Abstract

Optical imaging and tracking moving objects through scattering media is a challenge with important applications. However, previous works suffer from time-consuming recovery process, object complexity limit, or object information lost. Here we present a method based on the speckle rotation decorrelation property. The rotational speckles detected at short intervals are uncorrelated and multiplexed in a single-shot camera image. Object frames of the video are recovered by cross-correlation deconvolution of the camera image with a computationally rotated point spread function. The near real-time recovery provides sharp object image frames with accurate object relative positions, exact movement velocity, and continuous motion trails. This multiplexing technique has important implications for a wide range of real-world imaging scenarios.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiple-image double-encryption via 2D rotations of a random phase mask with spatially incoherent illumination

Yaoyao Shi, Youwen Liu, Wei Sheng, Dabo Zhu, Jiming Wang, and Tong Wu
Opt. Express 27(18) 26050-26059 (2019)

Single-shot large field of view imaging with scattering media by spatial demultiplexing

Dongliang Tang, Sujit Kumar Sahoo, Vinh Tran, and Cuong Dang
Appl. Opt. 57(26) 7533-7538 (2018)

Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin

Mooseok Jang, Haowen Ruan, Ivo M. Vellekoop, Benjamin Judkewitz, Euiheon Chung, and Changhuei Yang
Biomed. Opt. Express 6(1) 72-85 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).
  2. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  3. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
    [Crossref] [PubMed]
  4. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  5. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
    [Crossref]
  6. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]
  7. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
    [Crossref] [PubMed]
  8. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
    [Crossref] [PubMed]
  9. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  10. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [Crossref] [PubMed]
  11. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref] [PubMed]
  12. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  13. K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22(25), 31426–31433 (2014).
    [Crossref] [PubMed]
  14. X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
    [Crossref] [PubMed]
  15. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24(15), 16835–16855 (2016).
    [Crossref] [PubMed]
  16. Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
    [Crossref]
  17. M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Express 26(8), 9866–9881 (2018).
    [Crossref] [PubMed]
  18. X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8(1), 13402 (2018).
    [Crossref] [PubMed]
  19. Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory Effect Based Filter to Improve Imaging Quality Through Scattering Layers,” IEEE Photonics J. 10(5), 1–10 (2018).
    [Crossref]
  20. C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
    [Crossref]
  21. O. Salhov, G. Weinberg, and O. Katz, “Depth-resolved speckle-correlations imaging through scattering layers via coherence gating,” Opt. Lett. 43(22), 5528–5531 (2018).
    [Crossref] [PubMed]
  22. B. Das, N. S. Bisht, R. V. Vinu, and R. K. Singh, “Lensless complex amplitude image retrieval through a visually opaque scattering medium,” Appl. Opt. 56(16), 4591–4597 (2017).
    [Crossref] [PubMed]
  23. E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
    [Crossref] [PubMed]
  24. H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6(1), 32696 (2016).
    [Crossref] [PubMed]
  25. Z. Wang, X. Jin, and Q. Dai, “Non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8(1), 9088 (2018).
    [Crossref] [PubMed]
  26. X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25(26), 32829–32840 (2017).
    [Crossref]
  27. L. Li, Q. Li, S. Sun, H. Z. Lin, W. T. Liu, and P. X. Chen, “Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function,” Opt. Lett. 43(8), 1670–1673 (2018).
    [Crossref] [PubMed]
  28. S. K. Sahoo, D. Tang, and C. Dang, “Single-shot multispectral imaging with a monochromatic camera,” Optica 4(10), 1209–1213 (2017).
    [Crossref]
  29. E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
    [Crossref] [PubMed]
  30. M. Cua, E. H. Zhou, and C. Yang, “Imaging moving targets through scattering media,” Opt. Express 25(4), 3935–3945 (2017).
    [Crossref] [PubMed]
  31. C. Guo, J. Liu, T. Wu, L. Zhu, and X. Shao, “Tracking moving targets behind a scattering medium via speckle correlation,” Appl. Opt. 57(4), 905–913 (2018).
    [Crossref] [PubMed]
  32. M. I. Akhlaghi and A. Dogariu, “Tracking hidden objects using stochastic probing,” Optica 4(4), 447–453 (2017).
    [Crossref]
  33. S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033 (2016).
    [Crossref] [PubMed]
  34. E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
    [Crossref] [PubMed]

2019 (1)

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

2018 (7)

2017 (6)

2016 (5)

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033 (2016).
[Crossref] [PubMed]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6(1), 32696 (2016).
[Crossref] [PubMed]

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[Crossref] [PubMed]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24(15), 16835–16855 (2016).
[Crossref] [PubMed]

2014 (4)

2012 (3)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

2010 (3)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
[Crossref] [PubMed]

2008 (2)

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

2007 (1)

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Akhlaghi, M. I.

Alouini, M.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033 (2016).
[Crossref] [PubMed]

Andresen, E. R.

Bertolotti, J.

M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Express 26(8), 9866–9881 (2018).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Bisht, N. S.

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Brasselet, S.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Chen, P. X.

Chen, Q.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory Effect Based Filter to Improve Imaging Quality Through Scattering Layers,” IEEE Photonics J. 10(5), 1–10 (2018).
[Crossref]

Cua, M.

Dai, Q.

Z. Wang, X. Jin, and Q. Dai, “Non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8(1), 9088 (2018).
[Crossref] [PubMed]

Dang, C.

Das, B.

Dogariu, A.

Edrei, E.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[Crossref] [PubMed]

Fade, J.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033 (2016).
[Crossref] [PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Fleischer, J. W.

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Gehm, M. E.

X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8(1), 13402 (2018).
[Crossref] [PubMed]

Gigan, S.

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24(15), 16835–16855 (2016).
[Crossref] [PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Grange, R.

Greenberg, J. A.

X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8(1), 13402 (2018).
[Crossref] [PubMed]

Guan, Y.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory Effect Based Filter to Improve Imaging Quality Through Scattering Layers,” IEEE Photonics J. 10(5), 1–10 (2018).
[Crossref]

Guo, C.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

C. Guo, J. Liu, T. Wu, L. Zhu, and X. Shao, “Tracking moving targets behind a scattering medium via speckle correlation,” Appl. Opt. 57(4), 905–913 (2018).
[Crossref] [PubMed]

He, H.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory Effect Based Filter to Improve Imaging Quality Through Scattering Layers,” IEEE Photonics J. 10(5), 1–10 (2018).
[Crossref]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25(26), 32829–32840 (2017).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6(1), 32696 (2016).
[Crossref] [PubMed]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Hofer, M.

Hsieh, C. L.

Jin, X.

Z. Wang, X. Jin, and Q. Dai, “Non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8(1), 9088 (2018).
[Crossref] [PubMed]

Judkewitz, B.

Katz, O.

O. Salhov, G. Weinberg, and O. Katz, “Depth-resolved speckle-correlations imaging through scattering layers via coherence gating,” Opt. Lett. 43(22), 5528–5531 (2018).
[Crossref] [PubMed]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24(15), 16835–16855 (2016).
[Crossref] [PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[Crossref] [PubMed]

Laporte, G.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Li, L.

Li, Q.

Li, W.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Li, X.

X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8(1), 13402 (2018).
[Crossref] [PubMed]

Lin, H. Z.

Liu, J.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

C. Guo, J. Liu, T. Wu, L. Zhu, and X. Shao, “Tracking moving targets behind a scattering medium via speckle correlation,” Appl. Opt. 57(4), 905–913 (2018).
[Crossref] [PubMed]

Liu, W. T.

Liu, Y.

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

Mathew, J.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033 (2016).
[Crossref] [PubMed]

Mosk, A. P.

Oron, D.

Panigrahi, S.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033 (2016).
[Crossref] [PubMed]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Porat, A.

Psaltis, D.

Pu, Y.

Ramachandran, H.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033 (2016).
[Crossref] [PubMed]

Rigneault, H.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Ruan, H.

Sahoo, S. K.

Salhov, O.

Scarcelli, G.

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[Crossref] [PubMed]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

Shao, X.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

C. Guo, J. Liu, T. Wu, L. Zhu, and X. Shao, “Tracking moving targets behind a scattering medium via speckle correlation,” Appl. Opt. 57(4), 905–913 (2018).
[Crossref] [PubMed]

Shi, Y.

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Singh, R. K.

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Soeller, C.

Stevens, A.

X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8(1), 13402 (2018).
[Crossref] [PubMed]

Sudarsanam, S.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033 (2016).
[Crossref] [PubMed]

Sun, S.

Takasaki, K. T.

Tang, D.

Thendiyammal, A.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[Crossref] [PubMed]

Vellekoop, I. M.

Vinu, R. V.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Wang, G.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Wang, J.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

Wang, Z.

Z. Wang, X. Jin, and Q. Dai, “Non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8(1), 9088 (2018).
[Crossref] [PubMed]

Weinberg, G.

Wu, T.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

C. Guo, J. Liu, T. Wu, L. Zhu, and X. Shao, “Tracking moving targets behind a scattering medium via speckle correlation,” Appl. Opt. 57(4), 905–913 (2018).
[Crossref] [PubMed]

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

Xie, X.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory Effect Based Filter to Improve Imaging Quality Through Scattering Layers,” IEEE Photonics J. 10(5), 1–10 (2018).
[Crossref]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25(26), 32829–32840 (2017).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6(1), 32696 (2016).
[Crossref] [PubMed]

Xu, X.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory Effect Based Filter to Improve Imaging Quality Through Scattering Layers,” IEEE Photonics J. 10(5), 1–10 (2018).
[Crossref]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25(26), 32829–32840 (2017).
[Crossref]

Yang, C.

Yang, X.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Ye, J.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory Effect Based Filter to Improve Imaging Quality Through Scattering Layers,” IEEE Photonics J. 10(5), 1–10 (2018).
[Crossref]

Zhou, E. H.

Zhou, J.

Zhu, L.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

C. Guo, J. Liu, T. Wu, L. Zhu, and X. Shao, “Tracking moving targets behind a scattering medium via speckle correlation,” Appl. Opt. 57(4), 905–913 (2018).
[Crossref] [PubMed]

Zhuang, H.

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory Effect Based Filter to Improve Imaging Quality Through Scattering Layers,” IEEE Photonics J. 10(5), 1–10 (2018).
[Crossref]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25(26), 32829–32840 (2017).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6(1), 32696 (2016).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Shi, Y. Liu, J. Wang, and T. Wu, “Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax,” Appl. Phys. Lett. 110(23), 231101 (2017).
[Crossref]

IEEE Photonics J. (1)

Q. Chen, H. He, X. Xu, X. Xie, H. Zhuang, J. Ye, and Y. Guan, “Memory Effect Based Filter to Improve Imaging Quality Through Scattering Layers,” IEEE Photonics J. 10(5), 1–10 (2018).
[Crossref]

Nat. Commun. (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Nat. Photonics (4)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Opt. Express (8)

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[Crossref] [PubMed]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
[Crossref] [PubMed]

X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
[Crossref] [PubMed]

K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22(25), 31426–31433 (2014).
[Crossref] [PubMed]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24(15), 16835–16855 (2016).
[Crossref] [PubMed]

M. Cua, E. H. Zhou, and C. Yang, “Imaging moving targets through scattering media,” Opt. Express 25(4), 3935–3945 (2017).
[Crossref] [PubMed]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25(26), 32829–32840 (2017).
[Crossref]

M. Hofer, C. Soeller, S. Brasselet, and J. Bertolotti, “Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations,” Opt. Express 26(8), 9866–9881 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (4)

Phys. Rev. Lett. (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Sci. Rep. (5)

X. Li, A. Stevens, J. A. Greenberg, and M. E. Gehm, “Single-shot memory-effect video,” Sci. Rep. 8(1), 13402 (2018).
[Crossref] [PubMed]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6(1), 32696 (2016).
[Crossref] [PubMed]

Z. Wang, X. Jin, and Q. Dai, “Non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution,” Sci. Rep. 8(1), 9088 (2018).
[Crossref] [PubMed]

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033 (2016).
[Crossref] [PubMed]

Other (1)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).

Supplementary Material (3)

NameDescription
» Visualization 1       Reconstructed single-shot video of Fig. 4. (a)-(d)
» Visualization 2       Reconstructed single-shot video of Fig. 5. (a)-(d)
» Visualization 3       Reconstructed single-shot video of Fig. 5. (g)-(j)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Intensity cross-correlation between the reference speckle and (a) the rotational speckles produced by rotating the scattering sample (red solid line) or the camera (blue dotted line) around principal optic axis, and (b) the shifted speckles produced by rotating the scattering sample around the vertical axis. The insets in (a) and (b) are the experimental diagrams.
Fig. 2
Fig. 2 Schematic and conceptual description of SRD based single-shot video of hidden objects. (a) Spatially incoherent light from a moving (or static) object passes through a scattering sample, and the scattered speckles are detected by a rotational camera. The relative rotations between speckle and camera forms the speckle rotation. The SRD property makes the camera image become a superposition of the dynamic speckles at various moments. (b) The image recovery via CD. Computationally rotated PSFs select and recover matched frames of the video by cross-correlating with the camera image. The corresponding time of each frame is contained in the rotated angle of PSF. Motion trail of the moving object is reconstructed with accurate relative positions.
Fig. 3
Fig. 3 (a) CD of rotational speckles with PSF at 0 degree. Object information is recovered only at 0 degree, but totally blurred at unmatched rotational angles. (b) CD of PSF at 0 degree with rotational speckles detected at 0 degree (Speckle1), 30 degree (Speckle2), and their superposition (Speckle1 + 2). (c) CD of PSF computationally rotated to 30 degrees with the same speckles in (b). Object images are only recovered with the angle-matching PSF. Top-right insets in (c), the rotated objects caused by camera rotation. Scale bars: 34.5μm.
Fig. 4
Fig. 4 Reconstructed single-shot video of moving objects through scattering media and (a)-(d) are frames 1, 4, 7, 10 of the video (see also Visualization 1). (e) Corresponding recovered image without speckle rotation. (f) Object image generated on SLM. Scale bars: 34.5μm.
Fig. 5
Fig. 5 Reconstructed single-shot video of dynamic objects through scattering media and (a)-(d) are frames 3, 6, 8, 11 of the recovered video (see also Visualization 2) and (g)-(j) are frames 1, 4, 7, 10 of the video (see also Visualization 3). (e) and (k) are corresponding recovered images without speckle rotation. (f) and (l) are object images generated on SLM. Scale bars: 34.5μm.
Fig. 6
Fig. 6 PSNRs of the single-shot videos with different frame numbers. Increasing frame number causes enhanced background noise.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I t 1 (r)= S θ 1 (r) O t 1 (r),
I(r)= i I t i (r) = i S θ i (r) O t i (r),
S θ i S θ j ={ δ θ ij ,i=j 0,ij ,
j S θ j (r r 0 ) I(r)= j S θ j (r r 0 )[ i S θ i (r) O t i (r) ] = j [ δ θ j (r+ r 0 ) O t j (r) ] +C = j O t j (r+ r 0 )+C ,
t j = θ j /ω+j× t pause ,

Metrics