Abstract

Plasmonic cluster arrays have demonstrated rich physics in topological photonics, but they are seriously affected by the material loss and limited by the requirement of high-precision machining. Here, we propose a kind of ultra-thin metaparticle arrays which can mimic the coupled localized plasmonic resonances at lower frequency ranges and so that can overcome the loss and fabrication problems in real metal plasmonic systems. The metaparticle is a metallic disk with circuitous grooves that can support both spoof electric and magnetic localized resonances, and these resonances can be pushed to a subwavelength region through tuning the geometric parameters. In virtue of the highly field confinement of these localized resonances, it is thought to be an ideal experimental platform to be an analogy with various near-field interactions in topological materials. As a first proof-of-concept study to show this feasibility, the subwavelength topological edge states at the zigzag metaparticle chain boundaries are numerically and experimentally demonstrated at microwave ranges. Moreover, the subwavelength topological edge states in this zigzag chain can be excited simply by the plane wave incidence, and the edge modes at two ends can be selectively excited by controlling the polarization direction. Therefore, this kind of metaparticle array not only provides an ideal platform to experimentally study various near-filed interaction dominated topological systems but may also find massive potential applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms

Miguel Navarro-Cía, Miguel Beruete, Spyros Agrafiotis, Francisco Falcone, Mario Sorolla, and Stefan A. Maier
Opt. Express 17(20) 18184-18195 (2009)

Multiple Fano resonances in spoof localized surface plasmons

Zhen Liao, Bai Cao Pan, Xiaopeng Shen, and Tie Jun Cui
Opt. Express 22(13) 15710-15717 (2014)

Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons

Zhen Liao, Guo Qing Luo, Ben Geng Cai, Bai Cao Pan, and Wen Hui Cao
Photon. Res. 7(3) 274-282 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
    [Crossref]
  3. J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [Crossref] [PubMed]
  4. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
    [Crossref]
  5. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
    [Crossref] [PubMed]
  6. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
    [Crossref] [PubMed]
  7. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [Crossref] [PubMed]
  8. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
    [Crossref] [PubMed]
  9. P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).
  10. X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser & Photonics Rev. 8, 137–145 (2014).
    [Crossref]
  11. Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple fano resonances in spoof localized surface plasmons,” Opt. Express 22, 15710–15717 (2014).
    [Crossref] [PubMed]
  12. Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Complementary structure for designer localized surface plasmons,” Appl. Phys. Lett. 107, 191103 (2015).
    [Crossref]
  13. Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of lsp resonances and flexible control of spp transmissions,” ACS Photonics 2, 738–743 (2015).
    [Crossref]
  14. Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Reports 6, 24447 (2016).
    [Crossref]
  15. B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
    [Crossref]
  16. Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
    [Crossref]
  17. Z. Gao, F. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Experimental demonstration of high-order magnetic localized spoof surface plasmons,” Appl. Phys. Lett. 107, 041118 (2015).
    [Crossref]
  18. F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23, 6896–6902 (2015).
    [Crossref] [PubMed]
  19. W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
    [Crossref]
  20. S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
    [Crossref]
  21. F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
    [Crossref] [PubMed]
  22. J. Jiang, Z. Guo, Y. Ding, Y. Sun, Y. Li, H. Jiang, and H. Chen, “Experimental demonstration of the robust edge states in a split-ring-resonator chain,” Opt. Express 26, 12891–12902 (2018).
    [Crossref] [PubMed]
  23. C. Ling, M. Xiao, C. Chan, S. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23, 2021–2031 (2015).
    [Crossref] [PubMed]
  24. D. Han, Y. Lai, J. Zi, Z.-Q. Zhang, and C. T. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett. 102, 123904 (2009).
    [Crossref] [PubMed]
  25. A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological majorana states in zigzag chains of plasmonic nanoparticles,” ACS Photonics 1, 101–105 (2014).
    [Crossref]
  26. I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
    [Crossref] [PubMed]
  27. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [Crossref] [PubMed]
  28. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  29. K. C. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
    [Crossref]
  30. A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nanotechnol. 2, 435–440 (2007).
    [Crossref]
  31. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  32. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref] [PubMed]
  33. A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Subwavelength topological edge states in optically resonant dielectric structures,” Phys. Rev. Lett. 114, 123901 (2015).
    [Crossref] [PubMed]
  34. Y. Cheng, C. Zhou, B. Yuan, D. Wu, Q. Wei, and X. Liu, “Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances,” Nat. Mater. 14, 1013–1019 (2015).
    [Crossref] [PubMed]
  35. Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
    [Crossref]
  36. S. Ryu and Y. Hatsugai, “Topological origin of zero-energy edge states in particle-hole symmetric systems,” Phys. Rev. Lett. 89, 077002 (2002).
    [Crossref] [PubMed]
  37. L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New J. Phys. 18, 103029 (2016).
    [Crossref]

2018 (1)

2016 (3)

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Reports 6, 24447 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New J. Phys. 18, 103029 (2016).
[Crossref]

2015 (8)

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Subwavelength topological edge states in optically resonant dielectric structures,” Phys. Rev. Lett. 114, 123901 (2015).
[Crossref] [PubMed]

Y. Cheng, C. Zhou, B. Yuan, D. Wu, Q. Wei, and X. Liu, “Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances,” Nat. Mater. 14, 1013–1019 (2015).
[Crossref] [PubMed]

C. Ling, M. Xiao, C. Chan, S. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23, 2021–2031 (2015).
[Crossref] [PubMed]

I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
[Crossref] [PubMed]

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Complementary structure for designer localized surface plasmons,” Appl. Phys. Lett. 107, 191103 (2015).
[Crossref]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of lsp resonances and flexible control of spp transmissions,” ACS Photonics 2, 738–743 (2015).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Experimental demonstration of high-order magnetic localized spoof surface plasmons,” Appl. Phys. Lett. 107, 041118 (2015).
[Crossref]

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23, 6896–6902 (2015).
[Crossref] [PubMed]

2014 (8)

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser & Photonics Rev. 8, 137–145 (2014).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple fano resonances in spoof localized surface plasmons,” Opt. Express 22, 15710–15717 (2014).
[Crossref] [PubMed]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological majorana states in zigzag chains of plasmonic nanoparticles,” ACS Photonics 1, 101–105 (2014).
[Crossref]

B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

K. C. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

2012 (1)

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref] [PubMed]

2011 (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

2010 (4)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[Crossref] [PubMed]

Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
[Crossref]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

2009 (1)

D. Han, Y. Lai, J. Zi, Z.-Q. Zhang, and C. T. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett. 102, 123904 (2009).
[Crossref] [PubMed]

2007 (1)

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nanotechnol. 2, 435–440 (2007).
[Crossref]

2006 (1)

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

2005 (2)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

2004 (3)

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[Crossref]

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

S. Ryu and Y. Hatsugai, “Topological origin of zero-energy edge states in particle-hole symmetric systems,” Phys. Rev. Lett. 89, 077002 (2002).
[Crossref] [PubMed]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Belov, P. A.

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Subwavelength topological edge states in optically resonant dielectric structures,” Phys. Rev. Lett. 114, 123901 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

K. C. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Chan, C.

Chan, C. T.

L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New J. Phys. 18, 103029 (2016).
[Crossref]

D. Han, Y. Lai, J. Zi, Z.-Q. Zhang, and C. T. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett. 102, 123904 (2009).
[Crossref] [PubMed]

Chen, H.

Cheng, Y.

Y. Cheng, C. Zhou, B. Yuan, D. Wu, Q. Wei, and X. Liu, “Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances,” Nat. Mater. 14, 1013–1019 (2015).
[Crossref] [PubMed]

Cuerda, J.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

Cui, T. J.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of lsp resonances and flexible control of spp transmissions,” ACS Photonics 2, 738–743 (2015).
[Crossref]

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser & Photonics Rev. 8, 137–145 (2014).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple fano resonances in spoof localized surface plasmons,” Opt. Express 22, 15710–15717 (2014).
[Crossref] [PubMed]

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Ding, Y.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

Ford, G.

W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[Crossref]

Fung, K. H.

Gao, F.

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Reports 6, 24447 (2016).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Complementary structure for designer localized surface plasmons,” Appl. Phys. Lett. 107, 191103 (2015).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Experimental demonstration of high-order magnetic localized spoof surface plasmons,” Appl. Phys. Lett. 107, 041118 (2015).
[Crossref]

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23, 6896–6902 (2015).
[Crossref] [PubMed]

Gao, Z.

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Reports 6, 24447 (2016).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Complementary structure for designer localized surface plasmons,” Appl. Phys. Lett. 107, 191103 (2015).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Experimental demonstration of high-order magnetic localized spoof surface plasmons,” Appl. Phys. Lett. 107, 041118 (2015).
[Crossref]

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23, 6896–6902 (2015).
[Crossref] [PubMed]

Garcia-Vidal, F.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Gu, C.

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
[Crossref]

Guo, Z.

Hadad, Y.

Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
[Crossref]

Han, D.

L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New J. Phys. 18, 103029 (2016).
[Crossref]

D. Han, Y. Lai, J. Zi, Z.-Q. Zhang, and C. T. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett. 102, 123904 (2009).
[Crossref] [PubMed]

Harris, J. S.

K. C. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Hatsugai, Y.

S. Ryu and Y. Hatsugai, “Topological origin of zero-energy edge states in particle-hole symmetric systems,” Phys. Rev. Lett. 89, 077002 (2002).
[Crossref] [PubMed]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Hu, B.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[Crossref] [PubMed]

Huang, K. C.

K. C. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Huidobro, P. A.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

Huo, Y.

K. C. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

Jiang, H.

Jiang, J.

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Kivshar, Y.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological majorana states in zigzag chains of plasmonic nanoparticles,” ACS Photonics 1, 101–105 (2014).
[Crossref]

Kivshar, Y. S.

I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
[Crossref] [PubMed]

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Subwavelength topological edge states in optically resonant dielectric structures,” Phys. Rev. Lett. 114, 123901 (2015).
[Crossref] [PubMed]

Lai, Y.

D. Han, Y. Lai, J. Zi, Z.-Q. Zhang, and C. T. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett. 102, 123904 (2009).
[Crossref] [PubMed]

Li, L.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Li, Y.

Li, Z.

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
[Crossref]

Liao, Z.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of lsp resonances and flexible control of spp transmissions,” ACS Photonics 2, 738–743 (2015).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple fano resonances in spoof localized surface plasmons,” Opt. Express 22, 15710–15717 (2014).
[Crossref] [PubMed]

Lin, X.

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Ling, C.

Liu, L.

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

Y. Cheng, C. Zhou, B. Yuan, D. Wu, Q. Wei, and X. Liu, “Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances,” Nat. Mater. 14, 1013–1019 (2015).
[Crossref] [PubMed]

Luo, Y.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of lsp resonances and flexible control of spp transmissions,” ACS Photonics 2, 738–743 (2015).
[Crossref]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Martin-Moreno, L.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Martín-Moreno, L.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Mihalache, D.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[Crossref] [PubMed]

Miroshnichenko, A.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological majorana states in zigzag chains of plasmonic nanoparticles,” ACS Photonics 1, 101–105 (2014).
[Crossref]

Miroshnichenko, A. E.

I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
[Crossref] [PubMed]

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Subwavelength topological edge states in optically resonant dielectric structures,” Phys. Rev. Lett. 114, 123901 (2015).
[Crossref] [PubMed]

Moreno, E.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref] [PubMed]

Mukhin, I. S.

I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
[Crossref] [PubMed]

Ning, P.

B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Niu, Z.

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
[Crossref]

Pan, B. C.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of lsp resonances and flexible control of spp transmissions,” ACS Photonics 2, 738–743 (2015).
[Crossref]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple fano resonances in spoof localized surface plasmons,” Opt. Express 22, 15710–15717 (2014).
[Crossref] [PubMed]

Panoiu, N. C.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[Crossref] [PubMed]

Park, S. Y.

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[Crossref]

Pendry, J.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Pendry, J. B.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

Poddubny, A.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological majorana states in zigzag chains of plasmonic nanoparticles,” ACS Photonics 1, 101–105 (2014).
[Crossref]

Poddubny, A. N.

I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
[Crossref] [PubMed]

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Subwavelength topological edge states in optically resonant dielectric structures,” Phys. Rev. Lett. 114, 123901 (2015).
[Crossref] [PubMed]

Pors, A.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref] [PubMed]

Ryu, S.

S. Ryu and Y. Hatsugai, “Topological origin of zero-energy edge states in particle-hole symmetric systems,” Phys. Rev. Lett. 89, 077002 (2002).
[Crossref] [PubMed]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

Samusev, A. K.

I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
[Crossref] [PubMed]

Sarmiento, T.

K. C. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Seo, M.-K.

K. C. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Shen, X.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of lsp resonances and flexible control of spp transmissions,” ACS Photonics 2, 738–743 (2015).
[Crossref]

X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser & Photonics Rev. 8, 137–145 (2014).
[Crossref]

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple fano resonances in spoof localized surface plasmons,” Opt. Express 22, 15710–15717 (2014).
[Crossref] [PubMed]

Shi, X.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23, 6896–6902 (2015).
[Crossref] [PubMed]

Z. Gao, F. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Experimental demonstration of high-order magnetic localized spoof surface plasmons,” Appl. Phys. Lett. 107, 041118 (2015).
[Crossref]

Sinev, I. S.

I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
[Crossref] [PubMed]

Sinsermsuksakul, P.

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nanotechnol. 2, 435–440 (2007).
[Crossref]

Slobozhanyuk, A.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological majorana states in zigzag chains of plasmonic nanoparticles,” ACS Photonics 1, 101–105 (2014).
[Crossref]

Slobozhanyuk, A. P.

I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
[Crossref] [PubMed]

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Subwavelength topological edge states in optically resonant dielectric structures,” Phys. Rev. Lett. 114, 123901 (2015).
[Crossref] [PubMed]

Steinberg, B. Z.

Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
[Crossref]

Stroud, D.

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[Crossref]

Sun, Y.

Tao, A.

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nanotechnol. 2, 435–440 (2007).
[Crossref]

Wang, L.

L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New J. Phys. 18, 103029 (2016).
[Crossref]

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Weber, W.

W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[Crossref]

Wei, Q.

Y. Cheng, C. Zhou, B. Yuan, D. Wu, Q. Wei, and X. Liu, “Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances,” Nat. Mater. 14, 1013–1019 (2015).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Wen, W.

L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New J. Phys. 18, 103029 (2016).
[Crossref]

Wu, D.

Y. Cheng, C. Zhou, B. Yuan, D. Wu, Q. Wei, and X. Liu, “Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances,” Nat. Mater. 14, 1013–1019 (2015).
[Crossref] [PubMed]

Xiao, M.

L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New J. Phys. 18, 103029 (2016).
[Crossref]

C. Ling, M. Xiao, C. Chan, S. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23, 2021–2031 (2015).
[Crossref] [PubMed]

Xu, B.

B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Yang, P.

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nanotechnol. 2, 435–440 (2007).
[Crossref]

Yang, Z.

Z. Gao, F. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Experimental demonstration of high-order magnetic localized spoof surface plasmons,” Appl. Phys. Lett. 107, 041118 (2015).
[Crossref]

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23, 6896–6902 (2015).
[Crossref] [PubMed]

Ye, F.

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[Crossref] [PubMed]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Yu, S.

Yuan, B.

Y. Cheng, C. Zhou, B. Yuan, D. Wu, Q. Wei, and X. Liu, “Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances,” Nat. Mater. 14, 1013–1019 (2015).
[Crossref] [PubMed]

Zhang, B.

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Reports 6, 24447 (2016).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Complementary structure for designer localized surface plasmons,” Appl. Phys. Lett. 107, 191103 (2015).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Experimental demonstration of high-order magnetic localized spoof surface plasmons,” Appl. Phys. Lett. 107, 041118 (2015).
[Crossref]

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23, 6896–6902 (2015).
[Crossref] [PubMed]

Zhang, R.-Y.

L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New J. Phys. 18, 103029 (2016).
[Crossref]

Zhang, Y.

Z. Gao, F. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Experimental demonstration of high-order magnetic localized spoof surface plasmons,” Appl. Phys. Lett. 107, 041118 (2015).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Complementary structure for designer localized surface plasmons,” Appl. Phys. Lett. 107, 191103 (2015).
[Crossref]

Zhang, Z.-Q.

D. Han, Y. Lai, J. Zi, Z.-Q. Zhang, and C. T. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett. 102, 123904 (2009).
[Crossref] [PubMed]

Zhao, J.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of lsp resonances and flexible control of spp transmissions,” ACS Photonics 2, 738–743 (2015).
[Crossref]

Zhao, Y.

B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Zhou, C.

Y. Cheng, C. Zhou, B. Yuan, D. Wu, Q. Wei, and X. Liu, “Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances,” Nat. Mater. 14, 1013–1019 (2015).
[Crossref] [PubMed]

Zi, J.

D. Han, Y. Lai, J. Zi, Z.-Q. Zhang, and C. T. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett. 102, 123904 (2009).
[Crossref] [PubMed]

ACS Photonics (2)

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of lsp resonances and flexible control of spp transmissions,” ACS Photonics 2, 738–743 (2015).
[Crossref]

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological majorana states in zigzag chains of plasmonic nanoparticles,” ACS Photonics 1, 101–105 (2014).
[Crossref]

Appl. optics (1)

B. Xu, Z. Li, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Multiband localized spoof plasmons in closed textured cavities,” Appl. optics 53, 6950–6953 (2014).
[Crossref]

Appl. Phys. Lett. (3)

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104, 101603 (2014).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, X. Shi, Z. Yang, and B. Zhang, “Experimental demonstration of high-order magnetic localized spoof surface plasmons,” Appl. Phys. Lett. 107, 041118 (2015).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, and B. Zhang, “Complementary structure for designer localized surface plasmons,” Appl. Phys. Lett. 107, 191103 (2015).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

Laser & Photonics Rev. (1)

X. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser & Photonics Rev. 8, 137–145 (2014).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Nanoscale (1)

I. S. Sinev, I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, “Mapping plasmonic topological states at the nanoscale,” Nanoscale 7, 11904–11908 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

Y. Cheng, C. Zhou, B. Yuan, D. Wu, Q. Wei, and X. Liu, “Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial mie resonances,” Nat. Mater. 14, 1013–1019 (2015).
[Crossref] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9, 730–735 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

A. Tao, P. Sinsermsuksakul, and P. Yang, “Tunable plasmonic lattices of silver nanocrystals,” Nat. Nanotechnol. 2, 435–440 (2007).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

K. C. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W. Wen, “The existence of topological edge states in honeycomb plasmonic lattices,” New J. Phys. 18, 103029 (2016).
[Crossref]

Opt. Express (4)

Phys. Rev. B (2)

W. Weber and G. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[Crossref]

S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).
[Crossref]

Phys. Rev. Lett. (7)

F. Ye, D. Mihalache, B. Hu, and N. C. Panoiu, “Subwavelength plasmonic lattice solitons in arrays of metallic nanowires,” Phys. Rev. Lett. 104, 106802 (2010).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108, 223905 (2012).
[Crossref] [PubMed]

D. Han, Y. Lai, J. Zi, Z.-Q. Zhang, and C. T. Chan, “Dirac spectra and edge states in honeycomb plasmonic lattices,” Phys. Rev. Lett. 102, 123904 (2009).
[Crossref] [PubMed]

Y. Hadad and B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010).
[Crossref]

S. Ryu and Y. Hatsugai, “Topological origin of zero-energy edge states in particle-hole symmetric systems,” Phys. Rev. Lett. 89, 077002 (2002).
[Crossref] [PubMed]

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “Subwavelength topological edge states in optically resonant dielectric structures,” Phys. Rev. Lett. 114, 123901 (2015).
[Crossref] [PubMed]

Phys. Rev. X (1)

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. Garcia-Vidal, T. J. Cui, and J. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4, 021003 (2014).

Sci. Reports (1)

Z. Gao, F. Gao, and B. Zhang, “High-order spoof localized surface plasmons supported on a complementary metallic spiral structure,” Sci. Reports 6, 24447 (2016).
[Crossref]

Science (2)

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) A 2D textured PEC cylinder with groove width wg, metal width wm, inner radius r and outer radius R respectively. (b) The corresponding 3D counterpart with a thin metallic layer of thickness tm on a F4B substrate of thickness ts.
Fig. 2
Fig. 2 (a) Normalized SCS of the corrugated cylinder by numerical simulations, and the inset shows the dispersion of the 1D groove system with same groove width wg and effective groove depth he. (b) Low-order eigenmodes of magnetic dipole, electric dipole, electric quadrupole and electric hexapole correspondingly where the mode fields are shown by |Hz|. (c) The field distribution (Hz) at first three peaks of the SCS spectrum under the plane wave excitation.
Fig. 3
Fig. 3 (a) Normalized SCS spectra of the corrugated disk by numerical simulations with a substrate of an ultra-thin thickness (blue line), a substrate with 2 mm thickness (orange line) and a disk of 0.2 mm thick without a substrate (green line). (b)(d) The Ez field distribution of the xy cut plane at z = 0.1 mm above the top surface for ED and MD modes correspondingly. (c)(e) The Ez field distribution of the xz cut plane at y = 0 mm for ED and MD modes respectively.
Fig. 4
Fig. 4 The schematical diagram of the zigzag plasmonic chain with the center-to-center distance ds and bond angle θ where two non-equivalent sublattices are marked by A and B respectively.
Fig. 5
Fig. 5 (a) The band structure of the finite zigzag plasmonic chain with N = 41 particles and plasmonic frequency fp = 3.18264 GHz as a function of θ. (b)(c) Numerically calculated winding number and Zak phase through the bulk Hamiltonian with respect to the bond angle θ.
Fig. 6
Fig. 6 (a) The real sample and the experiment setup for field scanning by a monopole probe. (b)(d)(f) Numerical field distributions of |Ez| on the plane of z = 0.5 mm above the top surface excited by a plane wave with f = 1.797 GHz and β = 0°, −45°, 45° respectively. (c)(e)(g) Experiment results of |Ez| on the plane of z = 0.5 mm above the top surface excited by a plane wave with f = 1.708 GHz and β = 0°, −45°, 45° respectively.
Fig. 7
Fig. 7 (a)–(d) The mapping of the left side part in Eq. (10) versus the real part and imaginary part of the frequency for mode order n=0, 1, 2, 3 respectively.
Fig. 8
Fig. 8 (a) Numerically calculated SCS of the equivalent model in comparison with the original circuitous structure. (b) The analytically calculated SCS for mode number n = 0, 1, 2, 3 respectively.
Fig. 9
Fig. 9 (a)–(d) The mapping of the left side part in Eq. (10) versus the real part and imaginary part of the frequency for mode order n=0, 1, 2, 3 respectively.
Fig. 10
Fig. 10 (a)(b) The field mapping of Ez at 0.1 mm above the top surface calculated by simulations through eigen mode analysis.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

{ r n A = n p x ^ r n B = ( n 1 / 2 ) p x ^ + d s sin α y ^ , ( n = 0 , 1 , 2 ) .
P n = α ( E n A E n B ) = α ( ω ) m n G n m P m .
H n m = ( ( 1 δ m n ) G ( r n A r m A ) G ( r n A r m B ) G ( r n B r m A ) ( 1 δ m n ) G ( r n B r m B ) )
G m n ( r ) = 1 4 π ε 0 ( 3 r r r 5 I r 3 ) .
m H m n P m = α ( ω ) 1 P n .
H k = ( 0 Q Q 0 ) ,
NPE = W ( det Q ) = Z s / π .
W ( det Q ) = 1 2 π i π / P π / P d k d ln det Q ( k ) d k = 1 2 π c d arg det Q ( k ) ,
Z s = j Z j = j [ i π / P π / P d k ψ j | k | ψ j ] ,
S n 2 H n ( 1 ) ( k 0 R ) H n ( 1 ) ( k 0 R ) tan ( k 0 n g h e ) + n g = 0 ,
σ = 4 c 0 ω n = | C n | 2 ,
C n = i n w g d J n ( k 0 R ) f n g J n ( k 0 R ) g w g d H n ( 1 ) ( k 0 R ) n g H n ( 1 ) ( k 0 R ) g ,

Metrics