Abstract

We demonstrate, for the first time, use of a stretched single mode-graded-index multimode-single mode fiber (SMF-GIMF-SMF) structure as a saturable absorber (SA) for a passively mode-locked Tm fiber laser. Such an all-fiber SA was based on the nonlinear multimode interference (NL-MMI). Stable fundamentally mode-locking operation was obtained at a pump threshold of 100mW. The output soliton pulses had a center wavelength, spectral width, pulse duration, and repetition rate of 1931 nm, 3.77 nm, 1.2ps, and 19.94 MHz, respectively. Furthermore, the SMF-GIMF-SMF structure can also be used as a filter to tune the laser. Continuously tunable mode-locking was experimentally demonstrated only by varying the stretched length of GIMF. Our results indicate that the stretched SMF-GIMF-SMF structure could serve as a SA together with a bandpass filter, which makes it advantageous for wavelength-tunable mode locking lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber

Huanhuan Li, Zhaokun Wang, Can Li, Junjie Zhang, and Shiqing Xu
Opt. Express 25(22) 26546-26553 (2017)

Saturable absorber based on a single mode fiber – graded index fiber – single mode fiber structure with inner micro-cavity

Fan Yang, D. N. Wang, Zhaokun Wang, Liujiang Li, Chun-Liu Zhao, Ben Xu, Shangzhong Jin, Shi-Ying Cao, and Zhan-Jun Fang
Opt. Express 26(2) 927-934 (2018)

C-band wavelength tunable mode-locking fiber laser based on CD-SMS structure

Hongwei Zhang, Liang Jin, Yingtian Xu, He Zhang, Linlin Shi, Tiebin Wang, Wei Pan, and Xiaohui Ma
Appl. Opt. 58(21) 5788-5793 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
    [Crossref]
  2. W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel) 10(4), 2492–2510 (2010).
    [Crossref] [PubMed]
  3. M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, and M. Richardson, “High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system,” Opt. Lett. 39(5), 1212–1215 (2014).
    [Crossref] [PubMed]
  4. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
    [Crossref] [PubMed]
  5. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
    [Crossref]
  6. H. Li, J. Liu, Z. Cheng, J. Xu, F. Tan, and P. Wang, “Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers,” Opt. Express 23(5), 6292–6303 (2015).
    [Crossref] [PubMed]
  7. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-dopedfiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
    [Crossref]
  8. Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
    [Crossref]
  9. M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
    [Crossref] [PubMed]
  10. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
    [Crossref] [PubMed]
  11. B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26(18), 22750–22760 (2018).
    [Crossref] [PubMed]
  12. B. G. Bo Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics,” Chin. Opt. Lett. 16(2), 20004 (2018).
    [Crossref]
  13. Y. Wang, J. Li, B. Zhai, Y. Hu, K. Mo, R. Lu, and Y. Liu, “Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper,” Opt. Express 24(14), 15299–15306 (2016).
    [Crossref] [PubMed]
  14. Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
    [Crossref] [PubMed]
  15. G. Yang, Y. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μ m region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
    [Crossref]
  16. C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
    [Crossref]
  17. L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber optics: massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1 (2018).
    [Crossref]
  18. A. Mecozzi, C. Antonelli, and M. Shtaif, “Nonlinear propagation in multi-mode fibers in the strong coupling regime,” Opt. Express 20(11), 11673–11678 (2012).
    [Crossref] [PubMed]
  19. A. Mafi, “Pulse propagation in a short nonlinear graded-index multimode optical fiber,” J. Lightwave Technol. 30(17), 2803–2811 (2012).
    [Crossref]
  20. S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations,” J. Lightwave Technol. 31(3), 398–406 (2013).
    [Crossref]
  21. W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
    [Crossref] [PubMed]
  22. L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23(3), 3492–3506 (2015).
    [Crossref] [PubMed]
  23. E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Am. B 33(2), 144–150 (2016).
    [Crossref]
  24. E. Nazemosadat, H. Pourbeyram, and A. Mafi, “An analytical approach for calculating the FWM idler and signal wavelengths in a graded index multimode optical fiber,” Frontiers in Optics/Laser Science, JW2A.40, (2015).
    [Crossref]
  25. H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed analysis of amplified spontaneous four-wave mixing in a multimode fiber,” Frontiers in Optics/Laser Science, FW5F.3, (2015).
    [Crossref]
  26. H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
    [Crossref]
  27. G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
    [Crossref] [PubMed]
  28. D. Ceoldo, K. Krupa, A. Tonello, V. Couderc, D. Modotto, U. Minoni, G. Millot, and S. Wabnitz, “Second harmonic generation in multimode graded-index fibers: spatial beam cleaning and multiple harmonic sideband generation,” Opt. Lett. 42(5), 971–974 (2017).
    [Crossref] [PubMed]
  29. M. A. Eftekhar, Z. Sanjabi-Eznaveh, J. E. Antonio-Lopez, F. W. Wise, D. N. Christodoulides, and R. Amezcua-Correa, “Instant and efficient second-harmonic generation and downconversion in unprepared graded-index multimode fibers,” Opt. Lett. 42(17), 3478–3481 (2017).
    [Crossref] [PubMed]
  30. E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Am. B 30(5), 1357–1367 (2013).
    [Crossref]
  31. E. Nazemosadat and A. Mafi, “Nonlinear switching in multicore versus multimode waveguide junctions for mode-locked laser applications,” Opt. Express 21(25), 30739–30745 (2013).
    [Crossref] [PubMed]
  32. W. S. Mohammed, P. W. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [Crossref] [PubMed]
  33. A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36(18), 3596–3598 (2011).
    [Crossref] [PubMed]
  34. S. Fu, Q. Sheng, X. Zhu, W. Shi, J. Yao, G. Shi, R. A. Norwood, and N. Peyghambarian, “Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference,” Opt. Express 23(13), 17255–17262 (2015).
    [Crossref] [PubMed]
  35. H. Li, Z. Wang, C. Li, J. Zhang, and S. Xu, “Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber,” Opt. Express 25(22), 26546–26553 (2017).
    [Crossref] [PubMed]
  36. areZ. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Er-doped mode-locked fiber laser with a hybrid structure of a step-index–graded-index multimode fiber as the saturable absorber,” J. Lightwave Technol. 35(24), 5280–5285 (2017).
    [Crossref]
  37. F. Yang, D. N. Wang, Z. Wang, L. Li, C. L. Zhao, B. Xu, S. Jin, S. Y. Cao, and Z. J. Fang, “Saturable absorber based on a single mode fiber - graded index fiber - single mode fiber structure with inner micro-cavity,” Opt. Express 26(2), 927–934 (2018).
    [Crossref] [PubMed]
  38. U. Teğin and B. Ortaç, “All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber,” Opt. Lett. 43(7), 1611–1614 (2018).
    [Crossref] [PubMed]
  39. Z. Wang, D. N. Wang, F. Yang, L. Li, C. L. Zhao, B. Xu, S. Jin, S. Y. Cao, and Z. J. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43(9), 2078–2081 (2018).
    [Crossref] [PubMed]
  40. P. Zhang, T. Wang, W. Ma, K. Dong, and H. Jiang, “Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect,” Appl. Opt. 54(15), 4667–4671 (2015).
    [Crossref] [PubMed]
  41. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. LiKamWa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324 (2010).
    [Crossref] [PubMed]
  42. E. Li, “Temperature compensation of multimode-interference-based fiber devices,” Opt. Lett. 32(14), 2064–2066 (2007).
    [Crossref] [PubMed]
  43. A. M. Hatta, Y. Semenova, Q. Wu, and G. Farrell, “Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme,” Appl. Opt. 49(3), 536–541 (2010).
    [Crossref] [PubMed]
  44. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007).
    [Crossref] [PubMed]
  45. S. J. Peng, Y. N. Liu, J. L. Xue, A. N. Zhang, and J. Z. Zhang, “Design of multi-mode fiber tunable optical filter based on strain,” Chin. J. Lasers 38, 505004 (2011).
    [Crossref]

2018 (6)

2017 (4)

2016 (5)

G. Yang, Y. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μ m region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Am. B 33(2), 144–150 (2016).
[Crossref]

G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
[Crossref] [PubMed]

Y. Wang, J. Li, B. Zhai, Y. Hu, K. Mo, R. Lu, and Y. Liu, “Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper,” Opt. Express 24(14), 15299–15306 (2016).
[Crossref] [PubMed]

2015 (8)

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23(3), 3492–3506 (2015).
[Crossref] [PubMed]

Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
[Crossref] [PubMed]

H. Li, J. Liu, Z. Cheng, J. Xu, F. Tan, and P. Wang, “Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers,” Opt. Express 23(5), 6292–6303 (2015).
[Crossref] [PubMed]

P. Zhang, T. Wang, W. Ma, K. Dong, and H. Jiang, “Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect,” Appl. Opt. 54(15), 4667–4671 (2015).
[Crossref] [PubMed]

S. Fu, Q. Sheng, X. Zhu, W. Shi, J. Yao, G. Shi, R. A. Norwood, and N. Peyghambarian, “Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference,” Opt. Express 23(13), 17255–17262 (2015).
[Crossref] [PubMed]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (6)

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-dopedfiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref] [PubMed]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations,” J. Lightwave Technol. 31(3), 398–406 (2013).
[Crossref]

E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Am. B 30(5), 1357–1367 (2013).
[Crossref]

E. Nazemosadat and A. Mafi, “Nonlinear switching in multicore versus multimode waveguide junctions for mode-locked laser applications,” Opt. Express 21(25), 30739–30745 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (3)

2007 (2)

2006 (1)

2005 (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

Abramski, K. M.

Agrawal, G. P.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations,” J. Lightwave Technol. 31(3), 398–406 (2013).
[Crossref]

Amezcua Correa, R.

Amezcua-Correa, R.

Antonelli, C.

Antonio Lopez, J.

Antonio-Lopez, J. E.

Bo Guo, B. G.

B. G. Bo Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics,” Chin. Opt. Lett. 16(2), 20004 (2018).
[Crossref]

Byer, R. L.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Cao, S.

Cao, S. Y.

Castillo-Guzman, A.

Ceoldo, D.

Chen, K. P.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-dopedfiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Chen, R.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Chen, T.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-dopedfiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Cheng, Z.

Christodoulides, D.

Christodoulides, D. N.

Couderc, V.

Digonnet, M. J. F.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Dong, K.

Eftekhar, M. A.

Essiambre, R.

Fang, Z.

Fang, Z. J.

Farrell, G.

Feng, D. J.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Fried, N. M.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

Fu, S.

Fuchs, P.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel) 10(4), 2492–2510 (2010).
[Crossref] [PubMed]

Gaida, C.

Ge, Y. Q.

Gebhardt, M.

Gehlich, N.

Gerschuetz, F.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel) 10(4), 2492–2510 (2010).
[Crossref] [PubMed]

Gu, X.

Guo, B.

Hatta, A. M.

Hildebrandt, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel) 10(4), 2492–2510 (2010).
[Crossref] [PubMed]

Hofmann, P.

Hu, W.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Hu, Y.

Huang, H.

Jeon, C.

Jhon, Y. M.

Jiang, H.

Jin, S.

Jung, M.

Kadwani, P.

Koeth, J.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel) 10(4), 2492–2510 (2010).
[Crossref] [PubMed]

Kong, L.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Koo, J.

Kowalczyk, M.

Krupa, K.

Lee, J.

Lee, J. H.

Li, C.

Li, E.

Li, H.

Li, J.

Li, L.

Li, M.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-dopedfiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Li, N.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Li, X.

LiKamWa, P.

Liu, J.

Liu, Y.

Liu, Y. N.

S. J. Peng, Y. N. Liu, J. L. Xue, A. N. Zhang, and J. Z. Zhang, “Design of multi-mode fiber tunable optical filter based on strain,” Chin. J. Lasers 38, 505004 (2011).
[Crossref]

Liu, Z. B.

G. Yang, Y. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μ m region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Lopez-Galmiche, G.

Lou, J. C.

G. Yang, Y. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μ m region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Lu, R.

Lu, Y.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-dopedfiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Lushnikov, P. M.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber optics: massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1 (2018).
[Crossref]

Ma, W.

Macherzynski, W.

Mafi, A.

May-Arrioja, D. A.

Mecozzi, A.

Millot, G.

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Minoni, U.

Mo, K.

Modotto, D.

Mohammed, W. S.

Mumtaz, S.

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

Naehle, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel) 10(4), 2492–2510 (2010).
[Crossref] [PubMed]

Nazemosadat, E.

Ning, D.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Niu, C. N.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Norwood, R. A.

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Ortaç, B.

Paletko, P.

Park, J.

Peng, S. J.

S. J. Peng, Y. N. Liu, J. L. Xue, A. N. Zhang, and J. Z. Zhang, “Design of multi-mode fiber tunable optical filter based on strain,” Chin. J. Lasers 38, 505004 (2011).
[Crossref]

Peyghambarian, N.

Pourbeyram, H.

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Am. B 33(2), 144–150 (2016).
[Crossref]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Qin, G. S.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Renninger, W. H.

Richardson, M.

Rudy, C. W.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Salvin, C. J.

Sanjabi Eznaveh, Z.

Sanjabi-Eznaveh, Z.

Schülzgen, A.

Selvas-Aguilar, R.

Semenova, Y.

Shah, L.

Sheng, Q.

Shi, G.

Shi, W.

Shtaif, M.

Shum, P. P.

Sincore, A.

Smith, P. W.

Sobon, G.

Sotor, J.

Tan, F.

Tang, Y.

Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
[Crossref] [PubMed]

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Tegin, U.

Tian, Z.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Tonello, A.

Wabnitz, S.

Wang, D. H.

Wang, D. N.

Wang, P.

Wang, Q.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-dopedfiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Wang, Q. J.

Wang, S. H.

Wang, T.

Wang, Y.

Y. Wang, J. Li, B. Zhai, Y. Hu, K. Mo, R. Lu, and Y. Liu, “Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper,” Opt. Express 24(14), 15299–15306 (2016).
[Crossref] [PubMed]

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Wang, Z.

Wang, Z. H.

G. Yang, Y. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μ m region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Wang, Z. K.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Wang, Z. X.

Wei, L.

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Wise, F.

Wise, F. W.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber optics: massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1 (2018).
[Crossref]

M. A. Eftekhar, Z. Sanjabi-Eznaveh, J. E. Antonio-Lopez, F. W. Wise, D. N. Christodoulides, and R. Amezcua-Correa, “Instant and efficient second-harmonic generation and downconversion in unprepared graded-index multimode fibers,” Opt. Lett. 42(17), 3478–3481 (2017).
[Crossref] [PubMed]

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23(3), 3492–3506 (2015).
[Crossref] [PubMed]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref] [PubMed]

Wright, L. G.

Wu, K.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Wu, Q.

Wu, Z. X.

Xu, B.

Xu, J.

H. Li, J. Liu, Z. Cheng, J. Xu, F. Tan, and P. Wang, “Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers,” Opt. Express 23(5), 6292–6303 (2015).
[Crossref] [PubMed]

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Xu, S.

Xue, J. L.

S. J. Peng, Y. N. Liu, J. L. Xue, A. N. Zhang, and J. Z. Zhang, “Design of multi-mode fiber tunable optical filter based on strain,” Chin. J. Lasers 38, 505004 (2011).
[Crossref]

Yan, Z.

Yang, F.

Yang, G.

G. Yang, Y. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μ m region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Yang, N.

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

Yao, J.

Yu, T.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Yu, X.

Zeller, W.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel) 10(4), 2492–2510 (2010).
[Crossref] [PubMed]

Zhai, B.

Zhang, A. N.

S. J. Peng, Y. N. Liu, J. L. Xue, A. N. Zhang, and J. Z. Zhang, “Design of multi-mode fiber tunable optical filter based on strain,” Chin. J. Lasers 38, 505004 (2011).
[Crossref]

Zhang, B.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-dopedfiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Zhang, F.

Zhang, F. J.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, J. Y.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Zhang, J. Z.

S. J. Peng, Y. N. Liu, J. L. Xue, A. N. Zhang, and J. Z. Zhang, “Design of multi-mode fiber tunable optical filter based on strain,” Chin. J. Lasers 38, 505004 (2011).
[Crossref]

Zhang, P.

Zhang, Y.

Zhao, C.

Zhao, C. L.

Zhou, J.

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Zhu, X.

Zhu, Z.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber optics: massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1 (2018).
[Crossref]

Ziegler, Z. M.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber optics: massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1 (2018).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-dopedfiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Chin. J. Lasers (1)

S. J. Peng, Y. N. Liu, J. L. Xue, A. N. Zhang, and J. Z. Zhang, “Design of multi-mode fiber tunable optical filter based on strain,” Chin. J. Lasers 38, 505004 (2011).
[Crossref]

Chin. Opt. Lett. (1)

B. G. Bo Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics,” Chin. Opt. Lett. 16(2), 20004 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber optics: massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1 (2018).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (2)

Z. Tian, K. Wu, L. Kong, N. Yang, Y. Wang, R. Chen, W. Hu, J. Xu, and Y. Tang, “Mode-locked thulium fiberlaser with MoS2,” Laser Phys. Lett. 12(6), 065104 (2015).
[Crossref]

G. Yang, Y. Liu, Z. Wang, J. C. Lou, Z. H. Wang, and Z. B. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μ m region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Nat. Commun. (1)

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref] [PubMed]

Opt. Eng. (1)

C. N. Niu, Z. K. Wang, J. Y. Zhang, T. Yu, J. Zhou, N. Li, G. S. Qin, D. Ning, F. J. Zhang, and D. J. Feng, “Tunable dual-wavelength passively mode-locked thulium-doped fiber laser using carbon nanotube,” Opt. Eng. 55(10), 106115 (2016).
[Crossref]

Opt. Express (11)

A. Mecozzi, C. Antonelli, and M. Shtaif, “Nonlinear propagation in multi-mode fibers in the strong coupling regime,” Opt. Express 20(11), 11673–11678 (2012).
[Crossref] [PubMed]

Y. Wang, J. Li, B. Zhai, Y. Hu, K. Mo, R. Lu, and Y. Liu, “Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper,” Opt. Express 24(14), 15299–15306 (2016).
[Crossref] [PubMed]

Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
[Crossref] [PubMed]

H. Li, J. Liu, Z. Cheng, J. Xu, F. Tan, and P. Wang, “Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers,” Opt. Express 23(5), 6292–6303 (2015).
[Crossref] [PubMed]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2-based evanescent field interaction,” Opt. Express 23(15), 19996–20006 (2015).
[Crossref] [PubMed]

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23(3), 3492–3506 (2015).
[Crossref] [PubMed]

S. Fu, Q. Sheng, X. Zhu, W. Shi, J. Yao, G. Shi, R. A. Norwood, and N. Peyghambarian, “Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference,” Opt. Express 23(13), 17255–17262 (2015).
[Crossref] [PubMed]

H. Li, Z. Wang, C. Li, J. Zhang, and S. Xu, “Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber,” Opt. Express 25(22), 26546–26553 (2017).
[Crossref] [PubMed]

E. Nazemosadat and A. Mafi, “Nonlinear switching in multicore versus multimode waveguide junctions for mode-locked laser applications,” Opt. Express 21(25), 30739–30745 (2013).
[Crossref] [PubMed]

F. Yang, D. N. Wang, Z. Wang, L. Li, C. L. Zhao, B. Xu, S. Jin, S. Y. Cao, and Z. J. Fang, “Saturable absorber based on a single mode fiber - graded index fiber - single mode fiber structure with inner micro-cavity,” Opt. Express 26(2), 927–934 (2018).
[Crossref] [PubMed]

B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, “Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber,” Opt. Express 26(18), 22750–22760 (2018).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Opt. Laser Technol. (1)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2μm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Opt. Lett. (11)

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref] [PubMed]

M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, and M. Richardson, “High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system,” Opt. Lett. 39(5), 1212–1215 (2014).
[Crossref] [PubMed]

W. S. Mohammed, P. W. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
[Crossref] [PubMed]

A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36(18), 3596–3598 (2011).
[Crossref] [PubMed]

G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
[Crossref] [PubMed]

D. Ceoldo, K. Krupa, A. Tonello, V. Couderc, D. Modotto, U. Minoni, G. Millot, and S. Wabnitz, “Second harmonic generation in multimode graded-index fibers: spatial beam cleaning and multiple harmonic sideband generation,” Opt. Lett. 42(5), 971–974 (2017).
[Crossref] [PubMed]

M. A. Eftekhar, Z. Sanjabi-Eznaveh, J. E. Antonio-Lopez, F. W. Wise, D. N. Christodoulides, and R. Amezcua-Correa, “Instant and efficient second-harmonic generation and downconversion in unprepared graded-index multimode fibers,” Opt. Lett. 42(17), 3478–3481 (2017).
[Crossref] [PubMed]

U. Teğin and B. Ortaç, “All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber,” Opt. Lett. 43(7), 1611–1614 (2018).
[Crossref] [PubMed]

Z. Wang, D. N. Wang, F. Yang, L. Li, C. L. Zhao, B. Xu, S. Jin, S. Y. Cao, and Z. J. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43(9), 2078–2081 (2018).
[Crossref] [PubMed]

J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. LiKamWa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324 (2010).
[Crossref] [PubMed]

E. Li, “Temperature compensation of multimode-interference-based fiber devices,” Opt. Lett. 32(14), 2064–2066 (2007).
[Crossref] [PubMed]

Sensors (Basel) (1)

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel) 10(4), 2492–2510 (2010).
[Crossref] [PubMed]

Other (2)

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “An analytical approach for calculating the FWM idler and signal wavelengths in a graded index multimode optical fiber,” Frontiers in Optics/Laser Science, JW2A.40, (2015).
[Crossref]

H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed analysis of amplified spontaneous four-wave mixing in a multimode fiber,” Frontiers in Optics/Laser Science, FW5F.3, (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The measured and fitting nonlinear transmission curve with indicated saturable absorption parameters.
Fig. 2
Fig. 2 Schematic of the Tm-doped fiber laser mode-locked by the stretched SMF-GIMF-SMF saturable absorber. TDF: thulium-doped fiber.
Fig. 3
Fig. 3 Mode-locking pulse measurements.(a) Laser spectrum; (b) Autocorrelation race of output pulses. (c) Oscilloscope trace; (d) RF spectrum measure at the fundamental repetition of 19.94MHz.
Fig. 4
Fig. 4 Tunable single-wavelength mode locking with the GIMF length of (a)15cm, (b) 23.5cm and (c)43cm.
Fig. 5
Fig. 5 Mode locking central wavelength dependence on the stretched ratio of length.
Fig. 6
Fig. 6 Mode locking Peak wavelength with the stretched GIMF length increased and decreased repeatedly.
Fig. 7
Fig. 7 Long-term pulse stability: optical spectra measured in intervals of 1 hour over 7 hours.

Tables (1)

Tables Icon

Table 1 Performance at 2μm wavelength in comparison with others

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T=1α×exp( I I sat ) α ns
λ 0 =p n MMF D MMF 2 L ,p=0,1,2,...,
ΔL=Lε+βLΔT,

Metrics