Abstract

The propagation properties of Si-based all-dielectric metamaterials (ADMs) structures were investigated systematically, taking into account the effects of structural parameters, operation frequencies, and graphene Fermi levels. The results manifested that ADMs indicated sharp resonant curves with large Q-factors of more than 60, and a figure of merit of approximately 20. Compared with that of thin metal metamaterial counterparts, the thickness of ADMs (in the range of tens of micrometers) required to excite obvious resonant curves was much larger. By introducing an asymmetrical structure, an obvious Fano-resonant peak was observed, which also became stronger with increasing asymmetrical degree. In addition, by unitizing a uniform graphene layer, the Fano-resonant curves can be flexibly modulated over a wide range, and the amplitude-modulation depth of the Fano peak was approximately 40% when the Fermi level varied in the range of 0.01–1.0 eV. These results are very useful for the design of high Q-factor dielectric devices in the future (e.g., biosensors, modulators, and filters).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flexible properties of THz graphene bowtie metamaterials structures

Xiaoyong He, Guina Xiao, Feng Liu, Fangting Lin, and Wangzhou Shi
Opt. Mater. Express 9(1) 44-55 (2019)

Graphene patterns supported terahertz tunable plasmon induced transparency

Xiaoyong He, Feng Liu, Fangting Lin, and Wangzhou Shi
Opt. Express 26(8) 9931-9944 (2018)

Investigation of graphene-supported tunable asymmetric terahertz metamaterials

Chenyuyi Shi, Xiaoyong He, Feng Liu, Fangting Lin, and Hao Zhang
J. Opt. Soc. Am. B 35(3) 575-581 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
    [Crossref]
  2. C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
    [Crossref]
  3. Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
    [Crossref] [PubMed]
  4. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  5. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  6. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  7. C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).
  8. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  9. M. Qin, S. Xia, X. Zhai, Y. Huang, L. Wang, and L. Liao, “Surface enhanced perfect absorption in metamaterials with periodic dielectric nanostrips on silver film,” Opt. Express 26(23), 30873–30881 (2018).
    [Crossref] [PubMed]
  10. Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
    [Crossref] [PubMed]
  11. P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
    [Crossref]
  12. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Opt. Express 21(22), 26721–26728 (2013).
    [Crossref] [PubMed]
  13. C. S. Sui, B. X. Han, T. T. Lang, X. J. Li, X. F. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1 (2017).
    [Crossref]
  14. C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
    [Crossref]
  15. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  16. A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2017).
    [Crossref]
  17. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
    [Crossref] [PubMed]
  18. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
    [Crossref] [PubMed]
  19. M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
    [Crossref] [PubMed]
  20. M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
    [Crossref]
  21. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  22. R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
    [Crossref] [PubMed]
  23. J. Hu, T. Lang, and G. H. Shi, “Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface,” Opt. Express 25(13), 15241–15251 (2017).
    [Crossref] [PubMed]
  24. X. Y. He, G. N. Xiao, F. Liu, F. T. Lin, and W. Z. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9(1), 44–55 (2019).
    [Crossref]
  25. A. Howes, W. Wang, I. Kravchenko, and J. Valentine, “Dynamic transmission control based on all-dielectric Huygens metasurfaces,” Optica 5(7), 787–792 (2018).
    [Crossref]
  26. J. Tian, Y. Yang, M. Qiu, F. Laurell, V. Pasiskevicius, and H. Jang, “All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region,” Opt. Express 25(20), 24068–24080 (2017).
    [Crossref] [PubMed]
  27. F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
    [Crossref] [PubMed]
  28. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
    [Crossref] [PubMed]
  29. B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
    [Crossref]
  30. D. C. Wang, S. Sun, Z. Feng, W. Tan, and C. W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
    [Crossref]
  31. J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
    [Crossref]
  32. X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS2 modified hybrid surface plasmon waveguides,” Nanotechnology 30(12), 125201 (2019).
    [Crossref] [PubMed]
  33. P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
    [Crossref]
  34. Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
    [Crossref]
  35. D. Jia, Y. Tian, W. Ma, X. Gong, J. Yu, G. Zhao, and X. Yu, “Transmissive terahertz metalens with full phase control based on a dielectric metasurface,” Opt. Lett. 42(21), 4494–4497 (2017).
    [Crossref] [PubMed]
  36. C. Liewald, S. Mastel, J. Hesler, A. J. Huber, R. Hillenbrand, and F. Keilmann, “All-electronic terahertz nanoscopy,” Optica 5(2), 159–163 (2018).
    [Crossref]
  37. Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
    [Crossref] [PubMed]
  38. H. Chen, Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G. Chen, “Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens,” Opt. Express 26(23), 29817–29825 (2018).
    [Crossref] [PubMed]
  39. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref] [PubMed]
  40. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
    [Crossref] [PubMed]
  41. K. J. Willis, S. C. Hagness, and I. Knezevic, “A generalized Drude model for doped silicon at terahertz frequencies derived from microscopic transport simulation,” Appl. Phys. Lett. 102(12), 122113 (2013).
    [Crossref]
  42. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
    [Crossref]

2019 (3)

C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).

X. Y. He, G. N. Xiao, F. Liu, F. T. Lin, and W. Z. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9(1), 44–55 (2019).
[Crossref]

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS2 modified hybrid surface plasmon waveguides,” Nanotechnology 30(12), 125201 (2019).
[Crossref] [PubMed]

2018 (8)

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
[Crossref]

D. C. Wang, S. Sun, Z. Feng, W. Tan, and C. W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

A. Howes, W. Wang, I. Kravchenko, and J. Valentine, “Dynamic transmission control based on all-dielectric Huygens metasurfaces,” Optica 5(7), 787–792 (2018).
[Crossref]

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

M. Qin, S. Xia, X. Zhai, Y. Huang, L. Wang, and L. Liao, “Surface enhanced perfect absorption in metamaterials with periodic dielectric nanostrips on silver film,” Opt. Express 26(23), 30873–30881 (2018).
[Crossref] [PubMed]

C. Liewald, S. Mastel, J. Hesler, A. J. Huber, R. Hillenbrand, and F. Keilmann, “All-electronic terahertz nanoscopy,” Optica 5(2), 159–163 (2018).
[Crossref]

H. Chen, Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G. Chen, “Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens,” Opt. Express 26(23), 29817–29825 (2018).
[Crossref] [PubMed]

2017 (8)

C. S. Sui, B. X. Han, T. T. Lang, X. J. Li, X. F. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2017).
[Crossref]

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

J. Tian, Y. Yang, M. Qiu, F. Laurell, V. Pasiskevicius, and H. Jang, “All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region,” Opt. Express 25(20), 24068–24080 (2017).
[Crossref] [PubMed]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

J. Hu, T. Lang, and G. H. Shi, “Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface,” Opt. Express 25(13), 15241–15251 (2017).
[Crossref] [PubMed]

D. Jia, Y. Tian, W. Ma, X. Gong, J. Yu, G. Zhao, and X. Yu, “Transmissive terahertz metalens with full phase control based on a dielectric metasurface,” Opt. Lett. 42(21), 4494–4497 (2017).
[Crossref] [PubMed]

2016 (5)

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

2015 (4)

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

2014 (4)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

2013 (5)

K. J. Willis, S. C. Hagness, and I. Knezevic, “A generalized Drude model for doped silicon at terahertz frequencies derived from microscopic transport simulation,” Appl. Phys. Lett. 102(12), 122113 (2013).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Opt. Express 21(22), 26721–26728 (2013).
[Crossref] [PubMed]

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
[Crossref] [PubMed]

2012 (2)

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

2009 (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

2007 (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

1985 (1)

Adams, C. S.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Albella, P.

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Alexander, R. W.

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Avouris, P.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Bell, R. J.

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Bogdanov, A. A.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Boulesbaa, A.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Brener, I.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Camacho-Morales, R.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Cao, J.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Cao, J. C.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Chen, G.

Chen, H.

H. Chen, Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G. Chen, “Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens,” Opt. Express 26(23), 29817–29825 (2018).
[Crossref] [PubMed]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Chen, J.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Chen, L.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Chen, T. Y.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Chen, X.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Chen, Y.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Chen, Y. H.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Chu, C. H.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

de Melo, N. R.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Diao, J.

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Du, L.

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Feng, Z.

D. C. Wang, S. Sun, Z. Feng, W. Tan, and C. W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Fu, Z.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Fu, Z. L.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Geohegan, D.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Gilbert Corder, S. N.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Gong, X.

Gong, Y. D.

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Gu, L. L.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Guinea, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Guo, X. G.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Hagness, S. C.

K. J. Willis, S. C. Hagness, and I. Knezevic, “A generalized Drude model for doped silicon at terahertz frequencies derived from microscopic transport simulation,” Appl. Phys. Lett. 102(12), 122113 (2013).
[Crossref]

Han, B.

Han, B. X.

C. S. Sui, B. X. Han, T. T. Lang, X. J. Li, X. F. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Han, J. H.

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Hanham, S. M.

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

He, X.

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS2 modified hybrid surface plasmon waveguides,” Nanotechnology 30(12), 125201 (2019).
[Crossref] [PubMed]

He, X. Y.

X. Y. He, G. N. Xiao, F. Liu, F. T. Lin, and W. Z. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9(1), 44–55 (2019).
[Crossref]

C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hesler, J.

Hillenbrand, R.

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hong, M. H.

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Hong, Z.

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
[Crossref]

C. S. Sui, B. X. Han, T. T. Lang, X. J. Li, X. F. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Howes, A.

Hsieh, W. T.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Hu, J.

Huang, Y.

Huber, A. J.

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jang, H.

Jia, D.

Jiang, S.

Jiang, X.

Jing, X.

Jing, X. F.

C. S. Sui, B. X. Han, T. T. Lang, X. J. Li, X. F. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Karl, N.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Keilmann, F.

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Khanikaev, A. B.

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2017).
[Crossref]

Kivshar, Y. S.

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2017).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Knezevic, I.

K. J. Willis, S. C. Hagness, and I. Knezevic, “A generalized Drude model for doped silicon at terahertz frequencies derived from microscopic transport simulation,” Appl. Phys. Lett. 102(12), 122113 (2013).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Komar, A.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Kondo, J. M.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koshelev, K. L.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Kravchencko, I. I.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Kravchenko, I.

Kravchenko, I. I.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Kruk, S.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Lang, T.

Lang, T. T.

C. S. Sui, B. X. Han, T. T. Lang, X. J. Li, X. F. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Laurell, F.

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, H.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

H. Chen, Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G. Chen, “Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens,” Opt. Express 26(23), 29817–29825 (2018).
[Crossref] [PubMed]

Li, W.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Li, X.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Li, X. J.

C. S. Sui, B. X. Han, T. T. Lang, X. J. Li, X. F. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Li, Y. F.

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Li, Z.

Liang, G.

Liao, L.

Liewald, C.

Limonov, M. F.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Lin, F.

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS2 modified hybrid surface plasmon waveguides,” Nanotechnology 30(12), 125201 (2019).
[Crossref] [PubMed]

Lin, F. T.

X. Y. He, G. N. Xiao, F. Liu, F. T. Lin, and W. Z. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9(1), 44–55 (2019).
[Crossref]

C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Liu, F.

C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).

X. Y. He, G. N. Xiao, F. Liu, F. T. Lin, and W. Z. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9(1), 44–55 (2019).
[Crossref]

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS2 modified hybrid surface plasmon waveguides,” Nanotechnology 30(12), 125201 (2019).
[Crossref] [PubMed]

Liu, M.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Long, L. L.

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Low, T.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Lu, H. T.

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Luo, Z.

Ma, W.

Ma, Z.

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

MacDonald, K. F.

Maier, S. A.

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Mao, Y.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Mastel, S.

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Mendis, R.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Miroshnichenko, A. E.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

Mittleman, D. M.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Moitra, P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Mousavi, S. H.

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2017).
[Crossref]

Nagai, M.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Neshev, D. N.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Ng, B. H.

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Ni, X.

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2017).
[Crossref]

Omenetto, F. G.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Ordal, M. A.

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Pasiskevicius, V.

Peng, J.

C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).

Puretzky, A.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Qin, M.

Qiu, C. W.

D. C. Wang, S. Sun, Z. Feng, W. Tan, and C. W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Qiu, M.

Querry, M. R.

Rahmani, M.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Rybin, M. V.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Sadrieva, Z. F.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Samusev, K. B.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Shang, Z.

Shao, D. X.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Shi, C.

C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).

Shi, G. H.

Shi, W.

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS2 modified hybrid surface plasmon waveguides,” Nanotechnology 30(12), 125201 (2019).
[Crossref] [PubMed]

Shi, W. Z.

Shi, Z.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Sibalic, N.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Slobozhanyuk, A.

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2017).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Smirnova, D.

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2017).
[Crossref]

Sui, C.

Sui, C. S.

C. S. Sui, B. X. Han, T. T. Lang, X. J. Li, X. F. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

Sun, G.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Sun, S.

D. C. Wang, S. Sun, Z. Feng, W. Tan, and C. W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Tan, W.

D. C. Wang, S. Sun, Z. Feng, W. Tan, and C. W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Tan, Z. Y.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Tao, T. H.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tian, C. X.

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Tian, J.

Tian, Y.

Tsai, D. P.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Tseng, M. L.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Valentine, J.

A. Howes, W. Wang, I. Kravchenko, and J. Valentine, “Dynamic transmission control based on all-dielectric Huygens metasurfaces,” Optica 5(7), 787–792 (2018).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Wade, C. G.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Wan, W.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Wan, W. J.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Wang, D. C.

D. C. Wang, S. Sun, Z. Feng, W. Tan, and C. W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

Wang, H. C.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wang, L.

Wang, Q.

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Wang, S.

Wang, W.

A. Howes, W. Wang, I. Kravchenko, and J. Valentine, “Dynamic transmission control based on all-dielectric Huygens metasurfaces,” Optica 5(7), 787–792 (2018).
[Crossref]

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Wang, Y.

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Weatherill, K. J.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Wen, Z.

Willis, K. J.

K. J. Willis, S. C. Hagness, and I. Knezevic, “A generalized Drude model for doped silicon at terahertz frequencies derived from microscopic transport simulation,” Appl. Phys. Lett. 102(12), 122113 (2013).
[Crossref]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Wu, H. J.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wu, P. C.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Wu, Z.

Xia, F. N.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xia, S.

Xiao, G.

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS2 modified hybrid surface plasmon waveguides,” Nanotechnology 30(12), 125201 (2019).
[Crossref] [PubMed]

Xiao, G. N.

X. Y. He, G. N. Xiao, F. Liu, F. T. Lin, and W. Z. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9(1), 44–55 (2019).
[Crossref]

C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).

Xu, L.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Xu, Q.

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Yan, H.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Yang, Y.

J. Tian, Y. Yang, M. Qiu, F. Laurell, V. Pasiskevicius, and H. Jang, “All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region,” Opt. Express 25(20), 24068–24080 (2017).
[Crossref] [PubMed]

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Yu, J.

Yu, X.

Zarate, Y.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Zhai, X.

Zhang, F.

Zhang, G.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Zhang, H.

C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).

Zhang, J.

Zhang, K.

Zhang, R.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Zhang, S.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Zhang, W. L.

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Zhang, X. X.

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Zhang, Z.

Zhao, G.

Zhao, Q.

Zheludev, N. I.

Zhou, J.

Zhou, T.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Zhou, X.

Zhou, Z.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Zhu, L.

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Zi, J. C.

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

ACS Photonics (3)

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Z. Ma, S. M. Hanham, P. Albella, B. H. Ng, H. T. Lu, Y. D. Gong, S. A. Maier, and M. H. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Adv. Funct. Mater. (1)

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27(31), 1700580 (2017).
[Crossref]

Adv. Sci. (Weinh.) (1)

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-Ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. J. Willis, S. C. Hagness, and I. Knezevic, “A generalized Drude model for doped silicon at terahertz frequencies derived from microscopic transport simulation,” Appl. Phys. Lett. 102(12), 122113 (2013).
[Crossref]

D. C. Wang, S. Sun, Z. Feng, W. Tan, and C. W. Qiu, “Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials,” Appl. Phys. Lett. 113(20), 201103 (2018).
[Crossref]

J. C. Zi, Q. Xu, Q. Wang, C. X. Tian, Y. F. Li, X. X. Zhang, J. H. Han, and W. L. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterials polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

IEEE Photonics J. (1)

C. S. Sui, B. X. Han, T. T. Lang, X. J. Li, X. F. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1 (2017).
[Crossref]

J. Phys. Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Laser Photonics Rev. (1)

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Nano Lett. (2)

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS2 modified hybrid surface plasmon waveguides,” Nanotechnology 30(12), 125201 (2019).
[Crossref] [PubMed]

Nat. Commun. (3)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Nat. Photonics (5)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2017).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

C. Shi, X. Y. He, J. Peng, G. N. Xiao, F. Liu, F. T. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114(1), 9931–9944 (2019).

Opt. Lett. (1)

Opt. Mater. Express (2)

Optica (2)

Phys. Rev. Lett. (1)

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Sci. Rep. (2)

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

R. Mendis, M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, “Terahertz artificial dielectric lens,” Sci. Rep. 6(1), 23023 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Shows the side (a) and top (b) views of dielectric Si metamaterials structure. The thickness of polyimide-substrate layer was 2 μm. Periodic lengths along x and y directions (px and py) were both 250 μm.
Fig. 2
Fig. 2 (a) shows the transmission curves of Cu bowtie MMs structures at different thicknesses. 2(b) is the Q-factor and FOM of transmission curves of metal MMs structures. (TR) and bottom (BR) widths were 84 and 2 μm, respectively. Bottom and top lengths of bowtie sections were both 84 μm. Period lengths along x and y directions were both 180 μm. 2(c) shows the transmission curves of Si bowtie ADMs at different Si thicknesses. 2(d) is the Q-factor and FOM of transmission curves. Thicknesses of Si layer were 0.2, 1, 2, 5, 8, and 10 μm, respectively. The doping concentration of Si bowtie was 1.0 × 1015 cm−3. TR and BR widths were 120 and 2 μm, respectively. Bottom and top lengths of bowtie structures were both 120 μm. Period lengths along x and y directions were both 250 μm.
Fig. 3
Fig. 3 (a)–(c) show the transmission, reflection, and absorption curves of Si-ADMs structures at different carrier concentrations. 3(d) is the Q-factors and FOMs of transmission curves vs carrier concentrations. Thickness of Si bowtie was 10 μm. Doping concentrations of Si layer were 0, 1.0 × 1014 cm−3, 5.0 × 1014, 1.0 × 1015, 5.0 × 1015, 1.0 × 1016, 2.0 × 1016, and 3.0 × 1016 cm−3, respectively. Top and bottom widths were 120 and 2 μm, respectively. Bottom and top lengths of bowtie sections were both 120 μm. Period lengths along x and y directions were both 250 μm.
Fig. 4
Fig. 4 Shows the surface-current density and magnetic fields of Hz for Si bowtie MMs structures. Corresponding resonant frequencies were 1.278, 1.295, and 1.316 THz. Polarization direction of incident light was along the y direction. Si-layer doping concentrations were 1.0 × 1015, 1.0 × 1016, and 3.0 × 1016 cm−3, respectively.
Fig. 5
Fig. 5 (a)–(c) show the transmission, reflection, and absorption curves of Si-ADMs structures at different asymmetrical degrees (δ). 5(d) is the Q-factor and FOM of transmission curve. Thickness of Si layer was 10 μm. The asymmetrical degree values were 0, 10, 20, 30, 40, 50, and 60 μm. TR and BR widths were 120 and 2 μm, respectively. Bottom and top lengths of bowtie sections were both 120 μm. Period lengths along x and y directions were both 250 μm.
Fig. 6
Fig. 6 Shows surface-current density and magnetic fields of Hz for Si dielectric bowtie structures. Corresponding resonant frequencies were 1.076, 1.106, and 1.172 THz. Polarization direction of incident light was along the y direction. Asymmetrical degrees of Si-ADMs structures were 10, 20, and 50 μm. TR and BR widths were 120 and 2 μm, respectively. Bottom and top lengths of bowtie sections were both 120 μm. Period lengths along x and y directions were both 250 μm.
Fig. 7
Fig. 7 (a)–(c) show the transmission, reflection, and absorption curves of Si-AMDs structures at different graphene Fermi levels. Inset in 7(a) shows the uniform graphene-supported dielectric Si bowtie structure. 7(d) gives Q-factor and FOM of transmission curves. The Fermi levels were 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, and 1.0 eV, respectively. Top and bottom widths of Si bowtie structure were 120 and 2 μm, respectively. Bottom and top lengths were both 120 μm. Period lengths along x and y directions were both 250 μm.
Fig. 8
Fig. 8 Shows the surface-current density and magnetic fields Hz for graphene-supported Si-ADMs structures. Corresponding resonant frequencies were 1.218, 1.322, and 1.475 THz. Polarization direction of the incident wave was along the y direction. The graphene Fermi levels were 0.01, 0.2, and 0.5 eV, respectively. Top and bottom widths of Si bowtie structure were 120 and 2 μm, respectively. Bottom and top lengths of bowtie structures were both 120 μm. The period lengths along x and y directions were both 250 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε( ω )= ε ω p 2 ω( ω+i ω τ ) ,
σ Si ( ω )= σ( ω ) [ 1- ( iω τ GD ) 1-α ] β ,
σ g = j ω+j/τ e 2 2 k B T π 2 ln[ 2cosh μ c 2 k B T ] + e 2 4 2 [ G( ω 2 )+j 4ω π 0 G( ξ )G( ω/2 ) ( ω ) 2 4 ξ 2 dξ ]
G( ξ )= sinh( ξ/ k B T ) cosh( ξ/ k B T )+cosh( μ c / k B T )
ε g =1+j σ g ω ε 0 Δ
Q= f res FWHM ,

Metrics