Abstract

The control of the emission from electric and magnetic dipoles is highly desired for the development of optic chips. Although the emission of electric dipole has been successfully controlled by plasmonic nanoantenna, the control of magnetic dipole emission is relatively difficult. Here, we systematically study the effect of electric and magnetic modes of Au nanocups on the emission of electric and magnetic dipoles. The emission of electric dipole can be enhanced by both the electric and magnetic mode of the Au nanocup, while the emission of the magnetic dipole is only increased by the magnetic mode. The enhancement exhibits wavelength dependence. The wavelength of the largest enhancement is determined by the resonance wavelength of electric and magnetic modes. The enhancement values for electric and magnetic dipoles are determined by the near-field electric and magnetic field enhancements, respectively. More importantly, the emission pattern of magnetic dipole is greatly modified by the magnetic mode of Au nanocup. The directional emission of magnetic dipole is first time realized by use of the magnetic mode of the Au nanocup. Our findings deepen the understanding of the plasmon-controlled emission of electric and magnetic dipoles and will be very helpful to the development of the nanophotonic chips.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modification of electric and magnetic dipole emission in anisotropic plasmonic systems

N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas
Opt. Express 21(20) 23087-23096 (2013)

Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal

R. Hussain, D. Keene, N. Noginova, and M. Durach
Opt. Express 22(7) 7744-7755 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
    [Crossref] [PubMed]
  2. S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
    [Crossref] [PubMed]
  3. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
    [Crossref] [PubMed]
  4. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
    [Crossref]
  5. V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
    [Crossref] [PubMed]
  6. S. Venkatesh, P. K. Badiya, and S. S. Ramamurthy, “Purcell factor based understanding of enhancements in surface plasmon-coupled emission with DNA architectures,” Phys. Chem. Chem. Phys. 18(2), 681–684 (2016).
    [Crossref] [PubMed]
  7. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  8. S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
    [Crossref] [PubMed]
  9. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  10. T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
    [Crossref]
  11. M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4(3), 692–706 (2012).
    [Crossref] [PubMed]
  12. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
    [Crossref] [PubMed]
  13. T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5(1), 3250 (2014).
    [Crossref] [PubMed]
  14. D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
    [Crossref]
  15. M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
    [Crossref]
  16. S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
    [Crossref] [PubMed]
  17. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
    [Crossref]
  18. J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
    [Crossref]
  19. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
    [Crossref] [PubMed]
  20. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009).
    [Crossref] [PubMed]
  21. N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
    [Crossref] [PubMed]
  22. P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano 5(9), 6774–6778 (2011).
    [Crossref] [PubMed]
  23. N. S. King, M. W. Knight, N. Large, A. M. Goodman, P. Nordlander, and N. J. Halas, “Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface,” Nano Lett. 13(12), 5997–6001 (2013).
    [Crossref] [PubMed]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  25. T. H. Feng, W. Zhang, Z. X. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic purcell effect,” ACS photon. 5, 678−683 (2018).
    [Crossref]
  26. R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
    [Crossref] [PubMed]
  27. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5(9), 7254–7262 (2011).
    [Crossref] [PubMed]
  28. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
    [Crossref]
  29. D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent purcell effect,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 033318 (2005).
    [Crossref]
  30. S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35(20), 3318–3320 (2010).
    [Crossref] [PubMed]

2017 (1)

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

2016 (3)

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

S. Venkatesh, P. K. Badiya, and S. S. Ramamurthy, “Purcell factor based understanding of enhancements in surface plasmon-coupled emission with DNA architectures,” Phys. Chem. Chem. Phys. 18(2), 681–684 (2016).
[Crossref] [PubMed]

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

2015 (5)

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref] [PubMed]

2014 (4)

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5(1), 3250 (2014).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

2013 (2)

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

N. S. King, M. W. Knight, N. Large, A. M. Goodman, P. Nordlander, and N. J. Halas, “Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface,” Nano Lett. 13(12), 5997–6001 (2013).
[Crossref] [PubMed]

2012 (2)

T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4(3), 692–706 (2012).
[Crossref] [PubMed]

2011 (2)

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5(9), 7254–7262 (2011).
[Crossref] [PubMed]

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano 5(9), 6774–6778 (2011).
[Crossref] [PubMed]

2010 (2)

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35(20), 3318–3320 (2010).
[Crossref] [PubMed]

2009 (3)

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009).
[Crossref] [PubMed]

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

2007 (2)

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[Crossref]

V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
[Crossref] [PubMed]

2005 (1)

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent purcell effect,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 033318 (2005).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Agio, M.

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4(3), 692–706 (2012).
[Crossref] [PubMed]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref] [PubMed]

Ali, T. A.

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

Alù, A.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Argyropoulos, C.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref] [PubMed]

Atkinson, P.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent purcell effect,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 033318 (2005).
[Crossref]

Auffèves, A.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Ayala-Orozco, C.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5(9), 7254–7262 (2011).
[Crossref] [PubMed]

Badiya, P. K.

S. Venkatesh, P. K. Badiya, and S. S. Ramamurthy, “Purcell factor based understanding of enhancements in surface plasmon-coupled emission with DNA architectures,” Phys. Chem. Chem. Phys. 18(2), 681–684 (2016).
[Crossref] [PubMed]

Baranov, D. G.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Bennett, A. J.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent purcell effect,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 033318 (2005).
[Crossref]

Bernal Arango, F.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5(1), 3250 (2014).
[Crossref] [PubMed]

Borghs, G.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009).
[Crossref] [PubMed]

Brannan, T.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5(9), 7254–7262 (2011).
[Crossref] [PubMed]

Burr, G. W.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Chen, H. J.

T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Cheng, S.

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coenen, T.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5(1), 3250 (2014).
[Crossref] [PubMed]

Cortie, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[Crossref]

Demory, J.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Dorpe, P. V.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Femius Koenderink, A.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5(1), 3250 (2014).
[Crossref] [PubMed]

Fischer, U. C.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Ford, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[Crossref]

Garcia-Parajo, M. F.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Giessen, H.

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

Giesz, V.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Goodman, A. M.

N. S. King, M. W. Knight, N. Large, A. M. Goodman, P. Nordlander, and N. J. Halas, “Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface,” Nano Lett. 13(12), 5997–6001 (2013).
[Crossref] [PubMed]

Grange, T.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Grosjean, T.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Guo, J.

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

Halas, N. J.

N. S. King, M. W. Knight, N. Large, A. M. Goodman, P. Nordlander, and N. J. Halas, “Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface,” Nano Lett. 13(12), 5997–6001 (2013).
[Crossref] [PubMed]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5(9), 7254–7262 (2011).
[Crossref] [PubMed]

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

Hein, S. M.

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref] [PubMed]

Hornecker, G.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Huang, J.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref] [PubMed]

Hughes, S.

V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
[Crossref] [PubMed]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Jiang, R.

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

Jiang, R. B.

T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Karaveli, S.

Kilpatrick, T.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

King, N. S.

N. S. King, M. W. Knight, N. Large, A. M. Goodman, P. Nordlander, and N. J. Halas, “Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface,” Nano Lett. 13(12), 5997–6001 (2013).
[Crossref] [PubMed]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5(9), 7254–7262 (2011).
[Crossref] [PubMed]

Knight, M. W.

N. S. King, M. W. Knight, N. Large, A. M. Goodman, P. Nordlander, and N. J. Halas, “Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface,” Nano Lett. 13(12), 5997–6001 (2013).
[Crossref] [PubMed]

Krasnok, A. E.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Lagae, L.

Lanco, L.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Lanzillotti-Kimura, N. D.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Large, N.

N. S. King, M. W. Knight, N. Large, A. M. Goodman, P. Nordlander, and N. J. Halas, “Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface,” Nano Lett. 13(12), 5997–6001 (2013).
[Crossref] [PubMed]

Law, S.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Lemaître, A.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Li, Q.

T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Li, S. V.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Li, Y.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5(9), 7254–7262 (2011).
[Crossref] [PubMed]

Lindskov Hansen, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Ling, X. Y.

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Liu, Y.

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Lodewijks, K.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Maes, G.

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009).
[Crossref] [PubMed]

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref] [PubMed]

Ming, T.

T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Mirin, N. A.

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

Mivelle, M.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Nordlander, P.

N. S. King, M. W. Knight, N. Large, A. M. Goodman, P. Nordlander, and N. J. Halas, “Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface,” Nano Lett. 13(12), 5997–6001 (2013).
[Crossref] [PubMed]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5(9), 7254–7262 (2011).
[Crossref] [PubMed]

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

Pelton, M.

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Podolskiy, V.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Polman, A.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5(1), 3250 (2014).
[Crossref] [PubMed]

Portalupi, S. L.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qin, F.

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

Ramamurthy, S. S.

S. Venkatesh, P. K. Badiya, and S. S. Ramamurthy, “Purcell factor based understanding of enhancements in surface plasmon-coupled emission with DNA architectures,” Phys. Chem. Chem. Phys. 18(2), 681–684 (2016).
[Crossref] [PubMed]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Rao, V. S. C. M.

V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
[Crossref] [PubMed]

Ribaudo, T.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Ritchie, D. A.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent purcell effect,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 033318 (2005).
[Crossref]

Roberts, C.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Roy, W. V.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Sagnes, I.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Savelev, R. S.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Senellart, P.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

Shaner, E. A.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Shields, A.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent purcell effect,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 033318 (2005).
[Crossref]

Smith, D. R.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref] [PubMed]

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Stobbe, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Tang, M.

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Unitt, D. C.

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent purcell effect,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 033318 (2005).
[Crossref]

Van Dorpe, P.

Venkatesh, S.

S. Venkatesh, P. K. Badiya, and S. S. Ramamurthy, “Purcell factor based understanding of enhancements in surface plasmon-coupled emission with DNA architectures,” Phys. Chem. Chem. Phys. 18(2), 681–684 (2016).
[Crossref] [PubMed]

Vlaminck, I. D.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, J.

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

Wang, J. F.

T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Wasserman, D.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Ye, J.

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano 5(9), 6774–6778 (2011).
[Crossref] [PubMed]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17(26), 23765–23771 (2009).
[Crossref] [PubMed]

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

Yu, L.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Zia, R.

ACS Nano (3)

N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4(5), 2701–2712 (2010).
[Crossref] [PubMed]

P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano 5(9), 6774–6778 (2011).
[Crossref] [PubMed]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5(9), 7254–7262 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2(8), 1071–1076 (2015).
[Crossref]

Adv. Mater. (1)

R. Jiang, F. Qin, Y. Liu, X. Y. Ling, J. Guo, M. Tang, S. Cheng, and J. Wang, “Colloidal gold nanocups with orientation-dependent plasmonic properties,” Adv. Mater. 28(30), 6322–6331 (2016).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Laser Photonics Rev. (1)

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Nano Lett. (4)

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves, and P. Senellart, “Bright phonon-tuned single-photon source,” Nano Lett. 15(10), 6290–6294 (2015).
[Crossref] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

N. S. King, M. W. Knight, N. Large, A. M. Goodman, P. Nordlander, and N. J. Halas, “Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface,” Nano Lett. 13(12), 5997–6001 (2013).
[Crossref] [PubMed]

Nanoscale (1)

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4(3), 692–706 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[Crossref]

Nat. Commun. (2)

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref] [PubMed]

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5(1), 3250 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

S. Venkatesh, P. K. Badiya, and S. S. Ramamurthy, “Purcell factor based understanding of enhancements in surface plasmon-coupled emission with DNA architectures,” Phys. Chem. Chem. Phys. 18(2), 681–684 (2016).
[Crossref] [PubMed]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

D. C. Unitt, A. J. Bennett, P. Atkinson, D. A. Ritchie, and A. Shields, “Polarization control of quantum dot single-photon sources via a dipole-dependent purcell effect,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 033318 (2005).
[Crossref]

Phys. Rev. Lett. (4)

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111(2), 026803 (2013).
[Crossref] [PubMed]

V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
[Crossref] [PubMed]

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Other (1)

T. H. Feng, W. Zhang, Z. X. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic purcell effect,” ACS photon. 5, 678−683 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Plasmonic properties of a Au nanocup. (a) Schematic of the orientation and excitation manners of the Au nanocup. The origin of the coordinate system is set at the curvature center of the Au nanocup. (b) Scattering cross-sections of the Au nanocup under different excitations and the total scattering cross-section. (c,d) Electric-field enhancement contours at the resonance wavelengths of Au nanocups under the transverse and axial excitations, respectively. e,f) Magnetic-field enhancement contours at the resonance wavelengths of Au nanocups under the transverse and axial excitations, respectively. (g−j) Electric field and magnetic field enhancements along three axes under transverse and axial excitations.
Fig. 2
Fig. 2 Purcell factor for transverse polarized electric dipoles located different positions with respect to the Au nanocup. (a) Schematic of the orientation of the Au nanocup. (b,c) Purcell factor with respect to the z position of the electric dipole. (d,e) Purcell factor with respect to the x position of the electric dipole. (f,g) Purcell factor with respect to the x position of the electric dipole with the other transverse polarization. The insets in (b−g) schematically show the polarization of the electric dipole.
Fig. 3
Fig. 3 Purcell factor for an axially polarized magnetic dipole located different positions of Au nanocup. a) Schematic of the orientation of the Au nanocup. b,c) Purcell factor with respect to the z position of the electric dipole. d−f) Purcell factor with respect to the x position of the electric dipole. The insets in (b−f) schematically show the polarization of the electric dipole.
Fig. 4
Fig. 4 Simulated spontaneous emission of magnetic dipoles located in the vicinity of an Au nanocup. a) Schematic of Au nanocups. b,c) Varying the position of dipoles along z and x axis, respectively. The insets show schematically the transversely polarized and parallel to y axis orientation of excitation configurations. d) Varying the position of dipoles along x axis. The inset shows schematically the transversely polarized and parallel to x axis orientation of excitation configuration. e,f) Varying the position of dipoles along z and x axis, respectively. The insets show schematically the axially polarized orientation of excitation configurations.
Fig. 5
Fig. 5 Purcell factor for an axially polarized magnetic dipole located different positions of Au nanocup. (a) Schematic of the orientation of the Au nanocup. (b,c) Purcell factor with respect to the z position of the electric dipole. (d,e) Purcell factor with respect to the x position of the electric dipole. The insets in (b−e) schematically show the polarization of the electric dipole.
Fig. 6
Fig. 6 Far-field emission pattern of electric and magnetic dipoles. a) Emission pattern of a free electric dipole. b−g) Emission patterns of differently polarized electric dipoles located at different positions. h) Emission pattern of a free magnetic dipole. i−l) Emission patterns of differently polarized magnetic dipoles located at different positions.

Metrics