Abstract

In this paper, we present inphase-quadrature (IQ) modulation in the O-band using dual parallel Mach-Zehnder modulators on the silicon photonics platform. The detailed design of the IQ modulator (IQM) is discussed. We then report the DC and small signal characterization of the device and investigate the performance of the device in a coherent transmission system. A bit rate of 180 Gb/s with 16-QAM modulation is achieved over 20 km of single-mode fiber without any chromatic dispersion compensation. Furthermore, we demonstrate that 77 Gbaud QPSK transmission can be achieved with a low drive voltage of 3 Vpp.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications

Eslam El-Fiky, Mohamed Osman, Mohammed Sowailem, Alireza Samani, David Patel, Rui Li, Md. G. Saber, Yun Wang, Nicolas Abadia, Yannick D’Mello, and David V. Plant
Opt. Express 25(24) 30336-30348 (2017)

Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation

Jiachuan Lin, Hassan Sepehrian, Leslie A. Rusch, and Wei Shi
Opt. Express 27(4) 5610-5619 (2019)

Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator

Alireza Samani, David Patel, Mathieu Chagnon, Eslam El-Fiky, Rui Li, Maxime Jacques, Nicolás Abadía, Venkat Veerasubramanian, and David V. Plant
Opt. Express 25(12) 13252-13262 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 2016-2021,” white paper-c11–738085, 2016.
  2. IEEE P802.3bs 400 GbE Task Force, http://www.ieee802.org/3/bs/index.html
  3. E. El-Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’Mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications,” Opt. Express 25(24), 30336–30348 (2017).
    [Crossref] [PubMed]
  4. P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y. K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
    [Crossref] [PubMed]
  5. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  6. D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
    [Crossref] [PubMed]
  7. R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
    [Crossref]
  8. R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
    [Crossref]
  9. R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Sowailem, Q. Zhong, and D. Plant, “An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances,” IEEE Photonics J. 9, 1–11 (2017).
    [Crossref]
  10. H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
    [Crossref] [PubMed]
  11. C. Doerr, L. Chen, T. Nielsen, R. Aroca, L. Chen, M. Banaee, S. Azemati, G. McBrien, S. Y. Park, J. Geyer, B. Guan, B. Mikkelsen, C. Rasmussen, M. Givehchi, Z. Wang, B. Potsaid, H. C. Lee, E. Swanson, and J. G. Fujimoto, “O, E, S, C, and L band silicon photonics coherent modulator/receiver,” in Optical Fiber Communication Conference (IEEE, 2016) paper Th5C.4.
    [Crossref]
  12. J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
    [Crossref]
  13. H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
    [Crossref]
  14. P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y. K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
    [Crossref] [PubMed]
  15. A. Shastri, C. Muzio, M. Webster, G. Jeans, P. Metz, S. Sunder, B. Chattin, B. Dama, and K. Shastri, “Ultra-low-power single-polarization QAM-16 generation without DAC using a CMOS photonics based segmented modulator,” J. Lightwave Technol. 33(6), 1255–1260 (2015).
    [Crossref]
  16. J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQM for 84 gbaud 16QAM and 70 gbaud 32QAM,” in 2018 Optical Fiber Communications Conference and Exposition (OFC) (Optical Society of America, 2018) pp. 1–3.
  17. Z. Wang, Y. Gao, J. Cartledge, E. Huante-Ceron, D. Logan, and A. Knights, “DSP-enabled 104-Gb/s 16-QAM nyquist subcarrier modulation using a silicon micro-ring resonator,” IEEE Photonics Technol. Lett. 30(17), 1571–1574 (2018).
    [Crossref]
  18. J. Ding, S. Shao, L. Zhang, X. Fu, and L. Yang, “Silicon 16-QAM optical modulator driven by four binary electrical signals,” Opt. Lett. 42(8), 1636–1639 (2017).
    [Crossref] [PubMed]
  19. D. Perez-Galacho, L. Bramerie, C. Baudot, M. Chaibi, S. Messaoudene, N. Vulliet, L. Vivien, F. Boeuf, C. Peucheret, and D. Marris-Morini, “QPSK modulation in the O-band using a single dual-drive Mach–Zehnder silicon modulator,” J. Lightwave Technol. 36(18), 3935–3940 (2018).
    [Crossref]
  20. A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
    [Crossref]
  21. A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
    [Crossref] [PubMed]
  22. R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
    [Crossref]
  23. D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, and D. V. Plant, “A 4×4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference (IEEE, 2014), pp. 104–105.
    [Crossref]
  24. Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Express 22(9), 11367–11375 (2014).
    [Crossref] [PubMed]
  25. M. Jacques, A. Samani, D. Patel, E. El-Fiky, M. Morsy-Osman, T. Hoang, M. G. Saber, L. Xu, J. Sonkoly, M. Ayliffe, and D. V. Plant, “Modulator material impact on chirp, DSP, and performance in coherent digital links: comparison of the lithium niobate, indium phosphide, and silicon platforms,” Opt. Express 26(17), 22471–22490 (2018).
    [Crossref] [PubMed]
  26. E. El-Fiky, M. Osman, A. Samani, C. Gamache, M. H. Ayliffe, J. Li, M. Jacques, Y. Wang, A. Kumar, and D. V. Plant, “First demonstration of a 400 Gb/s 4λ CWDM TOSA for datacenter optical interconnects,” Opt. Express 26(16), 19742–19749 (2018).
    [Crossref] [PubMed]
  27. A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
    [Crossref]
  28. P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
    [Crossref] [PubMed]
  29. M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-µm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 2015) pp. 1–3.

2018 (4)

2017 (5)

2016 (4)

H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
[Crossref] [PubMed]

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y. K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
[Crossref] [PubMed]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

2015 (5)

2014 (3)

2012 (1)

2009 (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Abadia, N.

Abadía, N.

Absil, P.

Ayliffe, M.

Ayliffe, M. H.

Baehr-Jones, T.

Balakrishnan, S.

Baudot, C.

Bauwelinck, J.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Bergman, K.

Boeuf, F.

Bramerie, L.

Buhl, L. L.

Cartledge, J.

Z. Wang, Y. Gao, J. Cartledge, E. Huante-Ceron, D. Logan, and A. Knights, “DSP-enabled 104-Gb/s 16-QAM nyquist subcarrier modulation using a silicon micro-ring resonator,” IEEE Photonics Technol. Lett. 30(17), 1571–1574 (2018).
[Crossref]

Chagnon, M.

Chaibi, M.

Chandrasekhar, S.

Chattin, B.

Cheben, P.

Chen, H.

Chen, J.

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

Chen, L.

Chen, X.

Chen, Y. K.

D’Mello, Y.

Dama, B.

De Coster, J.

De Heyn, P.

Ding, J.

Ding, R.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
[Crossref]

Dong, P.

El-Fiky, E.

E. El-Fiky, M. Osman, A. Samani, C. Gamache, M. H. Ayliffe, J. Li, M. Jacques, Y. Wang, A. Kumar, and D. V. Plant, “First demonstration of a 400 Gb/s 4λ CWDM TOSA for datacenter optical interconnects,” Opt. Express 26(16), 19742–19749 (2018).
[Crossref] [PubMed]

M. Jacques, A. Samani, D. Patel, E. El-Fiky, M. Morsy-Osman, T. Hoang, M. G. Saber, L. Xu, J. Sonkoly, M. Ayliffe, and D. V. Plant, “Modulator material impact on chirp, DSP, and performance in coherent digital links: comparison of the lithium niobate, indium phosphide, and silicon platforms,” Opt. Express 26(17), 22471–22490 (2018).
[Crossref] [PubMed]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

E. El-Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’Mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications,” Opt. Express 25(24), 30336–30348 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Sowailem, Q. Zhong, and D. Plant, “An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances,” IEEE Photonics J. 9, 1–11 (2017).
[Crossref]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Fu, X.

Gamache, C.

Gao, Y.

Z. Wang, Y. Gao, J. Cartledge, E. Huante-Ceron, D. Logan, and A. Knights, “DSP-enabled 104-Gb/s 16-QAM nyquist subcarrier modulation using a silicon micro-ring resonator,” IEEE Photonics Technol. Lett. 30(17), 1571–1574 (2018).
[Crossref]

Ghosh, S.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

Gould, M.

Hoang, T.

Hochberg, M.

Huante-Ceron, E.

Z. Wang, Y. Gao, J. Cartledge, E. Huante-Ceron, D. Logan, and A. Knights, “DSP-enabled 104-Gb/s 16-QAM nyquist subcarrier modulation using a silicon micro-ring resonator,” IEEE Photonics Technol. Lett. 30(17), 1571–1574 (2018).
[Crossref]

Jacques, M.

Janz, S.

Jeans, G.

Kim, K.

Knights, A.

Z. Wang, Y. Gao, J. Cartledge, E. Huante-Ceron, D. Logan, and A. Knights, “DSP-enabled 104-Gb/s 16-QAM nyquist subcarrier modulation using a silicon micro-ring resonator,” IEEE Photonics Technol. Lett. 30(17), 1571–1574 (2018).
[Crossref]

Kumar, A.

Lapointe, J.

Larouche, C.

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-µm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 2015) pp. 1–3.

Latrasse, C.

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-µm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 2015) pp. 1–3.

Lepage, G.

Li, J.

Li, Q.

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Li, R.

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

E. El-Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’Mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications,” Opt. Express 25(24), 30336–30348 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Sowailem, Q. Zhong, and D. Plant, “An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances,” IEEE Photonics J. 9, 1–11 (2017).
[Crossref]

Li, X.

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

Lim, A.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
[Crossref]

Lim, A. E.

Liu, L.

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

Liu, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
[Crossref]

Lo, G.

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Lo, G. Q.

Logan, D.

Z. Wang, Y. Gao, J. Cartledge, E. Huante-Ceron, D. Logan, and A. Knights, “DSP-enabled 104-Gb/s 16-QAM nyquist subcarrier modulation using a silicon micro-ring resonator,” IEEE Photonics Technol. Lett. 30(17), 1571–1574 (2018).
[Crossref]

Ma, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
[Crossref]

Magill, P.

Marris-Morini, D.

Messaoudene, S.

Metz, P.

Miller, D.

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Moeneclaey, B.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Morsy-Osman, M.

Muzio, C.

Okonkwo, C.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Ophir, N.

Osman, M.

Padmaraju, K.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Painchaud, Y.

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-µm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 2015) pp. 1–3.

Patel, D.

M. Jacques, A. Samani, D. Patel, E. El-Fiky, M. Morsy-Osman, T. Hoang, M. G. Saber, L. Xu, J. Sonkoly, M. Ayliffe, and D. V. Plant, “Modulator material impact on chirp, DSP, and performance in coherent digital links: comparison of the lithium niobate, indium phosphide, and silicon platforms,” Opt. Express 26(17), 22471–22490 (2018).
[Crossref] [PubMed]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

E. El-Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’Mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications,” Opt. Express 25(24), 30336–30348 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Sowailem, Q. Zhong, and D. Plant, “An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances,” IEEE Photonics J. 9, 1–11 (2017).
[Crossref]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

Pelletier, F.

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-µm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 2015) pp. 1–3.

Perez-Galacho, D.

Peucheret, C.

Picard, M.-J.

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-µm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 2015) pp. 1–3.

Plant, D.

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Sowailem, Q. Zhong, and D. Plant, “An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances,” IEEE Photonics J. 9, 1–11 (2017).
[Crossref]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

Plant, D. V.

E. El-Fiky, M. Osman, A. Samani, C. Gamache, M. H. Ayliffe, J. Li, M. Jacques, Y. Wang, A. Kumar, and D. V. Plant, “First demonstration of a 400 Gb/s 4λ CWDM TOSA for datacenter optical interconnects,” Opt. Express 26(16), 19742–19749 (2018).
[Crossref] [PubMed]

M. Jacques, A. Samani, D. Patel, E. El-Fiky, M. Morsy-Osman, T. Hoang, M. G. Saber, L. Xu, J. Sonkoly, M. Ayliffe, and D. V. Plant, “Modulator material impact on chirp, DSP, and performance in coherent digital links: comparison of the lithium niobate, indium phosphide, and silicon platforms,” Opt. Express 26(17), 22471–22490 (2018).
[Crossref] [PubMed]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

E. El-Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’Mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications,” Opt. Express 25(24), 30336–30348 (2017).
[Crossref] [PubMed]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

Poulin, M.

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-µm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 2015) pp. 1–3.

Roelkens, G.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
[Crossref] [PubMed]

Saber, M. G.

Samani, A.

M. Jacques, A. Samani, D. Patel, E. El-Fiky, M. Morsy-Osman, T. Hoang, M. G. Saber, L. Xu, J. Sonkoly, M. Ayliffe, and D. V. Plant, “Modulator material impact on chirp, DSP, and performance in coherent digital links: comparison of the lithium niobate, indium phosphide, and silicon platforms,” Opt. Express 26(17), 22471–22490 (2018).
[Crossref] [PubMed]

E. El-Fiky, M. Osman, A. Samani, C. Gamache, M. H. Ayliffe, J. Li, M. Jacques, Y. Wang, A. Kumar, and D. V. Plant, “First demonstration of a 400 Gb/s 4λ CWDM TOSA for datacenter optical interconnects,” Opt. Express 26(16), 19742–19749 (2018).
[Crossref] [PubMed]

E. El-Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’Mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications,” Opt. Express 25(24), 30336–30348 (2017).
[Crossref] [PubMed]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Sowailem, Q. Zhong, and D. Plant, “An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances,” IEEE Photonics J. 9, 1–11 (2017).
[Crossref]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

Schmid, J. H.

Shao, S.

Shastri, A.

Shastri, K.

Shen, L.

Sinsky, J. H.

Soenen, W.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Sonkoly, J.

Sowailem, M.

Sunder, S.

Vachon, M.

Van Campenhout, J.

Van Uden, R.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Van Weerdenburg, J.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Veerasubramanian, V.

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

Verbist, J.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Verheyen, P.

Vivien, L.

Vulliet, N.

Wang, S.

Wang, T.

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

Wang, Y.

Wang, Z.

Z. Wang, Y. Gao, J. Cartledge, E. Huante-Ceron, D. Logan, and A. Knights, “DSP-enabled 104-Gb/s 16-QAM nyquist subcarrier modulation using a silicon micro-ring resonator,” IEEE Photonics Technol. Lett. 30(17), 1571–1574 (2018).
[Crossref]

Webster, M.

Wong, C.

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

Xie, C.

Xing, Z.

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Sowailem, Q. Zhong, and D. Plant, “An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances,” IEEE Photonics J. 9, 1–11 (2017).
[Crossref]

Xu, D.-X.

Xu, L.

Yang, L.

Yang, R.

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

Yang, S.

Yang, Y.

Yao, W.

Yin, X.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Zhang, J.

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Zhang, L.

Zhang, Y.

Zhong, Q.

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Sowailem, Q. Zhong, and D. Plant, “An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances,” IEEE Photonics J. 9, 1–11 (2017).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

Zhou, L.

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

Zhou, Y.

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

Zhu, H.

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

IEEE Photonics J. (4)

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Sowailem, Q. Zhong, and D. Plant, “An 80 Gb/s silicon photonic modulator based on the principle of overlapped resonances,” IEEE Photonics J. 9, 1–11 (2017).
[Crossref]

H. Zhu, L. Zhou, T. Wang, L. Liu, C. Wong, Y. Zhou, R. Yang, X. Li, and J. Chen, “Optimized silicon QPSK modulator with 64-Gb/s modulation speed,” IEEE Photonics J. 7(3), 1–6 (2015).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. Plant, “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photonics Technol. Lett. 29(12), 1046–1049 (2017).
[Crossref]

J. Verbist, J. Zhang, B. Moeneclaey, W. Soenen, J. Van Weerdenburg, R. Van Uden, C. Okonkwo, J. Bauwelinck, G. Roelkens, and X. Yin, “A 40-GBd QPSK/16-QAM integrated silicon coherent receiver,” IEEE Photonics Technol. Lett. 28(19), 2070–2073 (2016).
[Crossref]

Z. Wang, Y. Gao, J. Cartledge, E. Huante-Ceron, D. Logan, and A. Knights, “DSP-enabled 104-Gb/s 16-QAM nyquist subcarrier modulation using a silicon micro-ring resonator,” IEEE Photonics Technol. Lett. 30(17), 1571–1574 (2018).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (1)

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. Lim, G. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Opt. Express (10)

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express 25(12), 13252–13262 (2017).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Express 22(9), 11367–11375 (2014).
[Crossref] [PubMed]

M. Jacques, A. Samani, D. Patel, E. El-Fiky, M. Morsy-Osman, T. Hoang, M. G. Saber, L. Xu, J. Sonkoly, M. Ayliffe, and D. V. Plant, “Modulator material impact on chirp, DSP, and performance in coherent digital links: comparison of the lithium niobate, indium phosphide, and silicon platforms,” Opt. Express 26(17), 22471–22490 (2018).
[Crossref] [PubMed]

E. El-Fiky, M. Osman, A. Samani, C. Gamache, M. H. Ayliffe, J. Li, M. Jacques, Y. Wang, A. Kumar, and D. V. Plant, “First demonstration of a 400 Gb/s 4λ CWDM TOSA for datacenter optical interconnects,” Opt. Express 26(16), 19742–19749 (2018).
[Crossref] [PubMed]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
[Crossref] [PubMed]

E. El-Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’Mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications,” Opt. Express 25(24), 30336–30348 (2017).
[Crossref] [PubMed]

P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y. K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
[Crossref] [PubMed]

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y. K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (6)

Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 2016-2021,” white paper-c11–738085, 2016.

IEEE P802.3bs 400 GbE Task Force, http://www.ieee802.org/3/bs/index.html

C. Doerr, L. Chen, T. Nielsen, R. Aroca, L. Chen, M. Banaee, S. Azemati, G. McBrien, S. Y. Park, J. Geyer, B. Guan, B. Mikkelsen, C. Rasmussen, M. Givehchi, Z. Wang, B. Potsaid, H. C. Lee, E. Swanson, and J. G. Fujimoto, “O, E, S, C, and L band silicon photonics coherent modulator/receiver,” in Optical Fiber Communication Conference (IEEE, 2016) paper Th5C.4.
[Crossref]

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQM for 84 gbaud 16QAM and 70 gbaud 32QAM,” in 2018 Optical Fiber Communications Conference and Exposition (OFC) (Optical Society of America, 2018) pp. 1–3.

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel spot-size converter for optical fiber to sub-µm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment,” in Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 2015) pp. 1–3.

D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, and D. V. Plant, “A 4×4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference (IEEE, 2014), pp. 104–105.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the IQM.
Fig. 2
Fig. 2 The PN junction cross-section of the modulator, with dimensions: Wn + + = 7 μm, Wn + = 0.78 μm, Wn = 0.42 μm, Wp = 0.4 μm, Wp + = μm, Wp + + = 28.6 μm, Hrib = 0.22 μm, Hslab = 0.09 μm.
Fig. 3
Fig. 3 (a) Close up top-view of the parent tuner, (b) single section of the thermo-optic tuners, (c) micro-image of the tuners and ball bonded on-chip 50 Ω termination, and (d) cross section of the thermo-optic tuners, Wrib = 0.4 μm, Wi = 2 μm, Wn + + = 1 μm.
Fig. 4
Fig. 4 (a) IV curve of the child and parent MZM’s thermo-optic tuners, (b) the phase-change (ΔΦ) versus voltage of the thermo-optic tuners, and (c) the phase shift versus voltage of MZM’s PN junction phase shifter.
Fig. 5
Fig. 5 EO and S11 response of the IQM.
Fig. 6
Fig. 6 Schematic of the experimental setup. TDL: Tunable delay line, SMF: single mode fiber, VOA: variable optical attenuator, PC: Polarization Controller.
Fig. 7
Fig. 7 Transmitter and receiver DSP stack.
Fig. 8
Fig. 8 (a) 56 Gbaud QPSK constellation after 20 km of SMF fiber, (b) 40 Gbaud 16QAM constellation after 20 km of SMF, and (c) BER versus the baudrate for QPSK and 16QAM modulation. The black and red horizontal dashed lines present the HD-FEC and soft decision (SD)-FEC threshold respectively.
Fig. 9
Fig. 9 BER performance of the transmission system versus drive voltage applied to the IQM for (a) QPSK and (b) 16QAM. BER performance of the transmission system versus received optical power for (c) QPSK and (d) 16QAM.

Metrics