Abstract

We demonstrate simultaneous generation of Stimulated Brillouin Scattering (SBS) and guided-acoustic-wave Brillouin scattering (GAWBS) from electrostriction of optical waves in a 60cm As 2Se 3-PMMA microtaper waveguide. The GAWBS in the microtaper couples with SBS through a complex energy transfer between weak Stokes and Anti-Stokes (AS) continuous waves in the presence of a high power pulsed pump wave. This results in an amplification of Stokes wave at 7.4 GHz due to modulation of the optical fiber by GAWBS at 211 MHz generated by the pump in addition to a strong Stokes peak at 7.62 GHz and a secondary peak at 7.8 GHz that are contributed by SBS for a 2μm As 2Se 3 core radius. Such strong coupling of forward and backward Brillouin scattering due to large acoustic impedance between the core and cladding in such compact, highly nonlinear fibers plays a vital role in simultaneously sensing longitudinal and trasnverse strain within the core as well as its surroundings.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

Bhavaye Saxena, Chams Baker, Xiaoyi Bao, and Liang Chen, "Simultaneous generation of guided-acoustic-wave Brillouin scattering and stimulated-Brillouin-scattering in hybrid As2Se3-PMMA microtapers: errata," Opt. Express 27, 19842-19842 (2019)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-14-19842

OSA Recommended Articles
High birefringent Brillouin frequency shifts in a single-mode As2Se3-PMMA microtaper induced by a transverse load

Bhavaye Saxena, Chams Baker, Xiaoyi Bao, and Liang Chen
Opt. Lett. 44(19) 4789-4792 (2019)

Experimental analysis of guided acoustic wave Brillouin scattering in PANDA fibers

Norihiko Nishizawa, Satoshi Kume, Masakazu Mori, Toshio Goto, and Akira Miyauchi
J. Opt. Soc. Am. B 12(9) 1651-1655 (1995)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear fiber optics(Elsevier/Academic, 2013), 5th ed.
  2. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
    [Crossref]
  3. E. Picholle and A. Picozzi, “Guided-acoustic-wave resonances in the dynamics of a stimulated brillouin fiber ring laser,” Opt. Commun. 135, 327–330 (1997).
    [Crossref]
  4. Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave brillouin scattering observed backward by stimulated brillouin scattering,” Meas. Sci. Technol. 15, 1458–1461 (2004).
    [Crossref]
  5. N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Fiber-optic guided-acoustic-wave brillouin scattering observed with pump-probe technique,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.
  6. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering,” J. Light. Technol. 13, 1340–1348 (1995).
    [Crossref]
  7. X. Bao and L. Chen, “Recent progress in brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
    [Crossref] [PubMed]
  8. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
    [Crossref] [PubMed]
  9. G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nat. Commun. 92991 (2018).
    [Crossref] [PubMed]
  10. C. Baker and M. Rochette, “Highly nonlinear hybrid As 2Se 3-PMMA microtapers,” Opt. Express 18, 12391–12398 (2010).
    [Crossref] [PubMed]
  11. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
    [Crossref]
  12. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  13. K. S. Abedin, “Observation of strong stimulated brillouin scattering in single-mode As 2Se 3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
    [Crossref] [PubMed]
  14. K. Ogusu, H. Li, and M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses,” J. Opt. Soc. Am. B 21, 1302–1304 (2004).
    [Crossref]
  15. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
    [Crossref] [PubMed]
  16. J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
    [Crossref] [PubMed]
  17. C. Baker and M. Rochette, “A generalized heat-brush approach for precise control of the waist profile in fiber tapers,” Opt. Mater. Express 1, 1065–1076 (2011).
    [Crossref]
  18. M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Light. Technol. 8, 1269–1272 (1990).
    [Crossref]
  19. T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14, 408–410 (1989).
    [Crossref] [PubMed]
  20. J.-C. Beugnot and V. Laude, “Electrostriction and guidance of acoustic phonons in optical fibers,” Phys. Rev. B 86, 224304 (2012).
    [Crossref]
  21. V. Laude and J.-C. Beugnot, “Generation of phonons from electrostriction in small-core optical waveguides,” AIP Advances 3, 042109 (2013).
    [Crossref]
  22. J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Tunable stimulated brillouin scattering in hybrid polymer-chalcogenide tapered fibers,” Proc.SPIE 9136, 91360O (2014).
  23. J. Jin, The Finite Element Method in Electromagnetics(Wiley-IEEE, 2014), 3 ed.
  24. A. Logg, K.-A. Mardal, and G. Wells, eds., Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, no. 84 in Lecture Notes in Computational Science and Engineering (Springer, Heidelberg,2012).
    [Crossref]

2018 (1)

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nat. Commun. 92991 (2018).
[Crossref] [PubMed]

2014 (2)

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Tunable stimulated brillouin scattering in hybrid polymer-chalcogenide tapered fibers,” Proc.SPIE 9136, 91360O (2014).

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

J.-C. Beugnot and V. Laude, “Electrostriction and guidance of acoustic phonons in optical fibers,” Phys. Rev. B 86, 224304 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

2005 (1)

2004 (2)

K. Ogusu, H. Li, and M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses,” J. Opt. Soc. Am. B 21, 1302–1304 (2004).
[Crossref]

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave brillouin scattering observed backward by stimulated brillouin scattering,” Meas. Sci. Technol. 15, 1458–1461 (2004).
[Crossref]

1997 (1)

E. Picholle and A. Picozzi, “Guided-acoustic-wave resonances in the dynamics of a stimulated brillouin fiber ring laser,” Opt. Commun. 135, 327–330 (1997).
[Crossref]

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering,” J. Light. Technol. 13, 1340–1348 (1995).
[Crossref]

1990 (1)

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Light. Technol. 8, 1269–1272 (1990).
[Crossref]

1989 (1)

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Abedin, K. S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics(Elsevier/Academic, 2013), 5th ed.

Ahmad, R.

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Tunable stimulated brillouin scattering in hybrid polymer-chalcogenide tapered fibers,” Proc.SPIE 9136, 91360O (2014).

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
[Crossref] [PubMed]

Baker, C.

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[Crossref] [PubMed]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering,” J. Light. Technol. 13, 1340–1348 (1995).
[Crossref]

Bashan, G.

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nat. Commun. 92991 (2018).
[Crossref] [PubMed]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Beugnot, J.-C.

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Tunable stimulated brillouin scattering in hybrid polymer-chalcogenide tapered fibers,” Proc.SPIE 9136, 91360O (2014).

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
[Crossref] [PubMed]

V. Laude and J.-C. Beugnot, “Generation of phonons from electrostriction in small-core optical waveguides,” AIP Advances 3, 042109 (2013).
[Crossref]

J.-C. Beugnot and V. Laude, “Electrostriction and guidance of acoustic phonons in optical fibers,” Phys. Rev. B 86, 224304 (2012).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[Crossref] [PubMed]

Choi, D.-Y.

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering,” J. Light. Technol. 13, 1340–1348 (1995).
[Crossref]

Diamandi, H. H.

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nat. Commun. 92991 (2018).
[Crossref] [PubMed]

Eggleton, B. J.

Gai, X.

Hayashi, N.

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Fiber-optic guided-acoustic-wave brillouin scattering observed with pump-probe technique,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering,” J. Light. Technol. 13, 1340–1348 (1995).
[Crossref]

Hile, S.

Horiguchi, T.

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Light. Technol. 8, 1269–1272 (1990).
[Crossref]

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14, 408–410 (1989).
[Crossref] [PubMed]

Ishihara, K.

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Light. Technol. 8, 1269–1272 (1990).
[Crossref]

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering,” J. Light. Technol. 13, 1340–1348 (1995).
[Crossref]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics(Wiley-IEEE, 2014), 3 ed.

Kitao, M.

Kurashima, T.

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Light. Technol. 8, 1269–1272 (1990).
[Crossref]

Kurokawa, T.

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave brillouin scattering observed backward by stimulated brillouin scattering,” Meas. Sci. Technol. 15, 1458–1461 (2004).
[Crossref]

Laude, V.

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Tunable stimulated brillouin scattering in hybrid polymer-chalcogenide tapered fibers,” Proc.SPIE 9136, 91360O (2014).

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
[Crossref] [PubMed]

V. Laude and J.-C. Beugnot, “Generation of phonons from electrostriction in small-core optical waveguides,” AIP Advances 3, 042109 (2013).
[Crossref]

J.-C. Beugnot and V. Laude, “Electrostriction and guidance of acoustic phonons in optical fibers,” Phys. Rev. B 86, 224304 (2012).
[Crossref]

Lee, H.

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Fiber-optic guided-acoustic-wave brillouin scattering observed with pump-probe technique,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Li, E.

Li, H.

London, Y.

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nat. Commun. 92991 (2018).
[Crossref] [PubMed]

Luther-Davies, B.

Ma, P.

Madden, S.

Madden, S. J.

Maillotte, H.

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Tunable stimulated brillouin scattering in hybrid polymer-chalcogenide tapered fibers,” Proc.SPIE 9136, 91360O (2014).

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
[Crossref] [PubMed]

Mcfarlane, H.

Mizuno, Y.

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Fiber-optic guided-acoustic-wave brillouin scattering observed with pump-probe technique,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Nakamura, K.

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Fiber-optic guided-acoustic-wave brillouin scattering observed with pump-probe technique,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

Ogusu, K.

Pant, R.

Picholle, E.

E. Picholle and A. Picozzi, “Guided-acoustic-wave resonances in the dynamics of a stimulated brillouin fiber ring laser,” Opt. Commun. 135, 327–330 (1997).
[Crossref]

Picozzi, A.

E. Picholle and A. Picozzi, “Guided-acoustic-wave resonances in the dynamics of a stimulated brillouin fiber ring laser,” Opt. Commun. 135, 327–330 (1997).
[Crossref]

Poulton, C. G.

Preter, E.

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nat. Commun. 92991 (2018).
[Crossref] [PubMed]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Rochette, M.

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

Sylvestre, T.

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Tunable stimulated brillouin scattering in hybrid polymer-chalcogenide tapered fibers,” Proc.SPIE 9136, 91360O (2014).

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
[Crossref] [PubMed]

Tanaka, Y.

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave brillouin scattering observed backward by stimulated brillouin scattering,” Meas. Sci. Technol. 15, 1458–1461 (2004).
[Crossref]

Tateda, M.

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Light. Technol. 8, 1269–1272 (1990).
[Crossref]

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14, 408–410 (1989).
[Crossref] [PubMed]

Thevenaz, L.

Wang, R.

Wang, T.

Webb, D. J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering,” J. Light. Technol. 13, 1340–1348 (1995).
[Crossref]

Yang, Z.

Yoshida, H.

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave brillouin scattering observed backward by stimulated brillouin scattering,” Meas. Sci. Technol. 15, 1458–1461 (2004).
[Crossref]

Yu, Y.

Zadok, A.

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nat. Commun. 92991 (2018).
[Crossref] [PubMed]

AIP Advances (1)

V. Laude and J.-C. Beugnot, “Generation of phonons from electrostriction in small-core optical waveguides,” AIP Advances 3, 042109 (2013).
[Crossref]

J. Light. Technol. (2)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering,” J. Light. Technol. 13, 1340–1348 (1995).
[Crossref]

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Light. Technol. 8, 1269–1272 (1990).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave brillouin scattering observed backward by stimulated brillouin scattering,” Meas. Sci. Technol. 15, 1458–1461 (2004).
[Crossref]

Nat. Commun. (1)

G. Bashan, H. H. Diamandi, Y. London, E. Preter, and A. Zadok, “Optomechanical time-domain reflectometry,” Nat. Commun. 92991 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Opt. Commun. (1)

E. Picholle and A. Picozzi, “Guided-acoustic-wave resonances in the dynamics of a stimulated brillouin fiber ring laser,” Opt. Commun. 135, 327–330 (1997).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. Rev. B (2)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
[Crossref]

J.-C. Beugnot and V. Laude, “Electrostriction and guidance of acoustic phonons in optical fibers,” Phys. Rev. B 86, 224304 (2012).
[Crossref]

Proc.SPIE (1)

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Tunable stimulated brillouin scattering in hybrid polymer-chalcogenide tapered fibers,” Proc.SPIE 9136, 91360O (2014).

Sensors (2)

X. Bao and L. Chen, “Recent progress in brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

Other (4)

G. P. Agrawal, Nonlinear fiber optics(Elsevier/Academic, 2013), 5th ed.

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Fiber-optic guided-acoustic-wave brillouin scattering observed with pump-probe technique,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016), pp. 1–3.

J. Jin, The Finite Element Method in Electromagnetics(Wiley-IEEE, 2014), 3 ed.

A. Logg, K.-A. Mardal, and G. Wells, eds., Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, no. 84 in Lecture Notes in Computational Science and Engineering (Springer, Heidelberg,2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Phase matching diagrams for a) Stimulated Brillouin Scattering (SBS) and b) Guided acoustic wave Brillouin Scattering (GAWBS) within an optical fiber.
Fig. 2
Fig. 2 Hybrid As2Se3 tapered fiber. SMF: Single-mode Fiber (silica), PMMA: Poly(methyl methacrylate).
Fig. 3
Fig. 3 BOTDA Setup for hybrid fiber microtapers. EOM: Electro-Optic Modulator. HP-EDFA: High-power Erbium-Doped-Fiber-Amplifier. S/AS: Stokes/Anti-Stokes FUT: Fiber under test. PD: Photo-diode. OSC: Oscilloscope. ISO: Isolator.
Fig. 4
Fig. 4 Schematic of setup for observing depolarized guided acoustic wave Brillouin scattering. PC, polarization controller; LP, linear polarizer; PD, photodetector; ESA, electrical spectrum analyzer.
Fig. 5
Fig. 5 Pump-Stokes configuration: a) BOTDA traces for the Stokes wave. b) Evolution of the Stokes gain profile for the hybrid microtaper as a function of peak power (7-13 dBm). c) Overlay of | a | 2 / | a | m a x 2 from the BOTDA traces (green) with numerical results of the energy spectra (red) d) Energy density for a transverse acoustic wave at a frequency of 7.62 GHz.
Fig. 6
Fig. 6 (left) Overlay between numerical energy spectrum (black) and experimental optical power spectrum (red) for GAWBS. (right) Energy density for a transverse acoustic wave at a frequency of 211MHz.
Fig. 7
Fig. 7 Three-wave configuration: a) BOTDA traces for the Stokes wave b) Evolution of the Stokes gain profile as a function of peak power (4 - 15 dBm). c) Comparison of BOTDA Spectrum between the pump-Stokes configuration and the pump-Anti-Stokes configuration.
Fig. 8
Fig. 8 Schematic for the nonlinear three-wave interaction between a high power pump and weak counterpropagating Stokes and Anti-Stokes. a),b) generation of sidebands detuned at ±200MHz from pump wave through GAWBS. c),d) Interaction of up-shifted GAWBS from the pump with Stokes(νs) wave detuned at 7.4 GHz through SBS with 7.62 GHz resonance (Ωs). e),f) Interaction between the Anti-Stokes (νa) and the down-shifted GAWBS (Ωs) from the pump.
Fig. 9
Fig. 9 Stokes gain with respect to input pump peak Power at different detuning frequencies for a) Pump-Stokes configuration and b) Three-wave configuration of the BOTDA setup. Traces are plotted in dB scale.

Tables (1)

Tables Icon

Table 1 As2Se3 And PMMA Parameters Used For Electrostriction Calculations [22].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ 2 u i t 2 [ c i j k l u k , l + η i j k l u k , l t ] , j = [ ϵ 0 ϵ i m ϵ j n p k l m n E k ( 1 ) E l ( 2 ) * ] , j
E k = 1 4 σ d r ρ ω 2 u i ( r ) * u i ( r )

Metrics