Abstract

A new design for thermal-infrared radiation thermometer and sensors is described. Critical optical elements, such as the field stop, Lyot stop, collimating lens, and detector, are placed inside a thermally stabilized assembly that is controlled using thermo-electric coolers and thermistors. The assembled radiation thermometer is calibrated using both variable-temperature fluid-bath and heat-pipe blackbodies from −45 °C to 75 °C and the use of a modified-Planck function and these blackbodies. The size-of-source effect both with and without the Lyot stop has been measured. This new design, during operations without the need for cryogenic cooling, demonstrates sub millikelvin temperature measurement resolution with few millikelvin, week-long stable operations while measuring room-temperature objects.

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of thermal radiation using regular glass optics and short-wave infrared detectors

H. W. Yoon and G. P. Eppeldauer
Opt. Express 16(2) 937-949 (2008)

Thermodynamic-temperature determinations of the Ag and Au freezing temperatures using a detector-based radiation thermometer

Howard W. Yoon, David W. Allen, Charles E. Gibson, Maritoni Litorja, Robert D. Saunders, Steven W. Brown, George P. Eppeldauer, and Keith R. Lykke
Appl. Opt. 46(15) 2870-2880 (2007)

Remote-sensing infrared thermometer with radiation balancing

Sankaran Harigovindan and Karunakaran Sarojini Sobha
Appl. Opt. 39(15) 2461-2466 (2000)

References

  • View by:
  • |
  • |
  • |

  1. P. Coates and D. Lowe, The Fundamentals of Radiation Thermometers (CRC Press, 2017).
  2. O. Struss, “Transfer radiation thermometer covering the temperature range from −50 deg C to 1000 deg C,” in Temperature: Its Measurement and Control in Science and Industry Vol 7, D. C. Ripple, ed. (AIP, 2003), pp. 565–570.
  3. J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
    [Crossref]
  4. Y. S. Yoo, B. H. Kim, S. D. Lim, S. N. Park, and S. C. Park, “Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique,” Metrologia 50(4), 409–416 (2013).
    [Crossref]
  5. J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35(4), 505–509 (1998).
    [Crossref]
  6. H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42(2), 89–96 (2005).
    [Crossref]
  7. S. N. Mekhontsev, V. B. Khromchenko, and L. M. Hanssen, “NIST radiance temperature and infrared spectral radiance scales at near-ambient temperatures,” Int. J. Thermophys. 29(3), 1026–1040 (2008).
    [Crossref]
  8. S. D. Wood, B. W. Mangum, J. J. Filliben, and S. B. Tillett, “An investigation of the stability of thermistors,” J. Res. Natl. Bur. Stand. 83(3), 247–263 (1978).
    [Crossref]
  9. G. P. Eppeldauer and V. B. Podobedov, “Infrared spectral responsivity scale realization and validations,” Appl. Opt. 51(25), 6003–6008 (2012).
    [Crossref] [PubMed]
  10. A. Rogalski, “Next decade in infrared detectors,” Proc. SPIE 10433, 104330L (2017).
  11. J. B. Fowler, “A third generation water bath-based blackbody source,” J. Res. Natl. Inst. Stand. Technol. 100(5), 591–599 (1995).
    [Crossref] [PubMed]
  12. P. Saunders, “General interpolation equations for the calibration of radiation thermometers,” Metrologia 34(3), 201–210 (1997).
    [Crossref]
  13. M. Battuello, F. Girard, T. Ricolfi, M. Sadli, P. Ridoux, O. Enouf, J. Perez, V. Chimenti, T. Weckstrom, O. Struss, E. Filipe, N. Machado, E. Van der Ham, G. Machin, H. McEvoy, B. Gutschwager, J. Fischer, V. Schmidt, S. Clausen, J. Ivarsson, S. Ugur, and A. Diril, “The European project TRIRAT: arrangements for and results of the comparison of local temperature scales with transfer infrared thermometers between 150 °C and 962 °C,” in Temperature: Its Measurement and Control in Science and Industry Vol 7, D. C. Ripple, ed. (AIP, 2003), pp. 903–908.
  14. D. Lowe, M. Battello, G. Machin, and F. Girard, “A comparison of size of source effect measurements of radiation thermometers between IMGC and NPL,” in Temperature: Its Measurement and Control in Science and Industry Vol 7, D. C. Ripple, ed. (AIP, 2003), pp. 625–630.

2017 (1)

A. Rogalski, “Next decade in infrared detectors,” Proc. SPIE 10433, 104330L (2017).

2013 (1)

Y. S. Yoo, B. H. Kim, S. D. Lim, S. N. Park, and S. C. Park, “Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique,” Metrologia 50(4), 409–416 (2013).
[Crossref]

2012 (1)

2008 (1)

S. N. Mekhontsev, V. B. Khromchenko, and L. M. Hanssen, “NIST radiance temperature and infrared spectral radiance scales at near-ambient temperatures,” Int. J. Thermophys. 29(3), 1026–1040 (2008).
[Crossref]

2005 (1)

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42(2), 89–96 (2005).
[Crossref]

2004 (1)

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

1998 (1)

J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35(4), 505–509 (1998).
[Crossref]

1997 (1)

P. Saunders, “General interpolation equations for the calibration of radiation thermometers,” Metrologia 34(3), 201–210 (1997).
[Crossref]

1995 (1)

J. B. Fowler, “A third generation water bath-based blackbody source,” J. Res. Natl. Inst. Stand. Technol. 100(5), 591–599 (1995).
[Crossref] [PubMed]

1978 (1)

S. D. Wood, B. W. Mangum, J. J. Filliben, and S. B. Tillett, “An investigation of the stability of thermistors,” J. Res. Natl. Bur. Stand. 83(3), 247–263 (1978).
[Crossref]

Abtahi, A.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

Allen, D. W.

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42(2), 89–96 (2005).
[Crossref]

Barton, I. J.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

Butler, J. J.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

Donlon, C. J.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

Eppeldauer, G. P.

Filliben, J. J.

S. D. Wood, B. W. Mangum, J. J. Filliben, and S. B. Tillett, “An investigation of the stability of thermistors,” J. Res. Natl. Bur. Stand. 83(3), 247–263 (1978).
[Crossref]

Fowler, J. B.

J. B. Fowler, “A third generation water bath-based blackbody source,” J. Res. Natl. Inst. Stand. Technol. 100(5), 591–599 (1995).
[Crossref] [PubMed]

Hanssen, L. M.

S. N. Mekhontsev, V. B. Khromchenko, and L. M. Hanssen, “NIST radiance temperature and infrared spectral radiance scales at near-ambient temperatures,” Int. J. Thermophys. 29(3), 1026–1040 (2008).
[Crossref]

Hook, S. J.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

Johnson, B. C.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35(4), 505–509 (1998).
[Crossref]

Khromchenko, V. B.

S. N. Mekhontsev, V. B. Khromchenko, and L. M. Hanssen, “NIST radiance temperature and infrared spectral radiance scales at near-ambient temperatures,” Int. J. Thermophys. 29(3), 1026–1040 (2008).
[Crossref]

Kim, B. H.

Y. S. Yoo, B. H. Kim, S. D. Lim, S. N. Park, and S. C. Park, “Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique,” Metrologia 50(4), 409–416 (2013).
[Crossref]

Lim, S. D.

Y. S. Yoo, B. H. Kim, S. D. Lim, S. N. Park, and S. C. Park, “Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique,” Metrologia 50(4), 409–416 (2013).
[Crossref]

Maillet, K. A.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

Mangum, B. W.

S. D. Wood, B. W. Mangum, J. J. Filliben, and S. B. Tillett, “An investigation of the stability of thermistors,” J. Res. Natl. Bur. Stand. 83(3), 247–263 (1978).
[Crossref]

Mekhontsev, S. N.

S. N. Mekhontsev, V. B. Khromchenko, and L. M. Hanssen, “NIST radiance temperature and infrared spectral radiance scales at near-ambient temperatures,” Int. J. Thermophys. 29(3), 1026–1040 (2008).
[Crossref]

Minnett, P. J.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

Nightingale, T. J.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

Park, S. C.

Y. S. Yoo, B. H. Kim, S. D. Lim, S. N. Park, and S. C. Park, “Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique,” Metrologia 50(4), 409–416 (2013).
[Crossref]

Park, S. N.

Y. S. Yoo, B. H. Kim, S. D. Lim, S. N. Park, and S. C. Park, “Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique,” Metrologia 50(4), 409–416 (2013).
[Crossref]

Podobedov, V. B.

Rice, J. P.

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35(4), 505–509 (1998).
[Crossref]

Rogalski, A.

A. Rogalski, “Next decade in infrared detectors,” Proc. SPIE 10433, 104330L (2017).

Saunders, P.

P. Saunders, “General interpolation equations for the calibration of radiation thermometers,” Metrologia 34(3), 201–210 (1997).
[Crossref]

Saunders, R. D.

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42(2), 89–96 (2005).
[Crossref]

Tillett, S. B.

S. D. Wood, B. W. Mangum, J. J. Filliben, and S. B. Tillett, “An investigation of the stability of thermistors,” J. Res. Natl. Bur. Stand. 83(3), 247–263 (1978).
[Crossref]

Wood, S. D.

S. D. Wood, B. W. Mangum, J. J. Filliben, and S. B. Tillett, “An investigation of the stability of thermistors,” J. Res. Natl. Bur. Stand. 83(3), 247–263 (1978).
[Crossref]

Yoo, Y. S.

Y. S. Yoo, B. H. Kim, S. D. Lim, S. N. Park, and S. C. Park, “Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique,” Metrologia 50(4), 409–416 (2013).
[Crossref]

Yoon, H. W.

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42(2), 89–96 (2005).
[Crossref]

Appl. Opt. (1)

Int. J. Thermophys. (1)

S. N. Mekhontsev, V. B. Khromchenko, and L. M. Hanssen, “NIST radiance temperature and infrared spectral radiance scales at near-ambient temperatures,” Int. J. Thermophys. 29(3), 1026–1040 (2008).
[Crossref]

J. Atmos. Ocean. Tech. (1)

J. P. Rice, J. J. Butler, B. C. Johnson, P. J. Minnett, K. A. Maillet, T. J. Nightingale, S. J. Hook, A. Abtahi, C. J. Donlon, and I. J. Barton, “The Miami2001 infrared radiometer calibration and intercomparison. Part I: laboratory characterization of blackbody targets,” J. Atmos. Ocean. Tech. 21(2), 258–267 (2004).
[Crossref]

J. Res. Natl. Bur. Stand. (1)

S. D. Wood, B. W. Mangum, J. J. Filliben, and S. B. Tillett, “An investigation of the stability of thermistors,” J. Res. Natl. Bur. Stand. 83(3), 247–263 (1978).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

J. B. Fowler, “A third generation water bath-based blackbody source,” J. Res. Natl. Inst. Stand. Technol. 100(5), 591–599 (1995).
[Crossref] [PubMed]

Metrologia (4)

P. Saunders, “General interpolation equations for the calibration of radiation thermometers,” Metrologia 34(3), 201–210 (1997).
[Crossref]

Y. S. Yoo, B. H. Kim, S. D. Lim, S. N. Park, and S. C. Park, “Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique,” Metrologia 50(4), 409–416 (2013).
[Crossref]

J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35(4), 505–509 (1998).
[Crossref]

H. W. Yoon, D. W. Allen, and R. D. Saunders, “Methods to reduce the size-of-source effect in radiometers,” Metrologia 42(2), 89–96 (2005).
[Crossref]

Proc. SPIE (1)

A. Rogalski, “Next decade in infrared detectors,” Proc. SPIE 10433, 104330L (2017).

Other (4)

M. Battuello, F. Girard, T. Ricolfi, M. Sadli, P. Ridoux, O. Enouf, J. Perez, V. Chimenti, T. Weckstrom, O. Struss, E. Filipe, N. Machado, E. Van der Ham, G. Machin, H. McEvoy, B. Gutschwager, J. Fischer, V. Schmidt, S. Clausen, J. Ivarsson, S. Ugur, and A. Diril, “The European project TRIRAT: arrangements for and results of the comparison of local temperature scales with transfer infrared thermometers between 150 °C and 962 °C,” in Temperature: Its Measurement and Control in Science and Industry Vol 7, D. C. Ripple, ed. (AIP, 2003), pp. 903–908.

D. Lowe, M. Battello, G. Machin, and F. Girard, “A comparison of size of source effect measurements of radiation thermometers between IMGC and NPL,” in Temperature: Its Measurement and Control in Science and Industry Vol 7, D. C. Ripple, ed. (AIP, 2003), pp. 625–630.

P. Coates and D. Lowe, The Fundamentals of Radiation Thermometers (CRC Press, 2017).

O. Struss, “Transfer radiation thermometer covering the temperature range from −50 deg C to 1000 deg C,” in Temperature: Its Measurement and Control in Science and Industry Vol 7, D. C. Ripple, ed. (AIP, 2003), pp. 565–570.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Optical design layout of the ART showing the ZnSe lenses and the temperature-stabilized compartment holding the tilted-field stop, aperture stop, lenses, and detectors. The entire assembly to the right of the chopper wheel which is about 30 cm in length is temperature stabilized at a common temperature of 23 °C. The separation distance from the objective lens to the pyroelectric detector is about 55 cm. The outer case of the ART is not temperature stabilized.
Fig. 2
Fig. 2 The spectral power responsivity of the pyroelectric detector package. The preamplifier is integrated into the detector package and the spectral filter is used as the detector window. The expanded uncertainties of the responsivities of 3% are shown.
Fig. 3
Fig. 3 Setup of radiation thermometer for testing and calibrations using the NIST fluid-bath and heat-pipe blackbodies. The front aperture of the water-bath blackbody which has an internal diameter of 108 mm was restricted to a diameter of 25 mm for these measurements. The Lyot stop is used to prevent the scattered radiation from the edge of the lens from being collected by the detector. The distance from the front surface of the blackbody to the front surface of the ART is 40 cm.
Fig. 4
Fig. 4 Measured lock-in amplifier signals as a function of SPRT temperatures. The x-amplitude signals from the lock-in measurements are plotted. The change in the sign of the signals occurs where the blackbody temperature is equal to the reference, optical-assembly temperature.
Fig. 5
Fig. 5 Interpolation fitting of lock-in signals with a constant offset D with the Sakuma-Hattori function shown in Eq. (2). The fitting was performed in two sections for the respective blackbodies; this resulted in lower residuals compared to a single global fit.
Fig. 6
Fig. 6 The residual temperatures from the fitting shown above. The residuals from the temperature range where the water-bath blackbody was used are smaller than the range where the ammonia heat-pipe blackbody was used. The deviations at the lowest temperature could be due to the instability of the ammonia-heat-pipe blackbody at the lowest temperatures.
Fig. 7
Fig. 7 Non-contact temperature measurements of the water-bath blackbody initially measured to be at 45.342 deg C using the ART. The temperature-stabilization circuit was turned off at the beginning of the measurements and restarted past the 16-hour mark. The apparent increase in temperature is due to the decrease in the temperature of the uncontrolled, optical assembly. After the thermo-electric coolers are used to control the temperature of the assembly, the measured temperature goes back to the initial value to within 2 mK.
Fig. 8
Fig. 8 The temperature stabilization circuit was turned off at 3 hours after the start, and the radiometer was allowed to drift. The stabilization circuit was turned back on at little past 4 hours, and the signals return to the initial values within 30 min.
Fig. 9
Fig. 9 Long-term, 48 h measurements of the WBBB set at 20 °C. The offset in ART measured temperatures from the WBBB temperature is due to the slight differences in the calibration. The ART measured temperatures are stable to < 3 mK over the entire interval of 48 h.
Fig. 10
Fig. 10 ART measurements of the AHPBB set at −30 deg C. The oscillations are from the control loop algorithm that could not fully stabilize the AHPBB temperatures. The digitization of about 10 mK is from the resolution of the lock-in amplifier signals. The noise-equivalent temperature of the ART at these temperatures is estimated to be about 3 mK based on the comparisons to the SPRT measurements.
Fig. 11
Fig. 11 Comparison of ART non-contact temperature measurements with the SPRT contact temperatures. The SPRT temperatures have a resolution of 1 mK due to the limitation of the readout instrument. The ART noise floor is < 1 mK.
Fig. 12
Fig. 12 Noise-equivalent temperature differences of the ART at −30 °C as measured using differences of the SPRT-ART temperatures.
Fig. 13
Fig. 13 The size-of-source effect measured using the ART. The SSE for the configuration with a Lyot stop is not detected beyond 12 mm. The absence of a Lyot stop results in increased SSE with additional structure.

Tables (4)

Tables Icon

Table 1 Specifications of the ART

Tables Icon

Table 2 Measurements of noise-equivalent power detectivity as a function of lock-in filter time constant. The detectivities are determined using the 5 mm diameter active detector area.

Tables Icon

Table 3 The optical performance of the ZnSe objective lens as measured using the Strehl ratio. A Strehl ratio of unity indicates diffraction limited performance. The drop off in the performance as seen in the lower Strehl ratios is due to the chromatic aberrations of the ZnSe lens.

Tables Icon

Table 4 Estimated uncertainties of the ART measured temperatures at 30 °C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χ 2 = ( ( ν( T )+D )ν( T 1 ) S(λ)L(λ,T) S(λ)L(λ, T 1 ) ) 2 .
ν+D= A exp( C 2 BT+C )1 ,
SSE= V(d) V(ref) ,