martínez, A. Márquez, I. Moreno, and J. Campos, “Compact LCOS–SLM based polarization pattern beam generator,” J. Lightwave Technol. 33(10), 2047–2055 (2015).
    [Crossref]
  26. D. Yu, S. Fu, Z. Hong, M. Tang, P. Shum, and D. Liu, “Characterization and mitigation of phase-modulation-dependent loss of liquid crystal on silicon,” Opt. Lett. 40(7), 1484–1487 (2015).
    [Crossref] [PubMed]
  27. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43(35), 6400–6406 (2004).
    [Crossref] [PubMed]
  28. J. Xu, S. Qin, C. Liu, S. Fu, and D. Liu, “Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon,” Opt. Lett. 43(12), 2993–2996 (2018).
    [Crossref] [PubMed]
  29. L. Teng, M. Pivnenko, B. Robertson, R. Zhang, and D. Chu, “A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators,” Opt. Express 22(21), 26392–26402 (2014).
    [Crossref] [PubMed]
  30. J. L. Martínez, I. Moreno, M. del Mar Sánchez-López, A. Vargas, and P. García-Martínez, “Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM,” Opt. Express 22(21), 25866–25879 (2014).
    [Crossref] [PubMed]
  31. S. Jiang, H. Jia, Y. Lei, X. Shen, J. Cao, and N. Wang, “Novel method for determination of optical rotatory dispersion spectrum by using line scan CCD,” Opt. Express 25(7), 7445–7454 (2017).
    [Crossref] [PubMed]
  32. K. H. Fan-Chiang, S. T. Wu, and S. H. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
    [Crossref]
  33. M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. V. Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
    [Crossref]
  34. K. H. Fan Chiang, S. T. Wu, and S. H. Chen, “Fringing field effect of the liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 41, 4577–4585 (2002).
    [Crossref]
  35. L. Yang, J. Xia, and X. Zhang, “Optimization of fringing field effect using dielectric separation and local electric field enhancement,” J. Disp. Technol. 11(3), 242–247 (2015).
    [Crossref]

2019 (1)

2018 (5)

2017 (5)

2016 (2)

2015 (4)

2014 (3)

2013 (2)

2012 (1)

2011 (3)

2009 (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

2007 (1)

2005 (1)

K. H. Fan-Chiang, S. T. Wu, and S. H. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

2004 (1)

2002 (1)

K. H. Fan Chiang, S. T. Wu, and S. H. Chen, “Fringing field effect of the liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 41, 4577–4585 (2002).
[Crossref]

Abakoumov, D.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength welective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference,(Optical Society of America, 2011), paper OTuM3.

Asraf, S.

Baxter, G.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength welective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference,(Optical Society of America, 2011), paper OTuM3.

Ben-Ezra, S.

Bigler, N.

Caballero, F. J. V.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. V. Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Campos, J.

Cao, J.

Chen, G.

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

Chen, Q.

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

Chen, S. H.

K. H. Fan-Chiang, S. T. Wu, and S. H. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

K. H. Fan Chiang, S. T. Wu, and S. H. Chen, “Fringing field effect of the liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 41, 4577–4585 (2002).
[Crossref]

Chen, X.

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

Chu, D.

Clarke, I.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength welective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference,(Optical Society of America, 2011), paper OTuM3.

Cohn, R. W.

Colbourne, P. D.

D’Errico, A.

de Sars, V.

del Mar Sánchez-López, M.

Doerr, C. R.

Emiliani, V.

Fan Chiang, K. H.

K. H. Fan Chiang, S. T. Wu, and S. H. Chen, “Fringing field effect of the liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 41, 4577–4585 (2002).
[Crossref]

Fan-Chiang, K. H.

K. H. Fan-Chiang, S. T. Wu, and S. H. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

Fontaine, N. K.

Frenkel, B.

R. Rudnick, L. Pascar, B. Frenkel, and D. M. Marom, “Polarization diverse fine resolution photonic spectral processor,” in Optical Fiber Communication Conference and Exhibition (IEEE, 2016), paper W1E.4.
[Crossref]

Frisken, S.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength welective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference,(Optical Society of America, 2011), paper OTuM3.

Fu, S.

Fukutoku, M.

M. Nakajima, K. Suzuki, K. Seno, T. Goh, R. Kasahara, M. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Optical Fiber Communication Conference and Exhibition, (IEEE, 2018), paper W1E.2.
[Crossref]

Fukutoku, M. I.

Galili, M.

Gao, Y.

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

García-Martínez, P.

Goh, T.

M. Nakajima, K. Suzuki, K. Yamaguchi, H. Ono, T. Goh, M. I. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Multilane photonic spectral processor integrated in a spatial and planar optical circuit for a space-division multiplexing network,” J. Lightwave Technol. 36(2), 309–317 (2018).
[Crossref]

M. Nakajima, K. Suzuki, K. Seno, T. Goh, R. Kasahara, M. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Optical Fiber Communication Conference and Exhibition, (IEEE, 2018), paper W1E.2.
[Crossref]

Golani, O.

Goldshtein, N.

Guillon, M.

Hasama, T.

Hashimoto, T.

M. Nakajima, K. Suzuki, K. Yamaguchi, H. Ono, T. Goh, M. I. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Multilane photonic spectral processor integrated in a spatial and planar optical circuit for a space-division multiplexing network,” J. Lightwave Technol. 36(2), 309–317 (2018).
[Crossref]

M. Nakajima, K. Suzuki, K. Seno, T. Goh, R. Kasahara, M. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Optical Fiber Communication Conference and Exhibition, (IEEE, 2018), paper W1E.2.
[Crossref]

Hong, Z.

D. Yu, S. Fu, Z. Hong, M. Tang, P. Shum, and D. Liu, “Characterization and mitigation of phase-modulation-dependent loss of liquid crystal on silicon,” Opt. Lett. 40(7), 1484–1487 (2015).
[Crossref] [PubMed]

Z. Hong, L. Zhu, S. Fu, M. Tang, P. Shum, and D. Liu, “A robust and fast polarimeter based on spatial phase modulation of liquid crystal on silicon (LCoS),” in Asia Communications and Photonics Conference, (ACP, 2015), paper AM1A.3.
[Crossref]

Hrisafov, S.

Hu, H.

Ikuma, Y.

Ishikawa, H.

Jia, H.

Jiang, S.

Kasahara, R.

M. Nakajima, K. Suzuki, K. Seno, T. Goh, R. Kasahara, M. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Optical Fiber Communication Conference and Exhibition, (IEEE, 2018), paper W1E.2.
[Crossref]

Kawashima, H.

Keller, U.

Kong, D.

Lei, Y.

Liu, C.

Liu, D.

Lizana, A.

Lu, T.

Mao, L.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. V. Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Marom, D. M.

D. M. Marom, P. D. Colbourne, A. D’Errico, N. K. Fontaine, Y. Ikuma, R. Proietti, L. Zong, J. M. Rivas-Moscoso, and I. Tomkos, “Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking,” J. Opt. Commun. Netw. 9(1), 1–26 (2017).
[Crossref]

R. Rudnick, A. Tolmachev, D. Sinefeld, O. Golani, S. Ben-Ezra, M. Nazarathy, and D. M. Marom, “Sub-GHz resolution photonic spectral processor and its system applications,” J. Lightwave Technol. 35(11), 2218–2226 (2017).
[Crossref]

N. Goldshtein, D. Sinefeld, O. Golani, R. Rudnick, L. Pascar, R. Zektzer, and D. M. Marom, “Fine resolution photonic spectral processor using a waveguide grating router with permanent phase trimming,” J. Lightwave Technol. 34(2), 379–385 (2016).
[Crossref]

D. Sinefeld, S. Ben-Ezra, and D. M. Marom, “Nyquist-WDM filter shaping with a high-resolution colorless photonic spectral processor,” Opt. Lett. 38(17), 3268–3271 (2013).
[Crossref] [PubMed]

D. Sinefeld, C. R. Doerr, and D. M. Marom, “A photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” Opt. Express 19(15), 14532–14541 (2011).
[Crossref] [PubMed]

D. Sinefeld and D. M. Marom, “Insertion loss and crosstalk analysis of a fiber switch based on a pixelized phase modulator,” J. Lightwave Technol. 29(1), 69–77 (2011).
[Crossref]

R. Rudnick, L. Pascar, B. Frenkel, and D. M. Marom, “Polarization diverse fine resolution photonic spectral processor,” in Optical Fiber Communication Conference and Exhibition (IEEE, 2016), paper W1E.4.
[Crossref]

Marquez, A.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. V. Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Márquez, A.

Martínez, J. L.

Miyamoto, Y.

M. Nakajima, K. Suzuki, K. Yamaguchi, H. Ono, T. Goh, M. I. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Multilane photonic spectral processor integrated in a spatial and planar optical circuit for a space-division multiplexing network,” J. Lightwave Technol. 36(2), 309–317 (2018).
[Crossref]

M. Nakajima, K. Suzuki, K. Seno, T. Goh, R. Kasahara, M. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Optical Fiber Communication Conference and Exhibition, (IEEE, 2018), paper W1E.2.
[Crossref]

Moreno, I.

Mori, M.

Mulvad, H. C. H.

Nakajima, M.

M. Nakajima, K. Suzuki, K. Yamaguchi, H. Ono, T. Goh, M. I. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Multilane photonic spectral processor integrated in a spatial and planar optical circuit for a space-division multiplexing network,” J. Lightwave Technol. 36(2), 309–317 (2018).
[Crossref]

M. Nakajima, K. Suzuki, K. Seno, T. Goh, R. Kasahara, M. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Optical Fiber Communication Conference and Exhibition, (IEEE, 2018), paper W1E.2.
[Crossref]

Nazarathy, M.

Ono, H.

Oxenløwe, L. K.

Palushani, E.

Pascar, L.

N. Goldshtein, D. Sinefeld, O. Golani, R. Rudnick, L. Pascar, R. Zektzer, and D. M. Marom, “Fine resolution photonic spectral processor using a waveguide grating router with permanent phase trimming,” J. Lightwave Technol. 34(2), 379–385 (2016).
[Crossref]

R. Rudnick, L. Pascar, B. Frenkel, and D. M. Marom, “Polarization diverse fine resolution photonic spectral processor,” in Optical Fiber Communication Conference and Exhibition (IEEE, 2016), paper W1E.4.
[Crossref]

Peinado, A.

Phillips, C. R.

Pivnenko, M.

Poole, S.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength welective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference,(Optical Society of America, 2011), paper OTuM3.

Proietti, R.

Pupeikis, J.

Qin, S.

Ramírez, C.

Rivas-Moscoso, J. M.

Robertson, B.

Ronzitti, E.

Rudnick, R.

Sadot, D.

Seno, K.

K. Suzuki, K. Seno, and Y. Ikuma, “Application of waveguide/free-space optics hybrid to ROADM device,” J. Lightwave Technol. 35(4), 596–606 (2017).
[Crossref]

M. Nakajima, K. Suzuki, K. Seno, T. Goh, R. Kasahara, M. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Optical Fiber Communication Conference and Exhibition, (IEEE, 2018), paper W1E.2.
[Crossref]

Shen, X.

Shum, P.

D. Yu, S. Fu, Z. Hong, M. Tang, P. Shum, and D. Liu, “Characterization and mitigation of phase-modulation-dependent loss of liquid crystal on silicon,” Opt. Lett. 40(7), 1484–1487 (2015).
[Crossref] [PubMed]

Z. Hong, L. Zhu, S. Fu, M. Tang, P. Shum, and D. Liu, “A robust and fast polarimeter based on spatial phase modulation of liquid crystal on silicon (LCoS),” in Asia Communications and Photonics Conference, (ACP, 2015), paper AM1A.3.
[Crossref]

Sinefeld, D.

Sorimoto, K.

Suzuki, K.

Tan, Z.

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

Tang, M.

D. Yu, S. Fu, Z. Hong, M. Tang, P. Shum, and D. Liu, “Characterization and mitigation of phase-modulation-dependent loss of liquid crystal on silicon,” Opt. Lett. 40(7), 1484–1487 (2015).
[Crossref] [PubMed]

Z. Hong, L. Zhu, S. Fu, M. Tang, P. Shum, and D. Liu, “A robust and fast polarimeter based on spatial phase modulation of liquid crystal on silicon (LCoS),” in Asia Communications and Photonics Conference, (ACP, 2015), paper AM1A.3.
[Crossref]

Tanizawa, K.

Teng, L.

Tian, K.

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

Tolmachev, A.

Tomkos, I.

Tsuda, H.

Uetsuka, H.

Vargas, A.

Wada, N.

Wang, M.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. V. Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Wang, N.

Wang, X.

Wilkinson, P.

Wohlgemuth, E.

Wu, S. T.

K. H. Fan-Chiang, S. T. Wu, and S. H. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

K. H. Fan Chiang, S. T. Wu, and S. H. Chen, “Fringing field effect of the liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 41, 4577–4585 (2002).
[Crossref]

Xia, J.

L. Yang, J. Xia, and X. Zhang, “Optimization of fringing field effect using dielectric separation and local electric field enhancement,” J. Disp. Technol. 11(3), 242–247 (2015).
[Crossref]

Xu, J.

Xun, X.

Yamaguchi, K.

Yang, H.

Yang, L.

L. Yang, J. Xia, and X. Zhang, “Optimization of fringing field effect using dielectric separation and local electric field enhancement,” J. Disp. Technol. 11(3), 242–247 (2015).
[Crossref]

Ye, Y.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. V. Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Yeminy, T.

Yoffe, Y.

Yu, C.

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

Yu, D.

Zalevsky, Z.

Zektzer, R.

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Zhang, C.

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

Zhang, Q.

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

Zhang, R.

Zhang, X.

L. Yang, J. Xia, and X. Zhang, “Optimization of fringing field effect using dielectric separation and local electric field enhancement,” J. Disp. Technol. 11(3), 242–247 (2015).
[Crossref]

Zhao, H.

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. V. Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Zheng, X.

Zhou, H.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength welective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference,(Optical Society of America, 2011), paper OTuM3.

Zhu, L.

Z. Hong, L. Zhu, S. Fu, M. Tang, P. Shum, and D. Liu, “A robust and fast polarimeter based on spatial phase modulation of liquid crystal on silicon (LCoS),” in Asia Communications and Photonics Conference, (ACP, 2015), paper AM1A.3.
[Crossref]

Zong, L.

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (2)

IEEE Photonics J. (1)

Y. Gao, G. Chen, X. Chen, Q. Zhang, Q. Chen, C. Zhang, K. Tian, Z. Tan, and C. Yu, “High-resolution tunable filter with flexible bandwidth and power attenuation based on an LCoS Processor,” IEEE Photonics J. 10(6), 1–8 (2018).
[Crossref]

J. Disp. Technol. (2)

K. H. Fan-Chiang, S. T. Wu, and S. H. Chen, “Fringing-field effects on high-resolution liquid crystal microdisplays,” J. Disp. Technol. 1(2), 304–313 (2005).
[Crossref]

L. Yang, J. Xia, and X. Zhang, “Optimization of fringing field effect using dielectric separation and local electric field enhancement,” J. Disp. Technol. 11(3), 242–247 (2015).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Commun. Netw. (1)

Jpn. J. Appl. Phys. (1)

K. H. Fan Chiang, S. T. Wu, and S. H. Chen, “Fringing field effect of the liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 41, 4577–4585 (2002).
[Crossref]

Opt. Express (13)

L. Teng, M. Pivnenko, B. Robertson, R. Zhang, and D. Chu, “A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators,” Opt. Express 22(21), 26392–26402 (2014).
[Crossref] [PubMed]

J. L. Martínez, I. Moreno, M. del Mar Sánchez-López, A. Vargas, and P. García-Martínez, “Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM,” Opt. Express 22(21), 25866–25879 (2014).
[Crossref] [PubMed]

S. Jiang, H. Jia, Y. Lei, X. Shen, J. Cao, and N. Wang, “Novel method for determination of optical rotatory dispersion spectrum by using line scan CCD,” Opt. Express 25(7), 7445–7454 (2017).
[Crossref] [PubMed]

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches,” Opt. Express 24(11), 12240–12253 (2016).
[Crossref] [PubMed]

S. Asraf, T. Yeminy, D. Sadot, and Z. Zalevsky, “Proof of concept for ultrahigh resolution photonic spectral processor,” Opt. Express 26(19), 25013–25019 (2018).
[Crossref] [PubMed]

E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express 20(16), 17843–17855 (2012).
[Crossref] [PubMed]

K. Sorimoto, K. Tanizawa, H. Uetsuka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, and H. Tsuda, “Compact and phase-error-robust multilayered AWG-based wavelength selective switch driven by a single LCOS,” Opt. Express 21(14), 17131–17149 (2013).
[Crossref] [PubMed]

H. Hu, D. Kong, E. Palushani, M. Galili, H. C. H. Mulvad, and L. K. Oxenløwe, “320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT,” Opt. Express 22(1), 110–118 (2014).
[Crossref] [PubMed]

J. Pupeikis, N. Bigler, S. Hrisafov, C. R. Phillips, and U. Keller, “Programmable pulse shaping for time-gated amplifiers,” Opt. Express 27(1), 175–184 (2019).
[Crossref] [PubMed]

X. Wang and N. Wada, “Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application,” Opt. Express 15(12), 7319–7326 (2007).
[Crossref] [PubMed]

T. Yeminy, D. Sadot, and Z. Zalevsky, “Spectral and temporal stealthy fiber-optic communication using sampling and phase encoding,” Opt. Express 19(21), 20182–20198 (2011).
[Crossref] [PubMed]

D. Sinefeld, C. R. Doerr, and D. M. Marom, “A photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” Opt. Express 19(15), 14532–14541 (2011).
[Crossref] [PubMed]

E. Wohlgemuth, Y. Yoffe, T. Yeminy, Z. Zalevsky, and D. Sadot, “Demonstration of coherent stealthy and encrypted transmission for data center interconnection,” Opt. Express 26(6), 7638–7645 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Photonics (1)

M. Wang, L. Zong, L. Mao, A. Marquez, Y. Ye, H. Zhao, and F. J. V. Caballero, “LCoS SLM study and its application in wavelength selective switch,” Photonics 4, 22 (2017).
[Crossref]

Other (4)

Z. Hong, L. Zhu, S. Fu, M. Tang, P. Shum, and D. Liu, “A robust and fast polarimeter based on spatial phase modulation of liquid crystal on silicon (LCoS),” in Asia Communications and Photonics Conference, (ACP, 2015), paper AM1A.3.
[Crossref]

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength welective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference,(Optical Society of America, 2011), paper OTuM3.

R. Rudnick, L. Pascar, B. Frenkel, and D. M. Marom, “Polarization diverse fine resolution photonic spectral processor,” in Optical Fiber Communication Conference and Exhibition (IEEE, 2016), paper W1E.4.
[Crossref]

M. Nakajima, K. Suzuki, K. Seno, T. Goh, R. Kasahara, M. Fukutoku, Y. Miyamoto, and T. Hashimoto, “Over-100-spatial-channel programmable spectral processor for SDM signal monitoring,” in Optical Fiber Communication Conference and Exhibition, (IEEE, 2018), paper W1E.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 System configuration (a) and schematic drawing of operation principle (b) of the programmable spectral processor based on spatial polarization manipulation with LCoS.
Fig. 2
Fig. 2 (a) Experimental setup of proposed programmable spectral processor. CL: collimating lens, BE: beam expander, G: grating, LP: linear polarizer, QWP: quarter wave plate, L: lens, BS: beam splitter, LCoS: liquid crystal on silicon, M: mirror, OSA: optical spectrum analyzer. (b) Typical phase pattern for programmable channel switching.
Fig. 3
Fig. 3 (a) The output signal intensity modulated with phase φ2 and its theoretical fitting curve. (b) Polarization dependent loss of the proposed programmable spectral processor.
Fig. 4
Fig. 4 The 10-wavelength-channel measurement results of the maxim achievable signal intensity (a) and the intensity with selective filtering (b).
Fig. 5
Fig. 5 (a) Spatial intensity pattern for the optical signal with 390 GHz bandwidth and (b) spatial intensity pattern for the filtered signal with 200 GHz bandwidth on the CCD.
Fig. 6
Fig. 6 (a) Flexible operation of bandwidth for our proposed PSP and (b) central wavelength tuning by a wavelength step of 0.16 nm under the condition of fixed bandwidth.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J 1 = T 1 J 0 =( 1 0 0 e j φ 1 (λ) )( E s (λ) e j δ s (λ) E p (λ) e j δ p (λ) )=( E s (λ) e j δ s (λ) E p (λ) e j( δ p (λ) φ 1 (λ)) ),
T 2 =R(π/4 )( 1 0 0 j )R(π/4 )( 1 0 0 1 )( 1 0 0 e j φ 2 (λ) )R(π/4 )( 1 0 0 j )R(π/4 ) = e j φ 2 (λ)/2 R( φ 2 (λ)/2 ),
J 2 = T 2 T 1 J 0 = e j( φ 2 (λ)/2 δ s (λ)) E s 2 (λ)+ E p 2 (λ) ( sin( φ 2 (λ)/2 +α(λ)) cos( φ 2 (λ)/2 +α(λ)) )
I(λ)= I 0 (λ) cos 2 (β φ 2 (λ)/2 α(λ))

Metrics