Abstract

Light scattering from nanostructures is an essential ingredient in several optical technologies, and experimental verification of simulations of light scattering is important. In particular, solar cells may benefit from light-trapping due to scattering. However, light that is successfully trapped in an absorbing media such as e.g. Si necessarily escapes direct detection. We present in this paper a technique for direct measurement and analysis of light scattering from nanostructures on a surface, exemplified with aperiodic patterns of Ag strips placed on a GaAs substrate. By placing the structures on the flat face of a half-cylinder, the angular distribution of light scattered into the azimuth plane can be directly detected, including directions above the critical angle that would be captured if the substrate had the form of a slab. Modelling of the scattered light by summing up contributions from each strip agrees with the experimental results to a very detailed level, both for scattering backward and into the substrate.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)

Ashwin Gopinath, Svetlana V. Boriskina, Bjorn M. Reinhard, and Luca Dal Negro
Opt. Express 17(5) 3741-3753 (2009)

Substrate-modified scattering properties of silicon nanostructures for solar energy applications

N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener
Opt. Express 21(4) 4774-4782 (2013)

Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays

Sylvanus Y. Lee, Carlo Forestiere, Alyssa J. Pasquale, Jacob Trevino, Gary Walsh, Paola Galli, Marco Romagnoli, and Luca Dal Negro
Opt. Express 19(24) 23818-23830 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  2. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
    [Crossref]
  3. K. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [Crossref] [PubMed]
  4. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83 (2011).
    [Crossref]
  5. T. Søndergaard, Y.-C. Tsao, P. K. Kristensen, T. G. Pedersen, and K. Pedersen, “Light trapping in guided modes of thin-film silicon-on-silver waveguides by scattering from a nanostrip,” J. Opt. Soc. Am. B 31, 2036–2044 (2014).
    [Crossref]
  6. J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
    [Crossref]
  7. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977).
    [Crossref]
  8. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906–1913 (2000).
    [Crossref]
  9. C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126, 194702 (2007).
    [Crossref] [PubMed]
  10. D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108, 13957–13962 (2004).
    [Crossref]
  11. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979).
    [Crossref]
  12. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977).
    [Crossref]
  13. A. Abass, P. Gutsche, B. Maes, C. Rockstuhl, and E. R. Martins, “Insights into directional scattering: from coupled dipoles to asymmetric dimer nanoantennas,” Opt. Express 24, 19638–19650 (2016).
    [Crossref] [PubMed]
  14. S. R. J. Brueck, “Radiation from a dipole embedded in a dielectric slab,” IEEE J. Sel. Top. Quantum Electron. 6, 899–910 (2000).
    [Crossref]
  15. C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
    [Crossref]
  16. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref] [PubMed]
  17. T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
    [Crossref] [PubMed]
  18. M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
    [Crossref] [PubMed]
  19. E. Skovsen, T. Søndergaard, J. Fiutowski, H.-G. Rubahn, and K. Pedersen, “Surface plasmon polariton generation by light scattering off aligned organic nanofibers,” J. Opt. Soc. Am. B 29, 249–256 (2012).
    [Crossref]
  20. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
    [Crossref]
  21. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137 – 141 (2003).
    [Crossref]
  22. T. M. Søndergaard, Green’s Function Integral Equation Methods in Nano-Optics (CRC Press, 2019). (Chap. 4).
    [Crossref]
  23. Y. Mizokawa, O. Komoda, and S. Miyase, “Long-time air oxidation and oxide-substrate reactions on GaSb, GaAs and GaP at room temperature studied by X-ray photoelectron spectroscopy,” Thin Solid Films 156, 127 – 143 (1988).
    [Crossref]
  24. L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
    [Crossref]
  25. W. Cai, H. Zhong, and L. Zhang, “Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host,” J. Appl. Phys. 83, 1705–1710 (1998).
    [Crossref]
  26. M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund, “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80, 915–921 (2005).
    [Crossref]
  27. Optical data from Sopra SA, “GaAs optical constants,” http://www.sspectra.com/sopra.html .

2016 (1)

2014 (1)

2013 (1)

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

2012 (3)

M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
[Crossref] [PubMed]

E. Skovsen, T. Søndergaard, J. Fiutowski, H.-G. Rubahn, and K. Pedersen, “Surface plasmon polariton generation by light scattering off aligned organic nanofibers,” J. Opt. Soc. Am. B 29, 249–256 (2012).
[Crossref]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

2011 (3)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83 (2011).
[Crossref]

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[Crossref]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

2010 (2)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

2008 (2)

K. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[Crossref] [PubMed]

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

2007 (1)

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126, 194702 (2007).
[Crossref] [PubMed]

2005 (1)

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund, “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80, 915–921 (2005).
[Crossref]

2004 (1)

D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108, 13957–13962 (2004).
[Crossref]

2003 (2)

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137 – 141 (2003).
[Crossref]

2000 (2)

J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906–1913 (2000).
[Crossref]

S. R. J. Brueck, “Radiation from a dipole embedded in a dielectric slab,” IEEE J. Sel. Top. Quantum Electron. 6, 899–910 (2000).
[Crossref]

1998 (1)

W. Cai, H. Zhong, and L. Zhang, “Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host,” J. Appl. Phys. 83, 1705–1710 (1998).
[Crossref]

1988 (1)

Y. Mizokawa, O. Komoda, and S. Miyase, “Long-time air oxidation and oxide-substrate reactions on GaSb, GaAs and GaP at room temperature studied by X-ray photoelectron spectroscopy,” Thin Solid Films 156, 127 – 143 (1988).
[Crossref]

1979 (1)

1977 (2)

Abass, A.

Atwater, H. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Aussenegg, F.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137 – 141 (2003).
[Crossref]

Bouhelier, A.

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

Brueck, S. R. J.

S. R. J. Brueck, “Radiation from a dipole embedded in a dielectric slab,” IEEE J. Sel. Top. Quantum Electron. 6, 899–910 (2000).
[Crossref]

Bruyant, A.

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

Cai, W.

W. Cai, H. Zhong, and L. Zhang, “Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host,” J. Appl. Phys. 83, 1705–1710 (1998).
[Crossref]

Catchpole, K.

Cheng, H.-C.

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

Chumanov, G.

D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108, 13957–13962 (2004).
[Crossref]

Coenen, T.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Colas des Francs, G.

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Dereux, A.

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

Evanoff, D. D.

D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108, 13957–13962 (2004).
[Crossref]

Feldman, L. C.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund, “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80, 915–921 (2005).
[Crossref]

Feng, L.

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

Ferry, V. E.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Finot, E.

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

Fiutowski, J.

Gao, X.

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

Guenot, A.

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

Gusak, V.

M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
[Crossref] [PubMed]

Gutsche, P.

Haglund, R. F.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund, “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80, 915–921 (2005).
[Crossref]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137 – 141 (2003).
[Crossref]

Huang, C.

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

Johansson, P.

M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
[Crossref] [PubMed]

Jung, J.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[Crossref]

Käll, M.

M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
[Crossref] [PubMed]

Kasemo, B.

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126, 194702 (2007).
[Crossref] [PubMed]

Koenderink, A. F.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Komoda, O.

Y. Mizokawa, O. Komoda, and S. Miyase, “Long-time air oxidation and oxide-substrate reactions on GaSb, GaAs and GaP at room temperature studied by X-ray photoelectron spectroscopy,” Thin Solid Films 156, 127 – 143 (1988).
[Crossref]

Krenn, J.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137 – 141 (2003).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Kristensen, P. K.

Kunz, R. E.

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137 – 141 (2003).
[Crossref]

Langhammer, C.

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126, 194702 (2007).
[Crossref] [PubMed]

Larsen, A. N.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[Crossref]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137 – 141 (2003).
[Crossref]

Liu, H.

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

Lopez, R.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund, “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80, 915–921 (2005).
[Crossref]

Lukosz, W.

Maes, B.

Martins, E. R.

McMahon, M. D.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund, “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80, 915–921 (2005).
[Crossref]

Mertz, J.

Meyer, H. M.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund, “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80, 915–921 (2005).
[Crossref]

Miao, Z.

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

Miljkovic, V. D.

M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
[Crossref] [PubMed]

Miyase, S.

Y. Mizokawa, O. Komoda, and S. Miyase, “Long-time air oxidation and oxide-substrate reactions on GaSb, GaAs and GaP at room temperature studied by X-ray photoelectron spectroscopy,” Thin Solid Films 156, 127 – 143 (1988).
[Crossref]

Mizokawa, Y.

Y. Mizokawa, O. Komoda, and S. Miyase, “Long-time air oxidation and oxide-substrate reactions on GaSb, GaAs and GaP at room temperature studied by X-ray photoelectron spectroscopy,” Thin Solid Films 156, 127 – 143 (1988).
[Crossref]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Nielsen, B. B.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[Crossref]

Niu, S.

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83 (2011).
[Crossref]

Pedersen, K.

Pedersen, T. G.

T. Søndergaard, Y.-C. Tsao, P. K. Kristensen, T. G. Pedersen, and K. Pedersen, “Light trapping in guided modes of thin-film silicon-on-silver waveguides by scattering from a nanostrip,” J. Opt. Soc. Am. B 31, 2036–2044 (2014).
[Crossref]

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[Crossref]

Polman, A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

K. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137 – 141 (2003).
[Crossref]

Rockstuhl, C.

Rubahn, H.-G.

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Schwind, M.

M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
[Crossref] [PubMed]

Skovsen, E.

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Søndergaard, T.

Søndergaard, T. M.

T. M. Søndergaard, Green’s Function Integral Equation Methods in Nano-Optics (CRC Press, 2019). (Chap. 4).
[Crossref]

Spinelli, P.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Tsao, Y.-C.

van de Groep, J.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83 (2011).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

van Lare, M.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Verschuuren, M. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Vesseur, E. J. R.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Wang, L.

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

Weeber, J.-C.

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Zäch, M.

M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
[Crossref] [PubMed]

Zhang, L.

W. Cai, H. Zhong, and L. Zhang, “Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host,” J. Appl. Phys. 83, 1705–1710 (1998).
[Crossref]

Zhang, L.-D.

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

Zhang, X.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Zhong, H.

W. Cai, H. Zhong, and L. Zhang, “Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host,” J. Appl. Phys. 83, 1705–1710 (1998).
[Crossref]

Zoric, I.

M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
[Crossref] [PubMed]

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126, 194702 (2007).
[Crossref] [PubMed]

ACS Nano (1)

M. Schwind, V. D. Miljković, M. Zäch, V. Gusak, M. Käll, I. Zorić, and P. Johansson, “Diffraction from arrays of plasmonic nanoparticles with short-range lateral order,” ACS Nano 6, 9455–9465 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund, “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80, 915–921 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. R. J. Brueck, “Radiation from a dipole embedded in a dielectric slab,” IEEE J. Sel. Top. Quantum Electron. 6, 899–910 (2000).
[Crossref]

J. Appl. Phys. (1)

W. Cai, H. Zhong, and L. Zhang, “Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host,” J. Appl. Phys. 83, 1705–1710 (1998).
[Crossref]

J. Chem. Phys. (1)

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126, 194702 (2007).
[Crossref] [PubMed]

J. Opt. (1)

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108, 13957–13962 (2004).
[Crossref]

Nano Lett. (2)

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83 (2011).
[Crossref]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137 – 141 (2003).
[Crossref]

Opt. Express (2)

Phys. Rev. B (2)

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: Applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[Crossref]

C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[Crossref]

Proc. SPIE (1)

L. Feng, L.-D. Zhang, H. Liu, X. Gao, Z. Miao, H.-C. Cheng, L. Wang, and S. Niu, “Characterization study of native oxides on GaAs(100) surface by XPS,” Proc. SPIE 8912, 89120N (2013).
[Crossref]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Thin Solid Films (1)

Y. Mizokawa, O. Komoda, and S. Miyase, “Long-time air oxidation and oxide-substrate reactions on GaSb, GaAs and GaP at room temperature studied by X-ray photoelectron spectroscopy,” Thin Solid Films 156, 127 – 143 (1988).
[Crossref]

Other (2)

Optical data from Sopra SA, “GaAs optical constants,” http://www.sspectra.com/sopra.html .

T. M. Søndergaard, Green’s Function Integral Equation Methods in Nano-Optics (CRC Press, 2019). (Chap. 4).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Sample geometries for a single strip. (b) Scattering cross section as a function of strip width for 3 different gap sizes. The dashed lines represent the strip width on the two samples that have been fabricated. (c) Scattering per unit angle into both air and substrate for a 130 nm strip. (d) Schematic illustration of the structure written on the flat side of the half-cylinder.
Fig. 2
Fig. 2 (a) Detector setup. (b) Sketch showing angles and distances used in the model for reflection. (c) Sketch showing angles and distances used in the simple model for transmission.
Fig. 3
Fig. 3 Sketch of sample and detector system. The sketch is not to scale, L = 0.30 m and R = 2.7 mm.
Fig. 4
Fig. 4 SEM image showing the full width of a 100 × 100 µm2 write-field with 130 nm Ag strips. Write-field stitching errors are seen in the red squares.
Fig. 5
Fig. 5 Measured intensity of the transmitted light for the setup illustrated in Fig. 2(a). The incidence light is polarized transverse to the strips and results are shown for the aperiodic array of 130 nm and 250 nm Ag strips and the same areas without strips.
Fig. 6
Fig. 6 Measured scattered intensity of the diffracted light from the aperiodic array of 130 nm Ag strips. The green line shows scattering per unit angle for a single 130 nm Ag strip on a GaAs surface. The black line is the measured signal for a new sample, while the red line is for an 80 days old sample multiplied by a factor of 8. The transmitted intensity has been corrected for transmission and reflection losses.
Fig. 7
Fig. 7 In both (a) and (b), the green lines shows the scattering per unit angle from a single 130 nm Ag strip on a GaAs surface. The red line is the measured signal from the aperiodic array of 130 nm Ag strip and the black lines are the calculated signals using Eq. (1). In (b) the positions of the write-fields and the beam center have been optimized to match modelling and measurements.
Fig. 8
Fig. 8 The green line shows the scattering per unit angle from a single130 nm Ag strip on a GaAs surface. The red line is the measured signal from the aperiodic array of 130 nm Ag strips and the black line is the calculated signal using Eq. (2). The model is corrected for transmission and reflection losses. In the model we have used the write-field stitching error, beam axis position and scaling factor obtained from the modelling of the backscattered light. The dashed vertical line at ≈ 163° represents the critical angle for the GaAs-air interface.
Fig. 9
Fig. 9 In both (a) and (b), the green lines shows the scattering per unit angle from a single strip on which the respective models in (a) and (b) are based. The red line is the measured signal from the the aperiodic array of 130 nm Ag strips and the black lines are the calculated signals using Eq. (5) based on (a) free space dipole scattering and (b) the radiation pattern from a 130 nm wide Ag strip on a GaAs surface (see Fig. 1(c)). The models are corrected for transmission and reflection losses. In both models we have used the write-field stitching error, beam axis position and scaling factor obtained from the modelling of the backscattered light. The dashed vertical line at ≈ 163° represents the critical angle for the GaAs-air interface.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( θ ) = F p S ( α p ) exp ( i k 0 r p ) exp ( ( x p x c ) 2 w 2 ) r p .
E ( θ ) = T F p S ( α p ) exp ( i k 0 n 1 L 1 , p ) exp ( i k 0 L 2 ) exp ( ( x p x c ) 2 w 2 ) r p .
[ d 0 α 0 ] = [ 1 L 2 0 1 ] [ 1 0 n 1 n 2 R n 2 n 1 n 2 ] [ 1 L 1 0 1 ] [ d α ] .
L 1 = ( L 1 δ ) / cos ( α ) L 2 = ( L 2 δ ) / cos ( α 0 ) .
E ( θ ) = T F p S ( θ p ) exp ( i k 0 n 1 L 1 , p ) exp ( i k 0 L 2 , p ) exp ( ( x p x c ) 2 w 2 ) L 1 , p + L 2 , p .
x p = ± 50 μ m ( p p max ) 1.4 , p = 1 , 2 , 3 , , p max

Metrics