Abstract

A deterministic design method and experimental demonstration of single photonic crystal nanocavity supporting both air and dielectric modes in the mid-infrared wavelength region are reported here. The coexistence of both modes is realized by a proper design of photonic dispersion to confine air and dielectric bands simultaneously. By adding central mirrors to make the resonance modes be confined at the bandgap edges, high experimental Q-factors of 2.32 × 104 and 1.59 × 104 are achieved at the resonance wavelength of about 3.875μm and 3.728μm for fundamental dielectric and air modes, respectively. Moreover, multiple sets of air and dielectric modes can be realized by introducing central aperiodic mirrors with multiple bandgaps. The realization of coexistence of air and dielectric modes in single nanocavity will offer opportunities for multifunctional devices, paving the way to integrated multi-parameter sensors, filters, nonlinear devices, and compact light sources.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing

Fujun Sun, Zhongyuan Fu, Chunhong Wang, Zhaoxiang Ding, Chao Wang, and Huiping Tian
Appl. Opt. 56(15) 4363-4368 (2017)

Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings

Eiichi Kuramochi, Hideaki Taniyama, Takasumi Tanabe, Kohei Kawasaki, Young-Geun Roh, and Masaya Notomi
Opt. Express 18(15) 15859-15869 (2010)

Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances

Jingxuan Wei, Fujun Sun, Bowei Dong, Yiming Ma, Yuhua Chang, Huiping Tian, and Chengkuo Lee
Opt. Lett. 43(21) 5407-5410 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).
  2. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
    [Crossref]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [Crossref] [PubMed]
  4. P. Lalanne, S. Mias, and J. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12(3), 458–467 (2004).
    [Crossref] [PubMed]
  5. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
    [Crossref] [PubMed]
  6. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
    [Crossref] [PubMed]
  7. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [Crossref]
  8. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  9. S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS photon. 3(9), 1647– 1653 (2016).
  10. Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
    [Crossref] [PubMed]
  11. F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photonics 2(12), 1692–1697 (2015).
    [Crossref]
  12. S. Kim, H. M. Kim, and Y. H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
    [Crossref] [PubMed]
  13. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
    [Crossref]
  14. N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
    [Crossref]
  15. P. Lee, T. Lu, and L. Chiu, “Dielectric-band photonic crystal nanobeam lasers,” J. Lightwave Technol. 31(1), 36–42 (2013).
    [Crossref]
  16. R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
    [Crossref] [PubMed]
  17. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  18. Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).
  19. P. Liu and Y. Shi, “Simultaneous measurement of refractive index and temperature using cascaded side-coupled photonic crystal nanobeam cavities,” Opt. Express 25(23), 28398–28406 (2017).
    [Crossref]
  20. J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).
  21. F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
    [Crossref]
  22. S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22(22), 26498–26509 (2014).
    [Crossref] [PubMed]
  23. D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
    [Crossref] [PubMed]
  24. D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High‐Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
    [Crossref]
  25. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99(1), 013114 (2011).
    [Crossref]
  26. Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009).
    [Crossref] [PubMed]
  27. M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
    [Crossref]
  28. M. G. Scullion, Y. Arita, T. F. Krauss, and K. Dholakia, “Enhancement of optical forces using slow light in a photonic crystal waveguide,” Optica 2(9), 816–821 (2015).
    [Crossref]
  29. K. Qin, S. Hu, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity,” Opt. Lett. 41(4), 753–756 (2016).
    [Crossref] [PubMed]
  30. X. Zhang, G. Zhou, P. Shi, H. Du, T. Lin, J. Teng, and F. S. Chau, “On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities,” Opt. Lett. 41(6), 1197–1200 (2016).
    [Crossref] [PubMed]
  31. B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
    [Crossref] [PubMed]
  32. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
    [Crossref] [PubMed]
  33. D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and H. Altug, “Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near-to Mid-Infrared,” ACS Photonics 5(12), 4903–4911 (2018).
    [Crossref]
  34. A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ((2)) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).
    [Crossref] [PubMed]
  35. A. M. Vyunishev, P. S. Pankin, S. E. Svyakhovskiy, I. V. Timofeev, and S. Y. Vetrov, “Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps,” Opt. Lett. 42(18), 3602–3605 (2017).
    [Crossref] [PubMed]
  36. Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
    [Crossref]
  37. J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
    [Crossref] [PubMed]
  38. N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G. Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
    [Crossref] [PubMed]
  39. Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
    [Crossref]
  40. Lumerical, https://www.lumerical.com/cn/
  41. M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
    [Crossref]
  42. T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications,” Photon. Res. 5(5), 417–430 (2017).
    [Crossref]
  43. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
    [Crossref] [PubMed]

2018 (5)

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and H. Altug, “Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near-to Mid-Infrared,” ACS Photonics 5(12), 4903–4911 (2018).
[Crossref]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G. Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
[Crossref]

2017 (6)

A. M. Vyunishev, P. S. Pankin, S. E. Svyakhovskiy, I. V. Timofeev, and S. Y. Vetrov, “Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps,” Opt. Lett. 42(18), 3602–3605 (2017).
[Crossref] [PubMed]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications,” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

P. Liu and Y. Shi, “Simultaneous measurement of refractive index and temperature using cascaded side-coupled photonic crystal nanobeam cavities,” Opt. Express 25(23), 28398–28406 (2017).
[Crossref]

J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High‐Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

2016 (4)

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

K. Qin, S. Hu, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity,” Opt. Lett. 41(4), 753–756 (2016).
[Crossref] [PubMed]

X. Zhang, G. Zhou, P. Shi, H. Du, T. Lin, J. Teng, and F. S. Chau, “On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities,” Opt. Lett. 41(6), 1197–1200 (2016).
[Crossref] [PubMed]

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS photon. 3(9), 1647– 1653 (2016).

2015 (5)

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photonics 2(12), 1692–1697 (2015).
[Crossref]

S. Kim, H. M. Kim, and Y. H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
[Crossref] [PubMed]

N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

M. G. Scullion, Y. Arita, T. F. Krauss, and K. Dholakia, “Enhancement of optical forces using slow light in a photonic crystal waveguide,” Optica 2(9), 816–821 (2015).
[Crossref]

2014 (4)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22(22), 26498–26509 (2014).
[Crossref] [PubMed]

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

2013 (2)

P. Lee, T. Lu, and L. Chiu, “Dielectric-band photonic crystal nanobeam lasers,” J. Lightwave Technol. 31(1), 36–42 (2013).
[Crossref]

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

2012 (1)

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

2011 (4)

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99(1), 013114 (2011).
[Crossref]

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

2010 (1)

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

2009 (2)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (1)

2004 (1)

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Agrawal, A.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

Altug, H.

D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and H. Altug, “Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near-to Mid-Infrared,” ACS Photonics 5(12), 4903–4911 (2018).
[Crossref]

Arakawa, Y.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Arita, Y.

Ben Masaud, T. M.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Biermann, K.

Buckley, S.

Bulu, I.

Burgess, I. B.

Chang, Y.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
[Crossref]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

Chau, F. S.

Chen, N.

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

Chiu, L.

Chong, H. M.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Crump, D.

J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Davis, F.

J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).

De La Rue, R. M.

Deotare, P.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Deotare, P. B.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Dholakia, K.

Dong, B.

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G. Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
[Crossref]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications,” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

Doshay, S.

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High‐Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Du, H.

Dupuis, R.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Emerson, N. G.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Fan, J. A.

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High‐Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Fegadolli, W. S.

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Flavel, B. S.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Fütterling, V.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Guo, X.

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

Hennrich, F.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Ho, C. P.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
[Crossref]

Hromadka, J.

J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).

Hu, E. L.

N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Hu, H.

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

Hu, J.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Hu, S.

Hu, T.

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications,” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

Huang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Hugonin, J.

Imamura, S.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Ishii, A.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Iwamoto, S.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Jaberansary, E.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

James, S. W.

J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ((2)) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).
[Crossref] [PubMed]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

John-Herpin, A.

D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and H. Altug, “Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near-to Mid-Infrared,” ACS Photonics 5(12), 4903–4911 (2018).
[Crossref]

Johnson, N. P.

Johnson, S. G.

Jones, W. M.

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

Kappes, M. M.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Kato, Y. K.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Khan, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Khasminskaya, S.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Kim, H. M.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Kim, S.

S. Kim, H. M. Kim, and Y. H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
[Crossref] [PubMed]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Korposh, S.

J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).

Krauss, T. F.

Kravchenko, I. I.

Krupke, R.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Kuramochi, E.

Kwong, D. L.

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

Lalanne, P.

Lee, C.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
[Crossref]

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G. Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications,” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

Lee, P.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Lee, Y. H.

Leijssen, R.

Li, B.

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
[Crossref]

Li, M.

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Liang, F.

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photonics 2(12), 1692–1697 (2015).
[Crossref]

Limaj, O.

D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and H. Altug, “Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near-to Mid-Infrared,” ACS Photonics 5(12), 4903–4911 (2018).
[Crossref]

Lin, H.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Lin, T.

Liow, T.-Y.

Liu, P.

Liu, X.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Lo, G. Q.

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G. Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

Lo, G.-Q.

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
[Crossref] [PubMed]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009).
[Crossref] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Lu, T.

Luo, X.

Ma, Y.

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
[Crossref]

Mashanovich, G. Z.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

McCutcheon, M. W.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009).
[Crossref] [PubMed]

Mias, S.

Miloševic, M. M.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Miura, R.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Nahata, A.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

Nedeljkovic, M.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Niu, N.

N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Notomi, M.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Ohta, R.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Oliver, R. A.

N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Pankin, P. S.

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Partridge, M. C.

J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).

Pernice, W. H. P.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Petykiewicz, J.

Pyatkov, F.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Qin, K.

Quan, Q.

N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photonics 2(12), 1692–1697 (2015).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Radulaski, M.

Reed, G. T.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Retterer, S. T.

Rivoire, K.

K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99(1), 013114 (2011).
[Crossref]

Rodrigo, D.

D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and H. Altug, “Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near-to Mid-Infrared,” ACS Photonics 5(12), 4903–4911 (2018).
[Crossref]

Rodriguez, A.

Ryou, J.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Scherer, A.

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Scullion, M. G.

Sell, D.

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High‐Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Shankar, R.

Shi, P.

Shi, Y.

Shimada, T.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Singh, N.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Soljacic, M.

Song, J.

Sorel, M.

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Sun, F.

Svyakhovskiy, S. E.

Taniyama, H.

Tatam, R. P.

J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).

Teng, J.

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Tian, H.

Timofeev, I. V.

Tittl, A.

D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and H. Altug, “Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near-to Mid-Infrared,” ACS Photonics 5(12), 4903–4911 (2018).
[Crossref]

Vardeny, Z. V.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

Vetrov, S. Y.

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Vuckovic, J.

Vyunishev, A. M.

Wang, D.

N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Wang, H.

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G. Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

Wei, J.

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref] [PubMed]

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
[Crossref]

Weiss, S. M.

Woolf, A.

N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Yang, J.

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High‐Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Yang, R.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Zain, A. R. M.

Zhang, J. L.

Zhang, X.

Zhang, Y.

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

Zhou, G.

Zhu, T.

N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

ACS Nano (2)

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

ACS photon. (1)

S. Hu and S. M. Weiss, “Design of photonic crystal cavities for extreme light concentration,” ACS photon. 3(9), 1647– 1653 (2016).

ACS Photonics (2)

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities,” ACS Photonics 2(12), 1692–1697 (2015).
[Crossref]

D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and H. Altug, “Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near-to Mid-Infrared,” ACS Photonics 5(12), 4903–4911 (2018).
[Crossref]

Adv. Opt. Mater. (1)

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High‐Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

Appl. Phys. Lett. (6)

K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99(1), 013114 (2011).
[Crossref]

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

N. Niu, A. Woolf, D. Wang, T. Zhu, Q. Quan, R. A. Oliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

Y. Ma, B. Dong, B. Li, J. Wei, Y. Chang, C. P. Ho, and C. Lee, “Mid-infrared slow light engineering and tuning in 1-D grating waveguide,” IEEE J. Sel. Top. Quant. 24(6), 1–8 (2018).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (1)

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Nanomaterials (Basel) (1)

B. Dong, T. Hu, X. Luo, Y. Chang, X. Guo, H. Wang, D. L. Kwong, G. Q. Lo, and C. Lee, “Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure,” Nanomaterials (Basel) 8(11), 893 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5(1), 5580 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Nature (2)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[Crossref]

Opt. Express (9)

P. Lalanne, S. Mias, and J. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12(3), 458–467 (2004).
[Crossref] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
[Crossref] [PubMed]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

P. Liu and Y. Shi, “Simultaneous measurement of refractive index and temperature using cascaded side-coupled photonic crystal nanobeam cavities,” Opt. Express 25(23), 28398–28406 (2017).
[Crossref]

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22(22), 26498–26509 (2014).
[Crossref] [PubMed]

A. Rodriguez, M. Soljačić, J. D. Joannopoulos, and S. G. Johnson, “χ((2)) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).
[Crossref] [PubMed]

N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G. Q. Lo, and C. Lee, “Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration,” Opt. Express 26(20), 26242–26256 (2018).
[Crossref] [PubMed]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19(6), 5579–5586 (2011).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Photon. Res. (1)

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Sensor Actuat. Biol. Chem. (2)

J. Hromadka, S. Korposh, M. C. Partridge, S. W. James, F. Davis, D. Crump, and R. P. Tatam, “Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring,” Sensor Actuat. Biol. Chem. 244, 217–225 (2017).

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Lumerical, https://www.lumerical.com/cn/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Calculated TE band diagrams of the PCNC for (a) previously reported air mode, (b) dielectric mode design principle and (c) our designed dual-mode design principles, respectively. The blue hollow and solid circle dots mean the confined air modes and dielectric modes, respectively.
Fig. 2
Fig. 2 (a) Schematics of the proposed structure. The structure is symmetric with respect to its center (red dashed line). For the taper section, both lattice constant and radius are linearly modulated from the center to both sides. For the inner section, the lattice constant and radius are kept as constant as a1 and r1 respectively. (b) Change of dielectric and air band edge frequencies versus radius r. The waveguide width and lattice constant are kept as 1.30μm and 850nm respectively. (c) Change of dielectric and air band edge frequencies versus lattice constant a. The waveguide width and radius are kept as 1.30μm and 80nm respectively. (d) Change of dielectric and air band edge frequencies versus lattice constant and hole radius with a step of 20nm simultaneously. (e) The mirror strength as a function of taper numbers after linear tapering. (f) Correspondingly derived group index constant from the air and dielectric bands of the central cell.
Fig. 3
Fig. 3 Simulated (a) resonance wavelength λ and (b) Q-factor of the fundamental air and dielectric resonant modes as a function of the number of central mirrors Ninner. Ntaper is set as 10.
Fig. 4
Fig. 4 (a) Optical microscope image of the fabricated device. (b) Scanning electron microscopy image of the PCNC. (c) Scanning electron microscopy images of the grating coupler. The inset shows the magnified view of the air holes. (d) Measured normalized transmission spectra and corresponding simulated transmission spectra for dual-mode PCNC with 10 tapered holes on both sides. (e) The field distributions of fundamental air mode and dielectric mode. Symmetry plane is indicated by the red dashed line. (f) Lorentzian fittings of the measured fundamental air and dielectric mode.
Fig. 5
Fig. 5 (a) Measured normalized transmission spectra for PCNW and PCNCs with different number of inner mirrors from 0 to 10, and taper holes are kept constant as 10. The inset shows the SEM image of the cavity. (b) Extracted measured λ and Q-factor of the fundamental air and dielectric resonant modes as a function of the number of Ninner. (c) Lorentzian fittings of the measured fundamental air and dielectric mode.
Fig. 6
Fig. 6 The linear fitting plot of the simulated resonance shifts with the change of environmental (a) refractive index and (b) temperature.
Fig. 7
Fig. 7 (a) Schematics of the PCNC structure with aperiodic inner section. (b) Simulated transmission spectra for PCNW with 18 aperiodic inner holes and PCNC with 10 inner holes and 8 taper holes on both sides by using 3D-FDTD simulations. (c) Correspondingly field distributions of mode A, B, C and D. (d) SEM image of the fabricated cavity. (e) Correspondingly measured normalized transmission spectra and fitted Q-factors.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

8π k 0 N inner a 1 +2 φ r =2mπ,
ω(k) ω 0 + c 2 d(1/ n g ) dk (k π a 1 ) 2 ,
ω ω 0 c 2 d(1/ n g ) dk ( φ r 4 a 1 ) 2 1 N inner 2 .
Δω/ω ( Δn/n )(fraction of ε| E | 2 in the perturbed regions),
Δω/ω Δλ/λ ( Δ n air / n air ) f air ,
S n = Δλ/ Δn λ f air .
Δω/ω Δλ/λ ( Δ n si / n si ) f si =( Δ n si / ΔT )( ΔT/ n si ) f si ,
S T = Δλ/ ΔT λ ( Δ n si / ΔT )/ ( n si ) f si .

Metrics