Abstract

GHz repetition rate fundamentally mode-locked lasers have attracted great interest for a variety of scientific and practical applications. A passively mode-locked laser in all-fiber format has the advantages of high stability, maintenance-free operation, super compactness, and reliability. In this paper, we present numerical investigation on passive mode-locking of all-fiber lasers operating at repetition rates of 1-20 GHz. Our calculations show that the reflectivity of the output coupler, the small signal gain of the doped fiber, the total net cavity dispersion, and the modulation depth of the saturable absorber are the key parameters for producing stable fundamentally mode-locked pulses at GHz repetition rates in very short all-fiber linear cavities. The instabilities of GHz repetition rate fundamentally mode-locked all-fiber lasers with different parameters were calculated and analyzed. Compared to a regular MHz repetition rate mode-locked all-fiber laser, the pump power range for the mode-locking of a GHz repetition rate all-fiber laser is much larger due to the several orders of magnitude lower accumulated nonlinearity in the fiber cavity. The presented numerical study provides valuable guidance for the design and development of highly stable mode-locked all-fiber lasers operating at GHz repetition rates.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser

Huihui Cheng, Wenlong Wang, Yi Zhou, Tian Qiao, Wei Lin, Shanhui Xu, and Zhongmin Yang
Opt. Express 25(22) 27646-27651 (2017)

Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68  GHz fundamental repetition rate

Jiazheng Song, Hushan Wang, Xinning Huang, XiaoHong Hu, Ting Zhang, Yishan Wang, Yuanshan Liu, and Jianguo Zhang
Appl. Opt. 58(7) 1733-1738 (2019)

A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2GHz

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury
Opt. Express 15(20) 13155-13166 (2007)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  2. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
    [Crossref] [PubMed]
  3. S. W. Chu, T. M. Liu, C. K. Sun, C. Y. Lin, and H. J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11(8), 933–938 (2003).
    [Crossref] [PubMed]
  4. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
    [Crossref] [PubMed]
  5. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  6. M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
    [Crossref] [PubMed]
  7. M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
    [Crossref]
  8. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  9. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” ‎,” Eur. Phys. J. D 48(1), 57–66 (2008).
    [Crossref]
  10. G. Chang, C. H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express 18(12), 12736–12747 (2010).
    [Crossref] [PubMed]
  11. T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
    [Crossref] [PubMed]
  12. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631–6643 (2012).
    [Crossref] [PubMed]
  13. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
    [Crossref] [PubMed]
  14. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” ‎,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002).
    [Crossref]
  15. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
    [Crossref] [PubMed]
  16. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
    [Crossref] [PubMed]
  17. D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
    [Crossref]
  18. K. Yin, B. Zhang, W. Yang, H. Chen, S. Chen, and J. Hou, “Flexible picosecond thulium-doped fiber laser using the active mode-locking technique,” Opt. Lett. 39(14), 4259–4262 (2014).
    [Crossref] [PubMed]
  19. S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
    [Crossref]
  20. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002).
    [Crossref] [PubMed]
  21. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
    [Crossref] [PubMed]
  22. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
    [Crossref] [PubMed]
  23. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [Crossref] [PubMed]
  24. I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (IEEE 2009), pp. 582–583.
  25. I. Hartl, A. Romann, and M. E. Fermann, “Passively Mode Locked GHz Femtosecond Yb-Fiber Laser Using an Intra-Cavity Martinez Compressor,” in 2011 Conference on Lasers and Electro-Optics, (IEEE 2011).
    [Crossref]
  26. H. W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
    [Crossref] [PubMed]
  27. C. Li, Y. Ma, X. Gao, F. Niu, T. Jiang, A. Wang, and Z. Zhang, “1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency,” Appl. Opt. 54(28), 8350–8353 (2015).
    [Crossref] [PubMed]
  28. Y. Zhou, W. Lin, H. Cheng, W. Wang, T. Qiao, Q. Qian, S. Xu, and Z. Yang, “Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch,” Opt. Express 26(8), 10842–10857 (2018).
    [Crossref] [PubMed]
  29. H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
    [Crossref] [PubMed]
  30. H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
    [Crossref] [PubMed]
  31. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
    [Crossref]
  32. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
    [Crossref] [PubMed]
  33. H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively Mode-Locked Tm3+-Doped Fiber Laser With Gigahertz Fundamental Repetition Rate,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1100106 (2018).
    [Crossref]
  34. R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
    [Crossref] [PubMed]
  35. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
    [Crossref] [PubMed]
  36. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
    [Crossref] [PubMed]
  37. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
    [Crossref]
  38. Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
    [Crossref] [PubMed]
  39. X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
    [Crossref]
  40. X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A 84(2), 023835 (2011).
    [Crossref]
  41. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [Crossref]
  42. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
    [Crossref] [PubMed]
  43. H. H. Liu and K. K. Chow, “Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers,” Opt. Lett. 39(1), 150–153 (2014).
    [Crossref] [PubMed]
  44. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [Crossref] [PubMed]
  45. K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21(1), 68–70 (1996).
    [Crossref] [PubMed]
  46. R. I. Woodward, “Dispersion engineering of mode-locked fibre lasers,” J. Opt. 20(3), 033002 (2018).
    [Crossref]
  47. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
    [Crossref]
  48. J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. A 32(1), 31–37 (2015).
    [Crossref]
  49. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15(13), 8252–8262 (2007).
    [Crossref] [PubMed]
  50. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
    [Crossref] [PubMed]
  51. C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative- soliton fiber oscillator,” Opt. Express 19(27), 26742–26751 (2011).
    [Crossref] [PubMed]
  52. H. Kotb, M. Abdelalim, and H. Anis, “Generalized Analytical Model for Dissipative Soliton in All-Normal-Dispersion Mode-Locked Fiber Laser‎,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
    [Crossref]
  53. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  54. A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
    [Crossref]
  55. J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
    [Crossref] [PubMed]
  56. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
    [Crossref] [PubMed]
  57. H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
    [Crossref] [PubMed]
  58. X. M. Liu, “Interaction and motion of solitons in passively- mode-locked fiber lasers,” Phys. Rev. A 84(5), 053828 (2011).
    [Crossref]
  59. D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
    [Crossref] [PubMed]
  60. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  61. O. Shtyrina, M. Fedoruk, S. Turitsyn, R. Herda, and O. Okhotnikov, “Evolution and stability of pulse regimes in SESAM-mode-locked femtosecond fiber lasers,” J. Opt. Soc. Am. B 26(2), 346–352 (2009).
    [Crossref]
  62. F. X. Kartner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference? ‎,” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
    [Crossref]

2018 (5)

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively Mode-Locked Tm3+-Doped Fiber Laser With Gigahertz Fundamental Repetition Rate,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1100106 (2018).
[Crossref]

R. I. Woodward, “Dispersion engineering of mode-locked fibre lasers,” J. Opt. 20(3), 033002 (2018).
[Crossref]

Y. Zhou, W. Lin, H. Cheng, W. Wang, T. Qiao, Q. Qian, S. Xu, and Z. Yang, “Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch,” Opt. Express 26(8), 10842–10857 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (2)

H. Kotb, M. Abdelalim, and H. Anis, “Generalized Analytical Model for Dissipative Soliton in All-Normal-Dispersion Mode-Locked Fiber Laser‎,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

2015 (2)

C. Li, Y. Ma, X. Gao, F. Niu, T. Jiang, A. Wang, and Z. Zhang, “1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency,” Appl. Opt. 54(28), 8350–8353 (2015).
[Crossref] [PubMed]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. A 32(1), 31–37 (2015).
[Crossref]

2014 (3)

2013 (3)

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
[Crossref] [PubMed]

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
[Crossref]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

2012 (5)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631–6643 (2012).
[Crossref] [PubMed]

H. W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (2)

2009 (3)

2008 (10)

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[Crossref] [PubMed]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” ‎,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

2007 (3)

2006 (2)

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
[Crossref] [PubMed]

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2004 (2)

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

2003 (2)

2002 (2)

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” ‎,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002).
[Crossref]

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002).
[Crossref] [PubMed]

2001 (1)

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

1998 (1)

F. X. Kartner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference? ‎,” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

1996 (1)

1993 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Abdelalim, M.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized Analytical Model for Dissipative Soliton in All-Normal-Dispersion Mode-Locked Fiber Laser‎,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

Akhmediev, N.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

Allen, T. G.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

Anis, H.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized Analytical Model for Dissipative Soliton in All-Normal-Dispersion Mode-Locked Fiber Laser‎,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

Ankiewicz, A.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Au, J. A. D.

F. X. Kartner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference? ‎,” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

Babaeian, M.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

Baumgartl, M.

Bellancourt, A. R.

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

Bender, C. F.

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Betzig, E.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Blanche, P.-A.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

Botzer, B.

Braje, D. A.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” ‎,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Byer, R. L.

Chang, G.

Chang, W.

Chang-Hasnain, C.

Chavez-Pirson, A.

Chen, H.

Chen, H. W.

Chen, S.

Chen, V. W.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

Cheng, H.

Chi, S.-H.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

Chong, A.

Chow, C. W.

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
[Crossref]

Chow, K. K.

Chu, S. T.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
[Crossref] [PubMed]

Chu, S. W.

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Coen, S.

Curto, G. L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Diddams, S. A.

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631–6643 (2012).
[Crossref] [PubMed]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” ‎,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Digonnet, M. J. F.

Dong, L.

I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (IEEE 2009), pp. 582–583.

Dudley, J. M.

Ebling, D.

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

Emplit, P.

Fedoruk, M.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Fermann, M. E.

I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (IEEE 2009), pp. 582–583.

Fortier, T.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” ‎,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

Gao, X.

Gini, E.

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

González Hernández, J. I.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Grapinet, M.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

Grelu, P.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Haboucha, A.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Haelterman, M.

Han, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Hänsch, T. W.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Hartl, I.

I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (IEEE 2009), pp. 582–583.

Herda, R.

Hideur, A.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Holzwarth, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Hou, J.

Ilday, F. O.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Jeon, J.

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. A 32(1), 31–37 (2015).
[Crossref]

Ji, N.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Jiang, S.

Jiang, T.

Jyu, S. S.

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
[Crossref]

Kaplas, T.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

Kartner, F. X.

F. X. Kartner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference? ‎,” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

Kärtner, F. X.

Keiffer, P.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

Keller, U.

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
[Crossref] [PubMed]

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” ‎,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002).
[Crossref]

F. X. Kartner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference? ‎,” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Kirchner, M. S.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” ‎,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

Komarov, A.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Kotb, H.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized Analytical Model for Dissipative Soliton in All-Normal-Dispersion Mode-Locked Fiber Laser‎,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

Krainer, L.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” ‎,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002).
[Crossref]

Kundermann, S.

Lai, Y.

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
[Crossref]

Lau, E. K.

Leblond, H.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Lecaplain, C.

Lecomte, S.

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
[Crossref] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” ‎,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002).
[Crossref]

Lee, J.

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. A 32(1), 31–37 (2015).
[Crossref]

Lee, J. H.

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. A 32(1), 31–37 (2015).
[Crossref]

Lee, Y. W.

Li, C.

Li, C. H.

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Li, J.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Limpert, J.

Lin, A.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Lin, C. Y.

Lin, W.

Little, B. E.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
[Crossref] [PubMed]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, F.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Liu, H.

Liu, H. H.

Liu, M.

Liu, T. M.

Liu, X.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A 84(2), 023835 (2011).
[Crossref]

X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
[Crossref] [PubMed]

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Liu, X. M.

X. M. Liu, “Interaction and motion of solitons in passively- mode-locked fiber lasers,” Phys. Rev. A 84(5), 053828 (2011).
[Crossref]

Liu, Y.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Lorenser, D.

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

Lu, H.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Lu, K.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Luo, A. P.

Luo, Z.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively Mode-Locked Tm3+-Doped Fiber Laser With Gigahertz Fundamental Repetition Rate,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1100106 (2018).
[Crossref]

Luo, Z. C.

Ma, Y.

Maas, D.

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

Magee, J. C.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Mahadevan, S.

Manescau, A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Mao, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Marder, S. R.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

Martel, G.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Martinez, A.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

McFerran, J. J.

McKay, H. A.

I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (IEEE 2009), pp. 582–583.

Mo, K.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Morandotti, R.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
[Crossref] [PubMed]

Moser, M.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” ‎,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002).
[Crossref]

Moss, D. J.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
[Crossref] [PubMed]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Nakazawa, M.

Neifeld, M. A.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

Nenadovic, L.

Newbury, N. R.

Nguyen, D.

Niu, F.

Norwood, R. A.

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

Okhotnikov, O.

Ortaç, B.

Osterman, S.

Parekh, D.

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
[Crossref] [PubMed]

Paschotta, R.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” ‎,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002).
[Crossref]

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
[Crossref] [PubMed]

Pasquini, L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Peccianti, M.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
[Crossref] [PubMed]

Pekarek, S.

Perry, J. W.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

Peyghambarian, N.

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

Phillips, D. F.

G. Chang, C. H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express 18(12), 12736–12747 (2010).
[Crossref] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Probst, R. A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Qian, Q.

Qiao, T.

Quinlan, F.

Ramsey, L.

Rebolo, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Redman, S.

Renninger, W. H.

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Rudin, B.

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

Sanchez, F.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Schlager, J. B.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Schreiber, T.

Shtyrina, O.

Shu, C.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Sigurdsson, S.

Sinha, S.

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

Steinmetz, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Südmeyer, T.

Sun, C. K.

Sun, Z.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Sung, H. K.

Svirko, Y.

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

Swann, W. C.

Sylvestre, T.

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Tam, H. Y.

Tamura, K.

Tang, D. Y.

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Terrien, R.

Thamvichai, R.

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

Thapa, R.

R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
[Crossref] [PubMed]

I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (IEEE 2009), pp. 582–583.

Thomas, B. K.

I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (IEEE 2009), pp. 582–583.

Town, G.

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

Tsai, H. J.

Tsang, H. K.

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
[Crossref]

Tünnermann, A.

Turitsyn, S.

Udem, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Unold, H. J.

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

Walsworth, R. L.

G. Chang, C. H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express 18(12), 12736–12747 (2010).
[Crossref] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Wang, A.

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Wang, G.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Wang, L.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Wang, T.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Wang, W.

Wang, Y.

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

Weingarten, K. J.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” ‎,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002).
[Crossref]

Wen, S. C.

Wilken, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Wise, F. W.

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Wissinger, J.

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

Wong, C. Y.

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
[Crossref]

Woodward, R. I.

R. I. Woodward, “Dispersion engineering of mode-locked fibre lasers,” J. Opt. 20(3), 033002 (2018).
[Crossref]

Wu, M. C.

Wu, X.

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

Xu, S.

Xu, W. C.

Yamashita, S.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

Yang, L. G.

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
[Crossref]

Yang, W.

Yang, Z.

Ycas, G. G.

Yeh, C. H.

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
[Crossref]

Yin, K.

Zhang, B.

Zhang, H.

Zhang, T.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Zhang, Z.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, C. J.

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, W.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Zhao, X.

Zheng, X. W.

Zhou, Y.

Zong, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

Electron. Lett. (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Eur. Phys. J. D (1)

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” ‎,” Eur. Phys. J. D 48(1), 57–66 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” ‎,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002).
[Crossref]

D. Lorenser, D. Maas, H. J. Unold, A. R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power,” IEEE J. Quantum Electron. 42(8), 838–847 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively Mode-Locked Tm3+-Doped Fiber Laser With Gigahertz Fundamental Repetition Rate,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1100106 (2018).
[Crossref]

H. Kotb, M. Abdelalim, and H. Anis, “Generalized Analytical Model for Dissipative Soliton in All-Normal-Dispersion Mode-Locked Fiber Laser‎,” IEEE J. Sel. Top. Quantum Electron. 22(2), 1100209 (2016).
[Crossref]

F. X. Kartner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference? ‎,” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

IEEE Photonics J. (2)

S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, “250-GHz Passive Harmonic Mode-Locked Er-Doped Fiber Laser by Dissipative Four-Wave Mixing With Silicon-Based Micro-Ring,” IEEE Photonics J. 5(5), 7 (2013).
[Crossref]

M. Babaeian, P. Keiffer, M. A. Neifeld, R. Thamvichai, R. A. Norwood, P.-A. Blanche, J. Wissinger, and N. Peyghambarian, “Optical Versus Electronic Implementation of Probabilistic Graphical Inference and Experimental Device Demonstration Using Nonlinear Photonics,” IEEE Photonics J. 10(5), 7801412 (2018).
[Crossref]

J. Opt. (1)

R. I. Woodward, “Dispersion engineering of mode-locked fibre lasers,” J. Opt. 20(3), 033002 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. A 32(1), 31–37 (2015).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. (1)

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Nat. Commun. (2)

M. Babaeian, P.-A. Blanche, R. A. Norwood, T. Kaplas, P. Keiffer, Y. Svirko, T. G. Allen, V. W. Chen, S.-H. Chi, J. W. Perry, S. R. Marder, M. A. Neifeld, and N. Peyghambarian, “Nonlinear optical components for all-optical probabilistic graphical model,” Nat. Commun. 9(1), 2128 (2018).
[Crossref] [PubMed]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3(1), 765 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Nature (4)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Opt. Express (15)

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express 20(6), 6631–6643 (2012).
[Crossref] [PubMed]

G. Chang, C. H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express 18(12), 12736–12747 (2010).
[Crossref] [PubMed]

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
[Crossref] [PubMed]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[Crossref] [PubMed]

S. W. Chu, T. M. Liu, C. K. Sun, C. Y. Lin, and H. J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11(8), 933–938 (2003).
[Crossref] [PubMed]

J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
[Crossref] [PubMed]

Y. Zhou, W. Lin, H. Cheng, W. Wang, T. Qiao, Q. Qian, S. Xu, and Z. Yang, “Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch,” Opt. Express 26(8), 10842–10857 (2018).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15(13), 8252–8262 (2007).
[Crossref] [PubMed]

X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
[Crossref] [PubMed]

C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative- soliton fiber oscillator,” Opt. Express 19(27), 26742–26751 (2011).
[Crossref] [PubMed]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Opt. Lett. (8)

H. W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21(1), 68–70 (1996).
[Crossref] [PubMed]

H. H. Liu and K. K. Chow, “Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers,” Opt. Lett. 39(1), 150–153 (2014).
[Crossref] [PubMed]

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002).
[Crossref] [PubMed]

R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
[Crossref] [PubMed]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
[Crossref] [PubMed]

K. Yin, B. Zhang, W. Yang, H. Chen, S. Chen, and J. Hou, “Flexible picosecond thulium-doped fiber laser using the active mode-locking technique,” Opt. Lett. 39(14), 4259–4262 (2014).
[Crossref] [PubMed]

Phys. Rev. A (3)

X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A 84(2), 023835 (2011).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

X. M. Liu, “Interaction and motion of solitons in passively- mode-locked fiber lasers,” Phys. Rev. A 84(5), 053828 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Wang, J. Li, K. Mo, Y. Wang, F. Liu, and Y. Liu, “14.5 GHz passive harmonic mode-locking in a dispersion compensated Tm-doped fiber laser,” Sci. Rep. 7(1), 7779 (2017).
[Crossref] [PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3(1), 3223 (2013).
[Crossref] [PubMed]

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Other (3)

I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (IEEE 2009), pp. 582–583.

I. Hartl, A. Romann, and M. E. Fermann, “Passively Mode Locked GHz Femtosecond Yb-Fiber Laser Using an Intra-Cavity Martinez Compressor,” in 2011 Conference on Lasers and Electro-Optics, (IEEE 2011).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The configurations of (a) a GHz repetition rate mode-locked AFL in which a CFBG is used as the output coupler and (b) a GHz repetition rate mode-locked AFL in which a fiber-optic dichroic mirror is used as the output coupler.
Fig. 2
Fig. 2 (a) Pulse trains and (b) Optical spectra of the simulation and experiment of a 1-GHz repetition rate fundamentally mode-locked all-fiber laser.
Fig. 3
Fig. 3 Simulation results of a 10-cm-long all-fiber laser incorporated with an SESAM operating with different small signal gains (different power powers), (a) Output power of the all-fiber laser as a function of small signal gain; (b) Pulse train of CW mode-locking when g0 is 30 m−1, (c) Pulse train of pulsation mode-locking when g0 is 70 m−1, (d) Pulse train of two-pulse mode-locking when g0 is 320 m−1, (e) Pulse train of 3rd order harmonic mode-locking when g0 is 360 m−1.
Fig. 4
Fig. 4 The calculated instability as a function of g0 and MD for 1-GHz repetition rate FML-AFLs with the total net cavity dispersion of (a) Dtotal = −0.1 ps2, (b) Dtotal = −0.3 ps2, (c) Dtotal = −0.5 ps2, (d) Dtotal = −0.8 ps2 and (e) Dtotal = −1 ps2.
Fig. 5
Fig. 5 The calculated instability as a function of g0 and MD for 1-GHz repetition rate FML-AFLs with a net cavity dispersion of −1 ps2 and with the output coupler reflectivity of (a) R = 30%, (b) R = 50%, (c) R = 70%, (d) R = 80%, and (e) R = 90%.
Fig. 6
Fig. 6 Calculated pulse width, spectral bandwidth, and TBP of the 1-GHz repetition rate FML-AFLs operating in the AD-regime with (a) g0 = 50~200 m−1, R = 70%, MD = 20%, Dtotal = −0.5 ps2, (b) R = 30% ~90%, g0 = 100 m−1, MD = 20%, Dtotal = −0.5 ps2, (c) Dtotal = −0.1~-1 ps2, R = 70%, MD = 20%, g0 = 100 m−1, (d) MD = 10% to 90%, g0 = 100 m−1, R = 70%, Dtotal = −0.5 ps2.
Fig. 7
Fig. 7 The calculated instability as a function of g0 and MD for 1-GHz repetition rate FML-AFLs with a total net cavity dispersion of (a) Dtotal = 0.1 ps2, (b) Dtotal = 0.3 ps2, (c) Dtotal = 0.5 ps2, (d) Dtotal = 0.8 ps2, (e) Dtotal = 1 ps2.
Fig. 8
Fig. 8 The calculated instability as a function of g0 and MD for 1-GHz repetition rate FML-AFLs with a Dtotal of 1 ps2 when the spectral bandwidth of the CFBG is (a) BW = 1 nm, (b) BW = 5 nm, (c) BW = 10 nm, (d) BW = 20 nm and (e) BW = 30 nm.
Fig. 9
Fig. 9 Calculated pulse width, spectral bandwidth, and TBP of the 1- GHz repetition rate FML-AFLs operating in the ND-regime with (a) g0 = 100~700 m−1, R = 70%, MD = 20%, Dtotal = 0.5 ps2, (b) MD = 10% ~90%, g0 = 100 m−1, R = 70%, Dtotal = 0.5 ps2, (c) Dtotal = 0.1~1 ps2, R = 70%, MD = 20%, g0 = 100 m−1 and (d) BW = 5 to 30 nm, g0 = 300 m−1, MD = 60%, R = 70%, Dtotal = 0.5 ps2.
Fig. 10
Fig. 10 The calculated instability as a function of g0 and MD for the FML-AFLs operating in the AD-regime with a repetition rate of (a) 5 GHz, (b) 10 GHz and (c) 20 GHz, Dtotal of −5000 fs2, and R of 70%.
Fig. 11
Fig. 11 The calculated instability as a function g0 and MD for the FML-AFLs operating in the ND-regime with a repetition rate of (a) 5 GHz, (b) 10 GHz and (c) 20 GHz, Dtotal of 5000 fs2, and R of 70%.
Fig. 12
Fig. 12 Calculated pulse width, spectral bandwidth, and TBP of the FML-AFLs operating at different repetition rates for (a) g0 = 200 m−1, R = 70%, MD = 15%, Dtotal = −5000 fs2 and (b) g0 = 200 m−1, R = 70%, MD = 15%, Dtotal = 5000 fs2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A z = i β 2 2 2 A t 2 +iγ | A | 2 A+ g 2 A+ g 2 Ω 2 2 A t 2
g= g 0 1+ | A | 2 dt/ E sat
R= R p exp[ ( ω ω 0 ) 2 2Δω ]exp( i D 2 2 ω 2 )
dq( t ) dt = q( t ) q 0 τ A q(t) | A( t ) | 2 E A
ε= k=1 N [ A ( k ) 2 A ( k ) 2 ] 2 k=1 N A ( k ) 2 < 10 5
d= A max A min A max A max = max { pulse peak 1, pulse peak 2, pulse peak 3, , pulse peak n }, n = 1000, A min = min { pulse peak 1, pulse peak 2, pulse peak 3, , pulse peak n }, n = 1000.

Metrics