Abstract

We report on efficient inscription of fiber Bragg gratings (FBGs) in a new type of single mode fiber with nanostructured core and with an effective parabolic graded index profile, using the standard phase mask method and a 248 nm pulsed laser. A nanostructured core allows to obtain high concentration of GeO2 in subwavelength glass rods and simultaneously to maintain low average germanium dopant level of silica similarly to standard single mode fibers. We showed that in a nanostructured core fiber, a factor of 3 better efficiency in gratings inscription was achieved, although the fiber has 20% lower average concentration of GeO2 with respect to SMF-28. In the nanostructured fiber we obtained a significant improvement in temperature sensitivity, while the strain sensitivity of FBG in nGRIN optical fiber is the same as in case of standard single-mode fiber (SMF-28). We have measured the strain sensitivity of 0.72 × 10−6 1/με (1.11 pm/με@1.53μm), and the temperature sensitivity is about 30% higher than for FBG in SMF-28 and equals to 10.2 × 10−6 1/K (15.6 pm/K@1.53μm).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens

Aviran Halstuch, Avishay Shamir, and Amiel A. Ishaaya
Opt. Express 27(12) 16935-16944 (2019)

Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings

Adriana Morana, Sylvain Girard, Emmanuel Marin, Matthieu Lancry, Claude Marcandella, Philippe Paillet, Laurent Lablonde, Thierry Robin, Robert J. Williams, Michael J. Withford, Aziz Boukenter, and Youcef Ouerdane
Opt. Express 23(7) 8659-8669 (2015)

Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse

Luis Pereira, Rui Min, Xuehao Hu, Christophe Caucheteur, Ole Bang, Beatriz Ortega, Carlos Marques, Paulo Antunes, and João L. Pinto
Opt. Express 26(14) 18096-18104 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic Press, 2009).
  2. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, (Artech House, 1999).
  3. A. Gillooly, “Growing gratings,” Nat. Photonics 5(8), 468–469 (2011).
    [Crossref]
  4. O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shavaikovskaya, Handbook of Glass Data (Elsevier Science, 1985).
  5. Fibercore specification note for highly Ge-doped optical fibers: https://www.fibercore.com/product/highly-germanium-doped-fiber .
  6. Fibercore specification note for boron doped photosensitive fiber: https://www.fibercore.com/product/boron-doped-photosensitive-fiber .
  7. P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers,” IEEE Photonics Technol. Lett. 11(12), 1635–1637 (1999).
    [Crossref]
  8. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  9. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  10. S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
    [Crossref] [PubMed]
  11. T. Geernaert, M. Becker, P. Mergo, T. Nasilowski, J. Wojcik, W. Urbanczyk, M. Rothhardt, C. Chojetzki, H. Bartelt, H. Terryn, F. Berghmans, and H. Thienpont, “Bragg Grating Inscription in GeO2-Doped Microstructured Optical Fibers,” J. Lightwave Technol. 28(10), 1459–1467 (2010).
    [Crossref]
  12. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
    [Crossref] [PubMed]
  13. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
    [Crossref]
  14. H. R. Sørensen, J. B. Jensen, J. Bo Jensen, F. Bruyere, and K. P. Hansen, “Practical hydrogen loading of air silica fibres,” in Proc. BGPP, 2005, pp. 247–249.
  15. I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).
  16. J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
    [Crossref]
  17. M. Konstantaki, G. Tamiolakis, A. Argyris, A. Othonos, and A. Ikiades, “Effects of Ge concentration, boron co-doping and hydrogenation on fiber Brgg grating characteristics,” Microw. Opt. Technol. Lett. 44(2), 148–152 (2005).
    [Crossref]
  18. D. S. Moon, U.-C. Paek, Y. Chung, X. Dong, and P. Shum, “Multi-wavelength linear-cavity tunable fiber laser using a chirped fiber Bragg grating and a few-mode fiber Bragg grating,” Opt. Express 13(15), 5614–5620 (2005).
    [Crossref] [PubMed]
  19. A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
    [Crossref] [PubMed]
  20. Corning SMF-28® technical note: http://www.corning.com/media/worldwide/coc/documents/Fiber/PI1463_07-14_English.pdf .
  21. F. Juelich and J. Roths, “Determination of the effective refractive index of various single mode fibres for fibre Bragg grating sensor applications,” in Proc. OPTO, 2009, pp. 119–125.

2018 (1)

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

2013 (1)

2011 (2)

A. Gillooly, “Growing gratings,” Nat. Photonics 5(8), 468–469 (2011).
[Crossref]

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

2010 (1)

2007 (2)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (2)

M. Konstantaki, G. Tamiolakis, A. Argyris, A. Othonos, and A. Ikiades, “Effects of Ge concentration, boron co-doping and hydrogenation on fiber Brgg grating characteristics,” Microw. Opt. Technol. Lett. 44(2), 148–152 (2005).
[Crossref]

D. S. Moon, U.-C. Paek, Y. Chung, X. Dong, and P. Shum, “Multi-wavelength linear-cavity tunable fiber laser using a chirped fiber Bragg grating and a few-mode fiber Bragg grating,” Opt. Express 13(15), 5614–5620 (2005).
[Crossref] [PubMed]

1999 (1)

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers,” IEEE Photonics Technol. Lett. 11(12), 1635–1637 (1999).
[Crossref]

1997 (1)

1995 (1)

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[Crossref]

Albert, J.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[Crossref]

Anuszkiewicz, A.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Araujo, F. M.

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers,” IEEE Photonics Technol. Lett. 11(12), 1635–1637 (1999).
[Crossref]

Argyris, A.

M. Konstantaki, G. Tamiolakis, A. Argyris, A. Othonos, and A. Ikiades, “Effects of Ge concentration, boron co-doping and hydrogenation on fiber Brgg grating characteristics,” Microw. Opt. Technol. Lett. 44(2), 148–152 (2005).
[Crossref]

Asatryan, A. A.

Bartelt, H.

Becker, M.

Berghmans, F.

Bilodeau, F.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[Crossref]

Birks, T. A.

Bo Jensen, J.

H. R. Sørensen, J. B. Jensen, J. Bo Jensen, F. Bruyere, and K. P. Hansen, “Practical hydrogen loading of air silica fibres,” in Proc. BGPP, 2005, pp. 247–249.

Botten, L. C.

Bruyere, F.

H. R. Sørensen, J. B. Jensen, J. Bo Jensen, F. Bruyere, and K. P. Hansen, “Practical hydrogen loading of air silica fibres,” in Proc. BGPP, 2005, pp. 247–249.

Buczynski, R.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Caucheteur, C.

Cavaleiro, P. M.

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers,” IEEE Photonics Technol. Lett. 11(12), 1635–1637 (1999).
[Crossref]

Chah, K.

Chojetzki, C.

Chung, Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Demokan, M. S.

Denisov, A. N.

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

Dong, X.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Farahi, F.

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers,” IEEE Photonics Technol. Lett. 11(12), 1635–1637 (1999).
[Crossref]

Ferreira, L. A.

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers,” IEEE Photonics Technol. Lett. 11(12), 1635–1637 (1999).
[Crossref]

Filipkowski, A.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Geernaert, T.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gillooly, A.

A. Gillooly, “Growing gratings,” Nat. Photonics 5(8), 468–469 (2011).
[Crossref]

Gumenyuk, R.

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

Hansen, K. P.

H. R. Sørensen, J. B. Jensen, J. Bo Jensen, F. Bruyere, and K. P. Hansen, “Practical hydrogen loading of air silica fibres,” in Proc. BGPP, 2005, pp. 247–249.

Hill, K. O.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[Crossref]

Ikiades, A.

M. Konstantaki, G. Tamiolakis, A. Argyris, A. Othonos, and A. Ikiades, “Effects of Ge concentration, boron co-doping and hydrogenation on fiber Brgg grating characteristics,” Microw. Opt. Technol. Lett. 44(2), 148–152 (2005).
[Crossref]

Ivascu, I. R.

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

Jensen, J. B.

H. R. Sørensen, J. B. Jensen, J. Bo Jensen, F. Bruyere, and K. P. Hansen, “Practical hydrogen loading of air silica fibres,” in Proc. BGPP, 2005, pp. 247–249.

Jin, W.

Johnson, D. C.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[Crossref]

Juelich, F.

F. Juelich and J. Roths, “Determination of the effective refractive index of various single mode fibres for fibre Bragg grating sensor applications,” in Proc. OPTO, 2009, pp. 119–125.

Kan, D. J.

Kasztelanic, R.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Kivistö, S.

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

Klimczak, M.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Knight, J. C.

Konstantaki, M.

M. Konstantaki, G. Tamiolakis, A. Argyris, A. Othonos, and A. Ikiades, “Effects of Ge concentration, boron co-doping and hydrogenation on fiber Brgg grating characteristics,” Microw. Opt. Technol. Lett. 44(2), 148–152 (2005).
[Crossref]

Kosolapov, A. F.

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

Luyckx, G.

Malo, B.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[Crossref]

Marshall, G. D.

Mégret, P.

Mergo, P.

Moon, D. S.

Nasilowski, T.

Okhotnikov, O. G.

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

Othonos, A.

M. Konstantaki, G. Tamiolakis, A. Argyris, A. Othonos, and A. Ikiades, “Effects of Ge concentration, boron co-doping and hydrogenation on fiber Brgg grating characteristics,” Microw. Opt. Technol. Lett. 44(2), 148–152 (2005).
[Crossref]

Paek, U.-C.

Pysz, D.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Rothhardt, M.

Roths, J.

F. Juelich and J. Roths, “Determination of the effective refractive index of various single mode fibres for fibre Bragg grating sensor applications,” in Proc. OPTO, 2009, pp. 119–125.

Russell, P. St. J.

Santos, J. L.

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers,” IEEE Photonics Technol. Lett. 11(12), 1635–1637 (1999).
[Crossref]

Semjonov, S. L.

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

Shum, P.

Siwicki, B.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Sonnenfeld, C.

Sørensen, H. R.

H. R. Sørensen, J. B. Jensen, J. Bo Jensen, F. Bruyere, and K. P. Hansen, “Practical hydrogen loading of air silica fibres,” in Proc. BGPP, 2005, pp. 247–249.

Stefaniuk, T.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Stepniewski, G.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Sulejmani, S.

Tamiolakis, G.

M. Konstantaki, G. Tamiolakis, A. Argyris, A. Othonos, and A. Ikiades, “Effects of Ge concentration, boron co-doping and hydrogenation on fiber Brgg grating characteristics,” Microw. Opt. Technol. Lett. 44(2), 148–152 (2005).
[Crossref]

Terryn, H.

Thériault, S.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[Crossref]

Thienpont, H.

Urbanczyk, W.

Van Hemelrijck, D.

Wang, Y.

Withford, M. J.

Wojcik, J.

Xiao, L.

Yatsenko, Y. P.

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

Zhao, C.

Appl. Phys. Lett. (1)

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Thériault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers,” IEEE Photonics Technol. Lett. 11(12), 1635–1637 (1999).
[Crossref]

J. Lightwave Technol. (2)

Microw. Opt. Technol. Lett. (1)

M. Konstantaki, G. Tamiolakis, A. Argyris, A. Othonos, and A. Ikiades, “Effects of Ge concentration, boron co-doping and hydrogenation on fiber Brgg grating characteristics,” Microw. Opt. Technol. Lett. 44(2), 148–152 (2005).
[Crossref]

Nat. Photonics (1)

A. Gillooly, “Growing gratings,” Nat. Photonics 5(8), 468–469 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optoelectron. Adv. Mater. Rapid Commun. (1)

I. R. Ivascu, R. Gumenyuk, S. Kivistö, A. N. Denisov, A. F. Kosolapov, Y. P. Yatsenko, S. L. Semjonov, and O. G. Okhotnikov, “Fiber Bragg gratings written in photosensitive photonic crystal fibers and its sensing applications,” Optoelectron. Adv. Mater. Rapid Commun. 5, 704–708 (2011).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref] [PubMed]

Other (8)

Corning SMF-28® technical note: http://www.corning.com/media/worldwide/coc/documents/Fiber/PI1463_07-14_English.pdf .

F. Juelich and J. Roths, “Determination of the effective refractive index of various single mode fibres for fibre Bragg grating sensor applications,” in Proc. OPTO, 2009, pp. 119–125.

H. R. Sørensen, J. B. Jensen, J. Bo Jensen, F. Bruyere, and K. P. Hansen, “Practical hydrogen loading of air silica fibres,” in Proc. BGPP, 2005, pp. 247–249.

R. Kashyap, Fiber Bragg Gratings (Academic Press, 2009).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, (Artech House, 1999).

O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shavaikovskaya, Handbook of Glass Data (Elsevier Science, 1985).

Fibercore specification note for highly Ge-doped optical fibers: https://www.fibercore.com/product/highly-germanium-doped-fiber .

Fibercore specification note for boron doped photosensitive fiber: https://www.fibercore.com/product/boron-doped-photosensitive-fiber .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 nGRIN optical fiber with nanostructured core: (a) fiber design in form of binary structure, SEM image of cross-section of (b) the fiber core and (e) zoomed core area, (c) subpreform and (d) zoomed subpreform area Areas in black rectangles and image (d) indicate the same rods arrangement in design, subpreform and final fiber [19].
Fig. 2
Fig. 2 Transmission spectra of FBGs written in a) nGRIN optical fiber, b) SMF-28 with use of the same inscription conditions: pulse energy: 3mJ, pulse repetition 500 Hz, and number of pulses 10000.
Fig. 3
Fig. 3 FBGs growth in a) nGRIN optical fiber, b) SMF-28 as a function of number of pulses.
Fig. 4
Fig. 4 Measurement system for FBG characterization: central part of the fiber with inscribed FBG grating placed on a Peltier module for temperature changes introduction. The fiber fixed at two points distanced equally in respect to FBG position. Total distance between fixed points was L0. The light sources were: broadband supercontinuum source and ASE laser with a band from 1520 to 1570 nm. The transmission spectra were registered with optical spectrum analyzer (OSA).
Fig. 5
Fig. 5 Bragg peak λB = 1061.5 nm registered for FBG2 in nGRIN optical fiber under temperature changes: movement of the peak in transmission spectrum (a) and central wavelength shift estimated for heated and cooled fiber (b).
Fig. 6
Fig. 6 Bragg peak at λB = 1551.6 nm registered for FBG0 in nGRIN optical fiber under temperature changes: movement of the peak in transmission spectrum (a) and central wavelength shift estimated for heated and cooled fiber (b).
Fig. 7
Fig. 7 Bragg peak λB = 1544.2 nm registered for FBG1 in SMF under temperature changes: movement of the peak in transmission spectrum (a) and central wavelength shift estimated for heated and cooled fiber (b).
Fig. 8
Fig. 8 Bragg peak λB = 1061.5 nm registered for FBG2 in nGRIN optical fiber under longitudinal stress changes: movement of the peak in transmission spectrum (a) and central wavelength shift estimated for elongated and released fiber (b).
Fig. 9
Fig. 9 Bragg peak λB = 1551.6 nm registered for FBG0 in nGRIN optical fiber under longitudinal stress changes: movement of the peak in transmission spectrum (a) and central wavelength shift estimated for elongated and released fiber (b).
Fig. 10
Fig. 10 Bragg peak λB = 1535.6 nm registered for FBG4 in nGRIN optical fiber under longitudinal stress changes: movement of the peak in transmission spectrum (a) and central wavelength shift estimated for elongated and released fiber (b).
Fig. 11
Fig. 11 Bragg peak λB = 1536.1 nm registered for FBG3 in SMF-28 fiber under longitudinal stress changes: movement of the peak in transmission spectrum (a) and central wavelength shift estimated for elongated and released fiber (b).

Tables (3)

Tables Icon

Table 1 Comparison of fundamental parameters of nGRIN optical fiber and SMF-28.

Tables Icon

Table 2 Sensitivity to temperature measured for FBG in nGRIN optical fiber and in SMF-28.

Tables Icon

Table 3 Sensitivity to strain measured for FBG in nGRIN optical fiber and in SMF-28.

Metrics