Abstract

We demonstrate 64 Gbps operation in a compact Si photonic crystal optical modulator that employs meander line electrodes and compensate for the phase mismatch between slow light and RF signals. Although low dispersion slow light increases the modulation efficiency, maintaining a sufficiently wide working spectrum, the phase mismatch becomes a limiting factor on the operation speed even when the phase shifter length is as short as 200 μm. Meander line electrodes broke this limit and enhanced the cutoff frequency by up to 31 and 38 GHz using 50 Ω and 20 Ω termination resistors, respectively. This allowed to use a group index of slow light higher than 20, and greatly improved the quality of the modulation characteristics at 25 and 32 Gbps. Clear open eye was observed even at 40–64 Gbps.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes

Yosuke Hinakura, Yosuke Terada, Hiroyuki Arai, and Toshihiko Baba
Opt. Express 26(9) 11538-11545 (2018)

Hitless tunable WDM transmitter using Si photonic crystal optical modulators

Hiroyuki Ito, Yosuke Terada, Norihiro Ishikura, and Toshihiko Baba
Opt. Express 23(17) 21629-21636 (2015)

High-efficiency Si optical modulator using Cu travelling-wave electrode

Yan Yang, Qing Fang, Mingbin Yu, Xiaoguang Tu, Rusli Rusli, and Guo-Qiang Lo
Opt. Express 22(24) 29978-29985 (2014)

References

  • View by:
  • |
  • |
  • |

  1. “IEEE standard for ethernet - amendment 10: media access control parameters, physical layers, and management parameters for 200 Gb/s and 400 Gb/s operation,” IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3–2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3–2015/Cor1–2017) 1–372 (2017).
  2. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
    [Crossref]
  3. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
    [Crossref] [PubMed]
  4. H. Xu, X. Li, X. Xiao, P. Zhou, Z. Li, J. Yu, and Y. Yu, “High-speed silicon modulator with band equalization,” Opt. Lett. 39(16), 4839–4842 (2014).
    [Crossref] [PubMed]
  5. D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
    [Crossref] [PubMed]
  6. M. Pantouvaki, S. A. Srinivasan, Y. Ban, P. De Heyn, P. Verheyen, G. Lepage, H. Chen, J. De Coster, N. Golshani, S. Balakrishnan, P. Absil, and J. Van Campenhout, “Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform,” J. Lightwave Technol. 35(4), 631–638 (2017).
    [Crossref]
  7. J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Opt. Fiber Commun. Conf. Postdeadline Papers (Optical Society of America, 2018), Th4A.7.
    [Crossref]
  8. C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
    [Crossref] [PubMed]
  9. H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
    [Crossref]
  10. Y. Terada, T. Tatebe, Y. Hinakura, and T. Baba, “Si photonic crystal slow-light modulators with periodic p–n junctions,” J. Lightwave Technol. 35(9), 1684–1692 (2017).
    [Crossref]
  11. Y. Hinakura, Y. Terada, H. Arai, and T. Baba, “Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes,” Opt. Express 26(9), 11538–11545 (2018).
    [Crossref] [PubMed]
  12. K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photonics Technol. Lett. 28(13), 1438–1441 (2016).
    [Crossref]

2018 (2)

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Y. Hinakura, Y. Terada, H. Arai, and T. Baba, “Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes,” Opt. Express 26(9), 11538–11545 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (1)

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photonics Technol. Lett. 28(13), 1438–1441 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (2)

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

2012 (1)

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Absil, P.

Alic, N.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Arai, H.

Baba, T.

Y. Hinakura, Y. Terada, H. Arai, and T. Baba, “Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes,” Opt. Express 26(9), 11538–11545 (2018).
[Crossref] [PubMed]

Y. Terada, T. Tatebe, Y. Hinakura, and T. Baba, “Si photonic crystal slow-light modulators with periodic p–n junctions,” J. Lightwave Technol. 35(9), 1684–1692 (2017).
[Crossref]

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photonics Technol. Lett. 28(13), 1438–1441 (2016).
[Crossref]

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Baehr-Jones, T.

Baeuerle, B.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Balakrishnan, S.

Ban, Y.

Boltasseva, A.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Chagnon, M.

Chee, E. K. S.

Chelladurai, D.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Chen, H.

Cheng, B.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Chetrit, Y.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Opt. Fiber Commun. Conf. Postdeadline Papers (Optical Society of America, 2018), Th4A.7.
[Crossref]

Cui, T.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Dalton, L. R.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

De Coster, J.

De Heyn, P.

Ding, R.

Driscoll, J.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Opt. Fiber Commun. Conf. Postdeadline Papers (Optical Society of America, 2018), Th4A.7.
[Crossref]

Elder, D. L.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Fedeli, J.-M.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Fedoryshyn, Y.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Ghosh, S.

Golshani, N.

Haffner, C.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Hashimoto, S.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Heni, W.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Hinakura, Y.

Hochberg, M.

Hojo, K.

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photonics Technol. Lett. 28(13), 1438–1441 (2016).
[Crossref]

Hu, Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Jayatilleka, H.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Opt. Fiber Commun. Conf. Postdeadline Papers (Optical Society of America, 2018), Th4A.7.
[Crossref]

Josten, A.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Kinsey, N.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Kumar, R.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Opt. Fiber Commun. Conf. Postdeadline Papers (Optical Society of America, 2018), Th4A.7.
[Crossref]

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Lepage, G.

Leuthold, J.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Li, X.

Li, Z.

Lim, A. E.-J.

Liu, Y.

Lo, P. G.-Q.

Ma, Y.

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Nguyen, H. C.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Novack, A.

Osman, M.

Otsuka, S.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Pantouvaki, M.

Patel, D.

Plant, D. V.

Radic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Rong, H.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Opt. Fiber Commun. Conf. Postdeadline Papers (Optical Society of America, 2018), Th4A.7.
[Crossref]

Saha, S.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Sakib, M.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Opt. Fiber Commun. Conf. Postdeadline Papers (Optical Society of America, 2018), Th4A.7.
[Crossref]

Samani, A.

Shalaev, V. M.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Srinivasan, S. A.

Streshinsky, M.

Sun, J.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Opt. Fiber Commun. Conf. Postdeadline Papers (Optical Society of America, 2018), Th4A.7.
[Crossref]

Tatebe, T.

Terada, Y.

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Tu, X.

Van Campenhout, J.

Veerasubramanian, V.

Verheyen, P.

Watanabe, T.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photonics Technol. Lett. 28(13), 1438–1441 (2016).
[Crossref]

Xiao, X.

Xu, H.

Yang, Y.

Yazawa, N.

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photonics Technol. Lett. 28(13), 1438–1441 (2016).
[Crossref]

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

Yu, J.

Yu, Y.

Zhou, P.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal, and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127–137 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photonics Technol. Lett. 28(13), 1438–1441 (2016).
[Crossref]

J. Lightwave Technol. (2)

Nature (1)

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Other (2)

“IEEE standard for ethernet - amendment 10: media access control parameters, physical layers, and management parameters for 200 Gb/s and 400 Gb/s operation,” IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3–2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3–2015/Cor1–2017) 1–372 (2017).

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Opt. Fiber Commun. Conf. Postdeadline Papers (Optical Society of America, 2018), Th4A.7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Fabricated Si PCW Mach–Zehnder modulators. (a) Normal electrode device and dimensions of PCW. (b) Meander line electrode device.
Fig. 2
Fig. 2 (a) Frequency response and (b) f3dB for different RL. The EO response was smoothed by using the moving average in the range of ~0.25 GHz.
Fig. 3
Fig. 3 (a) Frequency response and (b) f3dB for different Ld. The EO response was smoothed using the moving average in the range of ~0.25 GHz.
Fig. 4
Fig. 4 Eye patterns of meander line electrode devices. (a) 25 Gbps, ng = 40, Vpp = 1 V, VDC = −0.5 V. (b) 32 Gbps, ng = 30, Vpp = 2 V, VDC = −1.0 V.
Fig. 5
Fig. 5 40 Gbps eye patterns. Vpp = 3 V, VDC = −3 V. (a) Normal electrode device. (b) Meander line electrode device.
Fig. 6
Fig. 6 50–64 Gbps eye patterns. (a) RF signal generated by MUX. (b) Modulated signal by meander line electrode device.

Tables (1)

Tables Icon

Table 1 Comparison between Si Mach-Zehnder modulators.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Γ L = R L Z 0 R L + Z 0
η(f)=| V ave (f)G(f) V ave (0)G(0) |
V eff ( f )= Z 0 V g { ( e j φ + /2 + e j3 φ + /2 j φ d )sinc φ + 2 + Γ L e 2γL ( e j φ /2 j2 φ d + e j3 φ + /2 j φ d )sinc φ 2 } 2( Z 0 + Z g )(1 Γ g Γ L e 2γLj2 φ d )
Γ g = Z g Z 0 Z g + Z 0
φ ± = ( β o ±jγ )L 2 , φ d = 2πf n d L d c
β o = 2πf n g c , γ=α+j β RF =α+j 2πf n RF c
G(f)= 1 1+j2πf( Z g + R pn ) C pn

Metrics