Abstract

In this paper, we demonstrate a variable aperture with graded attenuation combined with adjustable focal length lens actuated by hydraulic control. Two cylindrical chambers and a middle substrate are stacked to form the device body. An elastic film is fabricated in the middle substrate like a sandwich. In the initial state, the dyed liquid is fully covered on the elastic film. The variable aperture shows the state of the maximum optical attenuation. When the bottom chamber is injected with liquid, the elastic film can form a convex surface. The dyed liquid will be pushed to the side wall of the chamber by the raised elastic film and the optical attenuation can be varied by changing the volume of the injected liquid. The proposed device can achieve both the variable attenuator function and the variable-focus lens function. The experiments show that the variable aperture can obtain dynamic attenuation ranges from 33.01 dB to 0.71 dB, and the zoom liquid lens can reach 2.9☓magnifying power. The device can be applied in imaging systems and fiber-optic communications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Variable-focus liquid lens

Hongwen Ren and Shin-Tson Wu
Opt. Express 15(10) 5931-5936 (2007)

Multifunction reflector controlled by liquid piston for optical switch and beam steering

Chao Liu, Di Wang, Lei Li, and Qiong-Hua Wang
Opt. Express 27(23) 33233-33242 (2019)

Extensible chip of optofluidic variable optical attenuator

J. Wan, F. L. Xue, L. X. Wu, Y. J. Fu, J. Hu, W. Zhang, and F. R. Hu
Opt. Express 24(9) 9683-9692 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Chiou and W. T. Lin, “Variable optical attenuator using a thermal actuator array with dual shutters,” Opt. Commun. 237(4-6), 341–350 (2004).
    [Crossref]
  2. C. Lee, “Variable optical attenuator using planar light attenuation scheme based on rotational and translational misalignment,” Microsyst. Technol. 13(1), 41–48 (2006).
    [Crossref]
  3. K. H. Koh, Y. Qian, and C. Lee, “Design and characterization of a 3D MEMS VOA driven by hybrid electromagnetic and electrothermal actuation mechanisms,” J. Micromech. Microeng. 22(10), 105031 (2012).
    [Crossref]
  4. R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng. 14(12), 1700–1710 (2004).
    [Crossref]
  5. H. Sun, W. Zhou, Z. Zhang, and Z. Wan, “A MEMS variable optical attenuator with ultra-low wavelength-dependent loss and polarization-dependent loss,” Micromachines (Basel) 9(12), 632 (2018).
    [Crossref] [PubMed]
  6. K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
    [Crossref]
  7. W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
    [Crossref] [PubMed]
  8. M. W. Geis, P. J. Bos, V. Liberman, and M. Rothschild, “Broadband optical switch based on liquid crystal dynamic scattering,” Opt. Express 24(13), 13812–13823 (2016).
    [Crossref] [PubMed]
  9. W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
    [Crossref]
  10. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [Crossref] [PubMed]
  11. P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
    [Crossref]
  12. P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Micromech. Microeng. 21(5), 1156–1164 (2012).
    [Crossref]
  13. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
    [Crossref]
  14. R.-Y. Yuan, L. Luo, J.-H. Wang, L. Li, and Q.-H. Wang, “1×2 optofluidic switch for optical beam routing and variable power distribution,” IEEE Photonic Tech L. 30(18), 1629–1632 (2018).
    [Crossref]
  15. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
    [Crossref] [PubMed]
  16. C. G. Tsai and J. A. Yeh, “Circular dielectric liquid iris,” Opt. Lett. 35(14), 2484–2486 (2010).
    [Crossref] [PubMed]
  17. H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
    [Crossref] [PubMed]
  18. H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
    [Crossref] [PubMed]
  19. J. H. Chang, K. D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Variable aperture controlled by microelectrofluidic iris,” Opt. Lett. 38(15), 2919–2922 (2013).
    [Crossref] [PubMed]
  20. J. Wan, F. Xue, C. Liu, S. Huang, S. Fan, and F. Hu, “Optofluidic variable optical attenuator controlled by electricity,” Appl. Opt. 57(28), 8114–8118 (2018).
    [Crossref] [PubMed]
  21. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33(6), 548–550 (2008).
    [Crossref] [PubMed]
  22. P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Micromech. Microeng. 19(6), 1477–1484 (2010).
    [Crossref]
  23. W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
    [Crossref] [PubMed]
  24. S. Xu, H. Ren, J. Sun, and S. T. Wu, “Polarization independent VOA based on dielectrically stretched liquid crystal droplet,” Opt. Express 20(15), 17059–17064 (2012).
    [Crossref]
  25. C. Liu and D. Wang, “Light intensity and FOV-controlled adaptive fluidic iris,” Appl. Opt. 57(18), D27–D31 (2018).
    [Crossref] [PubMed]
  26. C. Liu, L. Li, D. Wang, L. X. Yao, and Q. H. Wang, “Liquid optical switch based on total internal reflection,” IEEE Photonic Tech L. 27(19), 2091–2094 (2015).
    [Crossref]
  27. L. Li, C. Liu, H. Ren, and Q. H. Wang, “Fluidic optical switch by pneumatic actuation,” IEEE Photonic Tech L. 4(25), 338–340 (2013).
    [Crossref]
  28. S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 18(12), 12430–12435 (2010).
    [Crossref] [PubMed]
  29. F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  30. Z. W. Li and J. L. Xiao, “Strain tunable optics of elastomeric microlens array,” Extreme Mech. Lett. 4, 118–123 (2015).
    [Crossref]
  31. Z. Li and J. Xiao, “Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera,” J. Appl. Phys. 117(1), 014904 (2015).
    [Crossref]
  32. Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. 5(19), 1700425 (2017).
    [Crossref]
  33. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [Crossref] [PubMed]
  34. A. Mikš and F. Šmejkal, “Dependence of the imaging properties of the liquid lens with variable focal length on membrane thickness,” Appl. Opt. 57(22), 6439–6445 (2018).
    [Crossref] [PubMed]
  35. C. Liu, D. Wang, L. X. Yao, L. Li, and Q. H. Wang, “Electrowetting-actuated optical switch based on total internal reflection,” Appl. Opt. 54(10), 2672–2676 (2015).
    [Crossref] [PubMed]
  36. Z. Li, Y. Wang, and J. Xiao, “Mechanics of curvilinear electronics and optoelectronics,” Curr. Opin. Solid St. M 19(3), 171–189 (2015).
    [Crossref]
  37. Z. Li, Y. Wang, and J. Xiao, “Mechanics of bioinspired imaging systems,” Theore. Appl. Mech. Lett. 6(1), 11–20 (2016).
    [Crossref]

2018 (5)

H. Sun, W. Zhou, Z. Zhang, and Z. Wan, “A MEMS variable optical attenuator with ultra-low wavelength-dependent loss and polarization-dependent loss,” Micromachines (Basel) 9(12), 632 (2018).
[Crossref] [PubMed]

R.-Y. Yuan, L. Luo, J.-H. Wang, L. Li, and Q.-H. Wang, “1×2 optofluidic switch for optical beam routing and variable power distribution,” IEEE Photonic Tech L. 30(18), 1629–1632 (2018).
[Crossref]

J. Wan, F. Xue, C. Liu, S. Huang, S. Fan, and F. Hu, “Optofluidic variable optical attenuator controlled by electricity,” Appl. Opt. 57(28), 8114–8118 (2018).
[Crossref] [PubMed]

C. Liu and D. Wang, “Light intensity and FOV-controlled adaptive fluidic iris,” Appl. Opt. 57(18), D27–D31 (2018).
[Crossref] [PubMed]

A. Mikš and F. Šmejkal, “Dependence of the imaging properties of the liquid lens with variable focal length on membrane thickness,” Appl. Opt. 57(22), 6439–6445 (2018).
[Crossref] [PubMed]

2017 (1)

Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. 5(19), 1700425 (2017).
[Crossref]

2016 (2)

2015 (5)

C. Liu, D. Wang, L. X. Yao, L. Li, and Q. H. Wang, “Electrowetting-actuated optical switch based on total internal reflection,” Appl. Opt. 54(10), 2672–2676 (2015).
[Crossref] [PubMed]

Z. Li, Y. Wang, and J. Xiao, “Mechanics of curvilinear electronics and optoelectronics,” Curr. Opin. Solid St. M 19(3), 171–189 (2015).
[Crossref]

Z. W. Li and J. L. Xiao, “Strain tunable optics of elastomeric microlens array,” Extreme Mech. Lett. 4, 118–123 (2015).
[Crossref]

Z. Li and J. Xiao, “Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera,” J. Appl. Phys. 117(1), 014904 (2015).
[Crossref]

C. Liu, L. Li, D. Wang, L. X. Yao, and Q. H. Wang, “Liquid optical switch based on total internal reflection,” IEEE Photonic Tech L. 27(19), 2091–2094 (2015).
[Crossref]

2013 (2)

L. Li, C. Liu, H. Ren, and Q. H. Wang, “Fluidic optical switch by pneumatic actuation,” IEEE Photonic Tech L. 4(25), 338–340 (2013).
[Crossref]

J. H. Chang, K. D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Variable aperture controlled by microelectrofluidic iris,” Opt. Lett. 38(15), 2919–2922 (2013).
[Crossref] [PubMed]

2012 (5)

S. Xu, H. Ren, J. Sun, and S. T. Wu, “Polarization independent VOA based on dielectrically stretched liquid crystal droplet,” Opt. Express 20(15), 17059–17064 (2012).
[Crossref]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[Crossref] [PubMed]

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

K. H. Koh, Y. Qian, and C. Lee, “Design and characterization of a 3D MEMS VOA driven by hybrid electromagnetic and electrothermal actuation mechanisms,” J. Micromech. Microeng. 22(10), 105031 (2012).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Micromech. Microeng. 21(5), 1156–1164 (2012).
[Crossref]

2011 (5)

2010 (4)

2009 (2)

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

C. Lee, “Variable optical attenuator using planar light attenuation scheme based on rotational and translational misalignment,” Microsyst. Technol. 13(1), 41–48 (2006).
[Crossref]

2005 (1)

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

2004 (2)

J. C. Chiou and W. T. Lin, “Variable optical attenuator using a thermal actuator array with dual shutters,” Opt. Commun. 237(4-6), 341–350 (2004).
[Crossref]

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng. 14(12), 1700–1710 (2004).
[Crossref]

Baret, J. C.

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Bos, P. J.

Chang, J. H.

Chen, K. M.

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
[Crossref]

Chigrinov, V.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[Crossref] [PubMed]

Chiou, J. C.

J. C. Chiou and W. T. Lin, “Variable optical attenuator using a thermal actuator array with dual shutters,” Opt. Commun. 237(4-6), 341–350 (2004).
[Crossref]

Choi, M.

Cui, H. Q.

Fan, S.

Feiwen, L.

Feuerstein, R.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Micromech. Microeng. 21(5), 1156–1164 (2012).
[Crossref]

Geis, M. W.

Guangya, Z.

Hongbin, Y.

Hu, F.

Hu, W.

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[Crossref] [PubMed]

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Huang, S.

Jung, K. D.

Kim, W.

Kloss, A.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Koh, K. H.

K. H. Koh, Y. Qian, and C. Lee, “Design and characterization of a 3D MEMS VOA driven by hybrid electromagnetic and electrothermal actuation mechanisms,” J. Micromech. Microeng. 22(10), 105031 (2012).
[Crossref]

Kumar Srivastava, A.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Lee, C.

K. H. Koh, Y. Qian, and C. Lee, “Design and characterization of a 3D MEMS VOA driven by hybrid electromagnetic and electrothermal actuation mechanisms,” J. Micromech. Microeng. 22(10), 105031 (2012).
[Crossref]

C. Lee, “Variable optical attenuator using planar light attenuation scheme based on rotational and translational misalignment,” Microsyst. Technol. 13(1), 41–48 (2006).
[Crossref]

Lee, E.

Lee, S.

Li, L.

R.-Y. Yuan, L. Luo, J.-H. Wang, L. Li, and Q.-H. Wang, “1×2 optofluidic switch for optical beam routing and variable power distribution,” IEEE Photonic Tech L. 30(18), 1629–1632 (2018).
[Crossref]

C. Liu, L. Li, D. Wang, L. X. Yao, and Q. H. Wang, “Liquid optical switch based on total internal reflection,” IEEE Photonic Tech L. 27(19), 2091–2094 (2015).
[Crossref]

C. Liu, D. Wang, L. X. Yao, L. Li, and Q. H. Wang, “Electrowetting-actuated optical switch based on total internal reflection,” Appl. Opt. 54(10), 2672–2676 (2015).
[Crossref] [PubMed]

L. Li, C. Liu, H. Ren, and Q. H. Wang, “Fluidic optical switch by pneumatic actuation,” IEEE Photonic Tech L. 4(25), 338–340 (2013).
[Crossref]

Li, Y.

Li, Z.

Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. 5(19), 1700425 (2017).
[Crossref]

Z. Li, Y. Wang, and J. Xiao, “Mechanics of bioinspired imaging systems,” Theore. Appl. Mech. Lett. 6(1), 11–20 (2016).
[Crossref]

Z. Li, Y. Wang, and J. Xiao, “Mechanics of curvilinear electronics and optoelectronics,” Curr. Opin. Solid St. M 19(3), 171–189 (2015).
[Crossref]

Z. Li and J. Xiao, “Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera,” J. Appl. Phys. 117(1), 014904 (2015).
[Crossref]

Li, Z. W.

Z. W. Li and J. L. Xiao, “Strain tunable optics of elastomeric microlens array,” Extreme Mech. Lett. 4, 118–123 (2015).
[Crossref]

Liang, X.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Liberman, V.

Liebetraut, P.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Lin, W. T.

J. C. Chiou and W. T. Lin, “Variable optical attenuator using a thermal actuator array with dual shutters,” Opt. Commun. 237(4-6), 341–350 (2004).
[Crossref]

Lin, X. W.

Lin, X.-W.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Liu, C.

Liu, Y.

Lu, Y. Q.

Lu, Y.-Q.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Luo, L.

R.-Y. Yuan, L. Luo, J.-H. Wang, L. Li, and Q.-H. Wang, “1×2 optofluidic switch for optical beam routing and variable power distribution,” IEEE Photonic Tech L. 30(18), 1629–1632 (2018).
[Crossref]

Mikš, A.

Mönch, W.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Micromech. Microeng. 19(6), 1477–1484 (2010).
[Crossref]

Mugele, F.

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
[Crossref] [PubMed]

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Müller, P.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Micromech. Microeng. 21(5), 1156–1164 (2012).
[Crossref]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Micromech. Microeng. 19(6), 1477–1484 (2010).
[Crossref]

Murade, C. U.

Oh, J. M.

Psaltis, D.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

Qian, Y.

K. H. Koh, Y. Qian, and C. Lee, “Design and characterization of a 3D MEMS VOA driven by hybrid electromagnetic and electrothermal actuation mechanisms,” J. Micromech. Microeng. 22(10), 105031 (2012).
[Crossref]

Ren, D.

Ren, H.

Reza, S. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Riza, N. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Rothschild, M.

Siong, C. F.

Šmejkal, F.

Song, W.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

Spengler, N.

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Micromech. Microeng. 19(6), 1477–1484 (2010).
[Crossref]

Srivastava, A.

Stagg, J.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng. 14(12), 1700–1710 (2004).
[Crossref]

Sun, H.

H. Sun, W. Zhou, Z. Zhang, and Z. Wan, “A MEMS variable optical attenuator with ultra-low wavelength-dependent loss and polarization-dependent loss,” Micromachines (Basel) 9(12), 632 (2018).
[Crossref] [PubMed]

Sun, J.

Sun, J. T.

Sun, J.-T.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Syms, R. R. A.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng. 14(12), 1700–1710 (2004).
[Crossref]

Tsai, C. G.

van den Ende, D.

Veladi, H.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng. 14(12), 1700–1710 (2004).
[Crossref]

Wan, J.

Wan, Z.

H. Sun, W. Zhou, Z. Zhang, and Z. Wan, “A MEMS variable optical attenuator with ultra-low wavelength-dependent loss and polarization-dependent loss,” Micromachines (Basel) 9(12), 632 (2018).
[Crossref] [PubMed]

Wang, D.

Wang, J.-H.

R.-Y. Yuan, L. Luo, J.-H. Wang, L. Li, and Q.-H. Wang, “1×2 optofluidic switch for optical beam routing and variable power distribution,” IEEE Photonic Tech L. 30(18), 1629–1632 (2018).
[Crossref]

Wang, Q. H.

C. Liu, L. Li, D. Wang, L. X. Yao, and Q. H. Wang, “Liquid optical switch based on total internal reflection,” IEEE Photonic Tech L. 27(19), 2091–2094 (2015).
[Crossref]

C. Liu, D. Wang, L. X. Yao, L. Li, and Q. H. Wang, “Electrowetting-actuated optical switch based on total internal reflection,” Appl. Opt. 54(10), 2672–2676 (2015).
[Crossref] [PubMed]

L. Li, C. Liu, H. Ren, and Q. H. Wang, “Fluidic optical switch by pneumatic actuation,” IEEE Photonic Tech L. 4(25), 338–340 (2013).
[Crossref]

Wang, Q.-H.

R.-Y. Yuan, L. Luo, J.-H. Wang, L. Li, and Q.-H. Wang, “1×2 optofluidic switch for optical beam routing and variable power distribution,” IEEE Photonic Tech L. 30(18), 1629–1632 (2018).
[Crossref]

Wang, Y.

Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. 5(19), 1700425 (2017).
[Crossref]

Z. Li, Y. Wang, and J. Xiao, “Mechanics of bioinspired imaging systems,” Theore. Appl. Mech. Lett. 6(1), 11–20 (2016).
[Crossref]

Z. Li, Y. Wang, and J. Xiao, “Mechanics of curvilinear electronics and optoelectronics,” Curr. Opin. Solid St. M 19(3), 171–189 (2015).
[Crossref]

Wendland, G. M.

Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. 5(19), 1700425 (2017).
[Crossref]

Wu, S. T.

Wu, Z.-J.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Xiao, J.

Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. 5(19), 1700425 (2017).
[Crossref]

Z. Li, Y. Wang, and J. Xiao, “Mechanics of bioinspired imaging systems,” Theore. Appl. Mech. Lett. 6(1), 11–20 (2016).
[Crossref]

Z. Li, Y. Wang, and J. Xiao, “Mechanics of curvilinear electronics and optoelectronics,” Curr. Opin. Solid St. M 19(3), 171–189 (2015).
[Crossref]

Z. Li and J. Xiao, “Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera,” J. Appl. Phys. 117(1), 014904 (2015).
[Crossref]

Xiao, J. L.

Z. W. Li and J. L. Xiao, “Strain tunable optics of elastomeric microlens array,” Extreme Mech. Lett. 4, 118–123 (2015).
[Crossref]

Xu, F.

Xu, S.

Xue, F.

Yan, J.

Yao, L. X.

C. Liu, D. Wang, L. X. Yao, L. Li, and Q. H. Wang, “Electrowetting-actuated optical switch based on total internal reflection,” Appl. Opt. 54(10), 2672–2676 (2015).
[Crossref] [PubMed]

C. Liu, L. Li, D. Wang, L. X. Yao, and Q. H. Wang, “Liquid optical switch based on total internal reflection,” IEEE Photonic Tech L. 27(19), 2091–2094 (2015).
[Crossref]

Yeh, J. A.

Yin, X.

Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. 5(19), 1700425 (2017).
[Crossref]

Yuan, R.-Y.

R.-Y. Yuan, L. Luo, J.-H. Wang, L. Li, and Q.-H. Wang, “1×2 optofluidic switch for optical beam routing and variable power distribution,” IEEE Photonic Tech L. 30(18), 1629–1632 (2018).
[Crossref]

Zappe, H.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Micromech. Microeng. 21(5), 1156–1164 (2012).
[Crossref]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Micromech. Microeng. 19(6), 1477–1484 (2010).
[Crossref]

Zhai, Y.

Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. 5(19), 1700425 (2017).
[Crossref]

Zhang, Z.

H. Sun, W. Zhou, Z. Zhang, and Z. Wan, “A MEMS variable optical attenuator with ultra-low wavelength-dependent loss and polarization-dependent loss,” Micromachines (Basel) 9(12), 632 (2018).
[Crossref] [PubMed]

Zhou, W.

H. Sun, W. Zhou, Z. Zhang, and Z. Wan, “A MEMS variable optical attenuator with ultra-low wavelength-dependent loss and polarization-dependent loss,” Micromachines (Basel) 9(12), 632 (2018).
[Crossref] [PubMed]

Zhu, G.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Zou, H.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng. 14(12), 1700–1710 (2004).
[Crossref]

Adv. Opt. Mater. (1)

Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. 5(19), 1700425 (2017).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Curr. Opin. Solid St. M (1)

Z. Li, Y. Wang, and J. Xiao, “Mechanics of curvilinear electronics and optoelectronics,” Curr. Opin. Solid St. M 19(3), 171–189 (2015).
[Crossref]

Extreme Mech. Lett. (1)

Z. W. Li and J. L. Xiao, “Strain tunable optics of elastomeric microlens array,” Extreme Mech. Lett. 4, 118–123 (2015).
[Crossref]

IEEE Photonic Tech L. (3)

C. Liu, L. Li, D. Wang, L. X. Yao, and Q. H. Wang, “Liquid optical switch based on total internal reflection,” IEEE Photonic Tech L. 27(19), 2091–2094 (2015).
[Crossref]

L. Li, C. Liu, H. Ren, and Q. H. Wang, “Fluidic optical switch by pneumatic actuation,” IEEE Photonic Tech L. 4(25), 338–340 (2013).
[Crossref]

R.-Y. Yuan, L. Luo, J.-H. Wang, L. Li, and Q.-H. Wang, “1×2 optofluidic switch for optical beam routing and variable power distribution,” IEEE Photonic Tech L. 30(18), 1629–1632 (2018).
[Crossref]

J. Appl. Phys. (1)

Z. Li and J. Xiao, “Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera,” J. Appl. Phys. 117(1), 014904 (2015).
[Crossref]

J. Micromech. Microeng. (5)

P. Müller, N. Spengler, H. Zappe, and W. Mönch, “An optofluidic concept for a tunable micro-iris,” J. Micromech. Microeng. 19(6), 1477–1484 (2010).
[Crossref]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Micromech. Microeng. 21(5), 1156–1164 (2012).
[Crossref]

K. H. Koh, Y. Qian, and C. Lee, “Design and characterization of a 3D MEMS VOA driven by hybrid electromagnetic and electrothermal actuation mechanisms,” J. Micromech. Microeng. 22(10), 105031 (2012).
[Crossref]

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, “Sliding-blade MEMS iris and variable optical attenuator,” J. Micromech. Microeng. 14(12), 1700–1710 (2004).
[Crossref]

J. Phys. Condens. Matter (1)

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Lab Chip (1)

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

Micromachines (Basel) (1)

H. Sun, W. Zhou, Z. Zhang, and Z. Wan, “A MEMS variable optical attenuator with ultra-low wavelength-dependent loss and polarization-dependent loss,” Micromachines (Basel) 9(12), 632 (2018).
[Crossref] [PubMed]

Microsyst. Technol. (1)

C. Lee, “Variable optical attenuator using planar light attenuation scheme based on rotational and translational misalignment,” Microsyst. Technol. 13(1), 41–48 (2006).
[Crossref]

Opt. Commun. (3)

J. C. Chiou and W. T. Lin, “Variable optical attenuator using a thermal actuator array with dual shutters,” Opt. Commun. 237(4-6), 341–350 (2004).
[Crossref]

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
[Crossref]

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Opt. Express (8)

Opt. Lett. (4)

Theore. Appl. Mech. Lett. (1)

Z. Li, Y. Wang, and J. Xiao, “Mechanics of bioinspired imaging systems,” Theore. Appl. Mech. Lett. 6(1), 11–20 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Structure and mechanism of the device. (a) Cross-section of the proposed device. (b) Optical image of the proposed device. (c) State of injecting the liquid. (d) State of further changing the liquid volume.
Fig. 2
Fig. 2 Results of the aperture size changes under different volumes. (a) ΔV1 = 0 μl. (b) ΔV2 = 40 μl. (c) ΔV3 = 90 μl. (d) ΔV4 = 130 μl. (e) ΔV5 = 170 μl. (f) ΔV6 = 210 μl. (g) ΔV7 = 240 μl. (h) ΔV8 = 260 μl. (i) ΔV9 = 270 μl.
Fig. 3
Fig. 3 Transmittance at the maximum aperture.
Fig. 4
Fig. 4 Measured light attenuation and normalized light intensity of the aperture under different volume changes.
Fig. 5
Fig. 5 Measured switch time of the propose device.
Fig. 6
Fig. 6 Results of the variable focus liquid lens with tunable apertures. (a) ΔL1 = 0 μl. (b) ΔL2 = 130 μl. (c) ΔL3 = 180 μl. (d) ΔL4 = 220 μl. (e) ΔL5 = 250 μl. (f) ΔL6 = 270 μl.
Fig. 7
Fig. 7 Simulated MTF and the imaging experiment of the liquid lens.
Fig. 8
Fig. 8 Aperture size changes and the focal length changes under different liquid volumes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔV= 1 3 π(2 R 2 r 0 2 2R R 2 r 0 2 )(2R+ R 2 r 0 2 ),
F= R n 2 n 1 ,
A=10lg P i P o ,

Metrics