Abstract

Photonic integrated circuits (PICs) often require broadband power splitters such as Y-junctions for signal monitoring, signal feedback, power distribution, etc., with various splitting ratios. Therefore, a parameterized Y-junction with an arbitrary power splitting ratio that can be selected in layout design is desired in a PIC library. Here, we propose an ultra-compact (1.4 μm × 2.3 μm) Y-junction on the 220-nm-thick silicon-on-insulator (SOI) platform for an arbitrary splitting ratio with a programmable design. It applies smooth curvatures for a good tolerance to fabrication errors. Rigorous 3D-FDTD simulations predict an excess loss below 0.36 dB and a splitting-ratio variation of less than 1 dB over 100 nm. Experimental results achieved using a CMOS-compatible silicon photonics process show an excess loss of lower than 0.5 dB for a splitting ratio varied from 0 to −18 dB across the entire C band. Both numerical and experimental results show that the power splitting ratio of the proposed device is weakly wavelength dependent.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits

Kuanping Shang, Shibnath Pathak, Guangyao Liu, Shaoqi Feng, Siwei Li, Weicheng Lai, and S. J. B. Yoo
Opt. Express 25(9) 10474-10483 (2017)

A compact and low loss Y-junction for submicron silicon waveguide

Yi Zhang, Shuyu Yang, Andy Eu-Jin Lim, Guo-Qiang Lo, Christophe Galland, Tom Baehr-Jones, and Michael Hochberg
Opt. Express 21(1) 1310-1316 (2013)

Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction

Jing Wang, Ben Niu, Zhen Sheng, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, Minghao Qi, and Fuwan Gan
Opt. Express 22(11) 13565-13571 (2014)

References

  • View by:
  • |
  • |
  • |

  1. “Simply silicon,” Nat. Photonics4, 491 (2010).
    [Crossref]
  2. P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
    [Crossref]
  3. C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photonics Technol. Lett. 24, 697–699 (2012).
    [Crossref]
  4. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref] [PubMed]
  5. Z. Lin, L. Rusch, Y. Chen, and W. Shi, “Chip-scale, full-stokes polarimeter,” Opt. Express 27, 4867–4877 (2019).
    [Crossref] [PubMed]
  6. K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
    [Crossref]
  7. A. Zanzi, A. Brimont, A. Griol, P. Sanchis, and J. Marti, “Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications,” Opt. letters 41, 227–229 (2016).
    [Crossref]
  8. Q. Deng, L. Liu, X. Li, and Z. Zhou, “Arbitrary-ratio 1×2 power splitter based on asymmetric multimode interference,” Opt. letters 39, 5590–5593 (2014).
    [Crossref]
  9. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
    [Crossref]
  10. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. express 23, 3795–3808 (2015).
    [Crossref] [PubMed]
  11. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. express 21, 1310–1316 (2013).
    [Crossref] [PubMed]
  12. Z. Lu, D. Celo, P. Dumais, E. Bernier, and L. Chrostowski, “Comparison of photonic 2 × 2 3-dB couplers for 220 nm silicon-on-insulator platforms,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), (IEEE, 2015), pp. 57–58.
    [Crossref]

2019 (1)

2017 (1)

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

2016 (2)

A. Zanzi, A. Brimont, A. Griol, P. Sanchis, and J. Marti, “Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications,” Opt. letters 41, 227–229 (2016).
[Crossref]

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

2015 (1)

2014 (1)

Q. Deng, L. Liu, X. Li, and Z. Zhou, “Arbitrary-ratio 1×2 power splitter based on asymmetric multimode interference,” Opt. letters 39, 5590–5593 (2014).
[Crossref]

2013 (2)

2012 (1)

C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photonics Technol. Lett. 24, 697–699 (2012).
[Crossref]

2005 (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Baehr-Jones, T.

Bernier, E.

Z. Lu, D. Celo, P. Dumais, E. Bernier, and L. Chrostowski, “Comparison of photonic 2 × 2 3-dB couplers for 220 nm silicon-on-insulator platforms,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), (IEEE, 2015), pp. 57–58.
[Crossref]

Bianchi, A.

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

Brimont, A.

A. Zanzi, A. Brimont, A. Griol, P. Sanchis, and J. Marti, “Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications,” Opt. letters 41, 227–229 (2016).
[Crossref]

Buhl, L. L.

C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photonics Technol. Lett. 24, 697–699 (2012).
[Crossref]

Cassese, T.

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

Celo, D.

Z. Lu, D. Celo, P. Dumais, E. Bernier, and L. Chrostowski, “Comparison of photonic 2 × 2 3-dB couplers for 220 nm silicon-on-insulator platforms,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), (IEEE, 2015), pp. 57–58.
[Crossref]

Chen, Y.

Chen, Z.

Chrostowski, L.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Z. Lu, D. Celo, P. Dumais, E. Bernier, and L. Chrostowski, “Comparison of photonic 2 × 2 3-dB couplers for 220 nm silicon-on-insulator platforms,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), (IEEE, 2015), pp. 57–58.
[Crossref]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

De Angelis, G.

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

Deng, Q.

Q. Deng, L. Liu, X. Li, and Z. Zhou, “Arbitrary-ratio 1×2 power splitter based on asymmetric multimode interference,” Opt. letters 39, 5590–5593 (2014).
[Crossref]

Doerr, C. R.

C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photonics Technol. Lett. 24, 697–699 (2012).
[Crossref]

Dumais, P.

Z. Lu, D. Celo, P. Dumais, E. Bernier, and L. Chrostowski, “Comparison of photonic 2 × 2 3-dB couplers for 220 nm silicon-on-insulator platforms,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), (IEEE, 2015), pp. 57–58.
[Crossref]

Fontaine, N. K.

C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photonics Technol. Lett. 24, 697–699 (2012).
[Crossref]

Galland, C.

Griol, A.

A. Zanzi, A. Brimont, A. Griol, P. Sanchis, and J. Marti, “Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications,” Opt. letters 41, 227–229 (2016).
[Crossref]

Hochberg, M.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Jaeger, N. A.

Li, X.

Q. Deng, L. Liu, X. Li, and Z. Zhou, “Arbitrary-ratio 1×2 power splitter based on asymmetric multimode interference,” Opt. letters 39, 5590–5593 (2014).
[Crossref]

Lim, A. E.-J.

Lin, Z.

Liu, L.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

Q. Deng, L. Liu, X. Li, and Z. Zhou, “Arbitrary-ratio 1×2 power splitter based on asymmetric multimode interference,” Opt. letters 39, 5590–5593 (2014).
[Crossref]

Lo, G.-Q.

Lu, Z.

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. express 23, 3795–3808 (2015).
[Crossref] [PubMed]

Z. Lu, D. Celo, P. Dumais, E. Bernier, and L. Chrostowski, “Comparison of photonic 2 × 2 3-dB couplers for 220 nm silicon-on-insulator platforms,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), (IEEE, 2015), pp. 57–58.
[Crossref]

Marti, J.

A. Zanzi, A. Brimont, A. Griol, P. Sanchis, and J. Marti, “Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications,” Opt. letters 41, 227–229 (2016).
[Crossref]

Preite, M.

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

Romagnoli, M.

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

Rusch, L.

Sanchis, P.

A. Zanzi, A. Brimont, A. Griol, P. Sanchis, and J. Marti, “Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications,” Opt. letters 41, 227–229 (2016).
[Crossref]

Shi, W.

Song, Q.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

Sorianello, V.

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Sun, S.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

Sun, W.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

Testa, F.

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Velha, P.

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

Wang, Y.

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Wen, X.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

Xiao, S.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

Xu, K.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Yang, S.

Yi, N.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

Yun, H.

Zanzi, A.

A. Zanzi, A. Brimont, A. Griol, P. Sanchis, and J. Marti, “Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications,” Opt. letters 41, 227–229 (2016).
[Crossref]

Zhang, F.

Zhang, N.

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

Zhang, Y.

Zhou, Z.

Q. Deng, L. Liu, X. Li, and Z. Zhou, “Arbitrary-ratio 1×2 power splitter based on asymmetric multimode interference,” Opt. letters 39, 5590–5593 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photonics Technol. Lett. 24, 697–699 (2012).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. letters (4)

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. letters 42, 855–858 (2017).
[Crossref]

A. Zanzi, A. Brimont, A. Griol, P. Sanchis, and J. Marti, “Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications,” Opt. letters 41, 227–229 (2016).
[Crossref]

Q. Deng, L. Liu, X. Li, and Z. Zhou, “Arbitrary-ratio 1×2 power splitter based on asymmetric multimode interference,” Opt. letters 39, 5590–5593 (2014).
[Crossref]

P. Velha, V. Sorianello, M. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. letters 41, 5656–5659 (2016).
[Crossref]

Other (2)

“Simply silicon,” Nat. Photonics4, 491 (2010).
[Crossref]

Z. Lu, D. Celo, P. Dumais, E. Bernier, and L. Chrostowski, “Comparison of photonic 2 × 2 3-dB couplers for 220 nm silicon-on-insulator platforms,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), (IEEE, 2015), pp. 57–58.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) 3D model of the proposed device. Iin, the intensity of input; IL, the insertion loss; PR, the value of the weaker output power ratio. (b) and (c) are the top views of the proposed device. L, w, l, D, R1, R2, r1, r2 are the geometrical parameters of the device.
Fig. 2
Fig. 2 (a)–(e): SEM images of the fabricated devices with r1 = 0.12 μm, r1 = 0.22 μm, r1 = 0.42 μm, r1 = 0.72 μm, and r1 = 1.70 μm, respectively; (f): schematic of the design layout for test; (g)–(i): photographs of the devices under test for n =2, 3, and 5.
Fig. 3
Fig. 3 (a) Simulated (black dash line) and measured (red solid line with error bar) power splitting ratio varied with r1 at the wavelength of 1550 nm; (b)–(d): simulated electric field intensity distributions for SR = −12.6 dB, SR = −5.5 dB, and SR = 0 dB, respectively.
Fig. 4
Fig. 4 Power splitting ratios as functions of wavelength from 1535 to 1580 nm with r1 varied from 0.12 to 1.70 μm. Solid and dash lines are the experimental and simulated results, respectively. The measurement wavelength range is limited by the grating couplers used as optical IOs.
Fig. 5
Fig. 5 (a) Simulated and (b) measured excess loss spectrum in the range of 1535–1580 nm with r1 varied from 0.12 to 1.70 μm.
Fig. 6
Fig. 6 (a) Simulated power splitting ratio as a function with temperature at the wavelength of 1550 nm when r1 varies from 0.12 to 1.70 μm. (b) Simulated power splitting ratio as a function with wavelength when temperature varies from 280 K to 380 K for r1 = 0.72 μm.

Tables (1)

Tables Icon

Table 1 The values of r 1 and r 2 used in the simulation and actual devices.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

PSR = 10 log 10 ( PR 1 PR ) .
r 2 = ( r 1 ( w w 0 2 ) 4 ) ( R 1 ( w w 0 2 ) 4 ) ( R 2 ( w w 0 D / 2 ) 2 ) + ( w w 0 D / 2 ) 2 ,
l = R 2 sin ( arccos ( R 2 ( w w 0 D / 2 ) 2 R 2 ) ) r 2 sin ( arccos ( r 2 ( w w 0 D / 2 ) 2 r 2 ) ) .
PSR = 5.745 × r 1 4 + 23.09 × r 1 3 33.86 × r 1 2 + 29.42 × r 1 17.7 ,

Metrics