Abstract

While conventional complex phase masks are chromatic, we present an achromatic holographic phase mask capable of performing optical beam transformations in a spectral range exceeding 1000 nm. The system consists of a holographic phase mask fabricated by encoding the desired phase profiles into volume Bragg gratings, inserted in between two surface gratings. This device automatically adjusts each spectral component diffracted by the surface grating to the Bragg angle of the volume Bragg grating and equalizes phase incursion for all diffracted wavelengths. Transverse mode conversion is demonstrated and compared with theory for multiple narrow line laser sources operating from 488 to 1550 nm and for a broadband femtosecond source.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

25 June 2019: A typographical correction was made to the author listing.


OSA Recommended Articles
Wavefront shaping optical elements recorded in photo-thermo-refractive glass

Ivan Divliansky, Fedor Kompan, Evan Hale, Marc Segall, Axel Schülzgen, and Leonid B. Glebov
Appl. Opt. 58(13) D61-D67 (2019)

Complex diffraction and dispersion effects in femtosecond laser writing of fiber Bragg gratings using the phase mask technique

Nurmemet Abdukerim, Dan Grobnic, Rune Lausten, Cyril Hnatovsky, and Stephen J. Mihailov
Opt. Express 27(22) 32536-32555 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995).
    [PubMed]
  2. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31(2), 181–183 (2006).
    [Crossref] [PubMed]
  3. A. Castro, Y. Frauel, and B. Javidi, “Integral imaging with large depth of field using an asymmetric phase mask,” Opt. Express 15(16), 10266–10273 (2007).
    [Crossref] [PubMed]
  4. N. Caron and Y. Sheng, “Polynomial phase masks for extending the depth of field of a microscope,” Appl. Opt. 47(22), E39–E43 (2008).
    [Crossref] [PubMed]
  5. H. Zhao, Y. Li, H. Feng, Z. Xu, and Q. Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system,” Opt. Laser Technol. 42(4), 561–569 (2010).
    [Crossref]
  6. B. Javidi and J. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33(6), 1752-1756 (1994).
  7. L. Neto and Y. Sheng, “Optical implementation of image encryption using random phase encoding,” Opt. Eng. 35(9), 2459–2463 (1996).
    [Crossref]
  8. C. Cheng, L. Lin, C. Wang, and C. Chen, “Optical joint transform encryption using binary phase difference key mask,” Phys. Rev. 12(5), 367–371 (2005).
  9. P. Kumar, J. Joseph, and K. Singh, “Impulse attack-free four random phase mask encryption based on a 4-f optical system,” Appl. Opt. 48(12), 2356–2363 (2009).
    [Crossref] [PubMed]
  10. J. R. Leger, D. Chen, and Z. Wang, “Diffractive optical element for mode shaping of a Nd:YAG laser,” Opt. Lett. 19(2), 108–110 (1994).
    [Crossref] [PubMed]
  11. J. Yang and M. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106–3113 (2003).
    [Crossref]
  12. X. Huang, M. Wang, and C. Yu, “High-efficiency flat-top beam shaper fabricated by a nonlithographic technique,” Opt. Eng. 38(2), 208–213 (1999).
    [Crossref]
  13. M. Wang, C. Yu, and A. Varela, “Efficient pseudo-nondiffracting beam shaping using a quasicontinuous-phase diffractive element,” Opt. Eng. 40(4), 517–524 (2001).
    [Crossref]
  14. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  15. W. Mohammed, M. Pitchumani, A. Mehta, and E. Johnson, “Selective excitation of the LP11 mode in step index fiber using a phase mask,” Opt. Eng. 45(7), 074602 (2006).
    [Crossref]
  16. A. Syouji, K. Kurihara, A. Otomo, and S. Saito, “Diffraction-grating-type phase converters for conversion of Hermite-Laguerre-Gaussian mode into Gaussian mode,” Appl. Opt. 49(9), 1513–1517 (2010).
    [Crossref] [PubMed]
  17. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
    [Crossref]
  18. C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43(12), 2397–2399 (2004).
    [Crossref] [PubMed]
  19. K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, “Low-spatial-frequency refractive-index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam,” J. Opt. Soc. Am. B 17(4), 586–592 (2000).
    [Crossref]
  20. M. SeGall, V. Rotar, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Binary volume phase masks in photo-thermo-refractive glass,” Opt. Lett. 37(7), 1190–1192 (2012).
    [Crossref] [PubMed]
  21. M. Bass, Handbook of Optics, 2nd edn, (McGraw-Hill, 1994), (Vol. 2).
  22. D. Mawet, C. Lenaerts, V. Moreau, Y. Renotte, D. Rouan, and J. Surdej, Achromatic four quadrant phase mask coronagraph using the dispersion of form birefringence in astronomy with high contrast imaging, eds Aime C. & Soummer, R. (Cambridge University, 2003).
  23. J. Rosen, M. Segev, and A. Yariv, “Wavelength-multiplexed computer-generated volume holography,” Opt. Lett. 18(9), 744–746 (1993).
    [Crossref] [PubMed]
  24. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
    [Crossref] [PubMed]
  25. T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010).
    [Crossref]
  26. L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” Journal of Holography and Speckle 5, 1–8 (2008).
  27. M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54(7), 076104 (2015).
    [Crossref]
  28. H. Kogelnik, “Coupled wave theory for thick volume holograms,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  29. L. Glebov, V. Smirnov, N. Tabirian, and B. Zeldovich, “Angular selective achromatic diffraction optical grating device,” Annual OSA meeting, (2003).
  30. S. Wu, X. Yuan, X. Zhang, J. Feng, K. Zou, and G. Zhang, “Broadband angular filtering with a volume Bragg grating and a surface grating pair,” Opt. Lett. 39(14), 4068–4071 (2014).
    [Crossref] [PubMed]
  31. L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” Encyclopedia of Smart Materials, Vol. 2 (eds Schwartz, M.), (John Wiley & Sons, 2002).
  32. I. Ciapurin, L. Glebov, and V. Smirnov, “Spectral combining of high-power fiber laser beams using Bragg grating in PTR glass,” Proc. SPIE 5335, 116 (2004).
    [Crossref]
  33. I. Divliansky, V. Smirnov, G. Venus, A. Gourevitch, and L. Glebov, “High-power semiconductor lasers for applications requiring GHz linewidth source,” Proc. SPIE 7198, 71981N (2009).
    [Crossref]
  34. S. Kaim, G. Venus, V. Smirnov, B. Y. Zeldovich, and L. B. Glebov, “Scheme ASADOG for stretching or compressing short optical pulses,” Frontiers in Optics, OSA Technical Digest (2013).
  35. C. Moser, Z. Monemhaghdoust, C. Depeursinge, and Y. Emery, “ Digital holographic device,” US Patent 2017/0003650 A1 (2017).
  36. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982).
    [Crossref]
  37. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, “High-efficiency fused-silica transmission gratings,” Opt. Lett. 22(3), 142–144 (1997).
    [Crossref] [PubMed]
  38. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14(5), 1124–1136 (1997).
    [Crossref]
  39. J. A. Britten, “Multilayer dielectric transmission gratings having maximal transmitted diffraction efficiency,” US Patent 2010/0208346 A1 (2010).
  40. Y. Wang, N. Dai, Y. Li, X. Wang, and P. Lu, “Ablation and cutting of silicon wafer and micro-mold fabrication using femtosecond laser pulses,” J. Laser Appl. 19(4), 240–244 (2007).
    [Crossref]
  41. M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific Features of the Welding of Metals by Radiation of High-Power Fiber Laser,” Laser Phys. 21(8), 1530–1537 (2011).
    [Crossref]
  42. M. Bauer, “Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes,” J. Phys. D Appl. Phys. 38(16), R253–R267 (2005).
    [Crossref]
  43. W. Watanabe, T. Shimada, S. Matsunaga, D. Kurihara, K. Fukui, S. Shin-Ichi Arimura, N. Tsutsumi, K. Isobe, and K. Itoh, “Single-organelle tracking by two-photon conversion,” Opt. Express 15(5), 2490–2498 (2007).
    [Crossref] [PubMed]
  44. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref] [PubMed]
  45. Z. Qiao, L. Kong, G. Xie, Z. Qin, P. Yuan, L. Qian, X. Xu, J. Xu, and D. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42(13), 2547–2550 (2017).
    [Crossref] [PubMed]
  46. N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
    [Crossref] [PubMed]
  47. C. Liu, Z. Guo, Y. Li, X. Wang, and S. Qu, “Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers,” J. Opt. 17(3), 035402 (2015).
    [Crossref]
  48. N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
    [Crossref]
  49. M. Alshershby, Z. Hao, and J. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys. 45(26), 265401 (2012).
    [Crossref]

2017 (1)

2015 (3)

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54(7), 076104 (2015).
[Crossref]

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

C. Liu, Z. Guo, Y. Li, X. Wang, and S. Qu, “Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers,” J. Opt. 17(3), 035402 (2015).
[Crossref]

2014 (2)

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

S. Wu, X. Yuan, X. Zhang, J. Feng, K. Zou, and G. Zhang, “Broadband angular filtering with a volume Bragg grating and a surface grating pair,” Opt. Lett. 39(14), 4068–4071 (2014).
[Crossref] [PubMed]

2012 (2)

M. SeGall, V. Rotar, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Binary volume phase masks in photo-thermo-refractive glass,” Opt. Lett. 37(7), 1190–1192 (2012).
[Crossref] [PubMed]

M. Alshershby, Z. Hao, and J. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys. 45(26), 265401 (2012).
[Crossref]

2011 (2)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific Features of the Welding of Metals by Radiation of High-Power Fiber Laser,” Laser Phys. 21(8), 1530–1537 (2011).
[Crossref]

2010 (3)

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010).
[Crossref]

H. Zhao, Y. Li, H. Feng, Z. Xu, and Q. Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system,” Opt. Laser Technol. 42(4), 561–569 (2010).
[Crossref]

A. Syouji, K. Kurihara, A. Otomo, and S. Saito, “Diffraction-grating-type phase converters for conversion of Hermite-Laguerre-Gaussian mode into Gaussian mode,” Appl. Opt. 49(9), 1513–1517 (2010).
[Crossref] [PubMed]

2009 (2)

P. Kumar, J. Joseph, and K. Singh, “Impulse attack-free four random phase mask encryption based on a 4-f optical system,” Appl. Opt. 48(12), 2356–2363 (2009).
[Crossref] [PubMed]

I. Divliansky, V. Smirnov, G. Venus, A. Gourevitch, and L. Glebov, “High-power semiconductor lasers for applications requiring GHz linewidth source,” Proc. SPIE 7198, 71981N (2009).
[Crossref]

2008 (2)

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” Journal of Holography and Speckle 5, 1–8 (2008).

N. Caron and Y. Sheng, “Polynomial phase masks for extending the depth of field of a microscope,” Appl. Opt. 47(22), E39–E43 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

W. Mohammed, M. Pitchumani, A. Mehta, and E. Johnson, “Selective excitation of the LP11 mode in step index fiber using a phase mask,” Opt. Eng. 45(7), 074602 (2006).
[Crossref]

A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31(2), 181–183 (2006).
[Crossref] [PubMed]

2005 (2)

C. Cheng, L. Lin, C. Wang, and C. Chen, “Optical joint transform encryption using binary phase difference key mask,” Phys. Rev. 12(5), 367–371 (2005).

M. Bauer, “Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes,” J. Phys. D Appl. Phys. 38(16), R253–R267 (2005).
[Crossref]

2004 (2)

C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43(12), 2397–2399 (2004).
[Crossref] [PubMed]

I. Ciapurin, L. Glebov, and V. Smirnov, “Spectral combining of high-power fiber laser beams using Bragg grating in PTR glass,” Proc. SPIE 5335, 116 (2004).
[Crossref]

2003 (2)

2001 (1)

M. Wang, C. Yu, and A. Varela, “Efficient pseudo-nondiffracting beam shaping using a quasicontinuous-phase diffractive element,” Opt. Eng. 40(4), 517–524 (2001).
[Crossref]

2000 (1)

1999 (1)

X. Huang, M. Wang, and C. Yu, “High-efficiency flat-top beam shaper fabricated by a nonlithographic technique,” Opt. Eng. 38(2), 208–213 (1999).
[Crossref]

1997 (2)

1996 (1)

L. Neto and Y. Sheng, “Optical implementation of image encryption using random phase encoding,” Opt. Eng. 35(9), 2459–2463 (1996).
[Crossref]

1995 (1)

1994 (2)

J. R. Leger, D. Chen, and Z. Wang, “Diffractive optical element for mode shaping of a Nd:YAG laser,” Opt. Lett. 19(2), 108–110 (1994).
[Crossref] [PubMed]

B. Javidi and J. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33(6), 1752-1756 (1994).

1993 (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

J. Rosen, M. Segev, and A. Yariv, “Wavelength-multiplexed computer-generated volume holography,” Opt. Lett. 18(9), 744–746 (1993).
[Crossref] [PubMed]

1992 (1)

1982 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick volume holograms,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Alshershby, M.

M. Alshershby, Z. Hao, and J. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys. 45(26), 265401 (2012).
[Crossref]

Bauer, M.

M. Bauer, “Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes,” J. Phys. D Appl. Phys. 38(16), R253–R267 (2005).
[Crossref]

Beresna, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Birnbaum, R.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Boyd, R. D.

Britten, J. A.

Bryan, S. J.

Buse, K.

Caron, N.

Castro, A.

Cathey, W. T.

Chen, C.

C. Cheng, L. Lin, C. Wang, and C. Chen, “Optical joint transform encryption using binary phase difference key mask,” Phys. Rev. 12(5), 367–371 (2005).

Chen, D.

Cheng, C.

C. Cheng, L. Lin, C. Wang, and C. Chen, “Optical joint transform encryption using binary phase difference key mask,” Phys. Rev. 12(5), 367–371 (2005).

Chichkov, B. N.

Chow, R.

Ciapurin, I.

I. Ciapurin, L. Glebov, and V. Smirnov, “Spectral combining of high-power fiber laser beams using Bragg grating in PTR glass,” Proc. SPIE 5335, 116 (2004).
[Crossref]

Cronauer, C.

Dai, N.

Y. Wang, N. Dai, Y. Li, X. Wang, and P. Lu, “Ablation and cutting of silicon wafer and micro-mold fabrication using femtosecond laser pulses,” J. Laser Appl. 19(4), 240–244 (2007).
[Crossref]

Divliansky, I.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54(7), 076104 (2015).
[Crossref]

I. Divliansky, V. Smirnov, G. Venus, A. Gourevitch, and L. Glebov, “High-power semiconductor lasers for applications requiring GHz linewidth source,” Proc. SPIE 7198, 71981N (2009).
[Crossref]

Domann, G.

Dowski, E. R.

Egbert, A.

Fan, D.

Feit, M. D.

Feng, H.

H. Zhao, Y. Li, H. Feng, Z. Xu, and Q. Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system,” Opt. Laser Technol. 42(4), 561–569 (2010).
[Crossref]

Feng, J.

Frauel, Y.

Fröhlich, L.

Fu, L.

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

Fukui, K.

Gaylord, T. K.

Gecevicius, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Gerke, T. D.

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Glebov, L.

I. Divliansky, V. Smirnov, G. Venus, A. Gourevitch, and L. Glebov, “High-power semiconductor lasers for applications requiring GHz linewidth source,” Proc. SPIE 7198, 71981N (2009).
[Crossref]

I. Ciapurin, L. Glebov, and V. Smirnov, “Spectral combining of high-power fiber laser beams using Bragg grating in PTR glass,” Proc. SPIE 5335, 116 (2004).
[Crossref]

L. Glebov, V. Smirnov, N. Tabirian, and B. Zeldovich, “Angular selective achromatic diffraction optical grating device,” Annual OSA meeting, (2003).

Glebov, L. B.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54(7), 076104 (2015).
[Crossref]

M. SeGall, V. Rotar, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Binary volume phase masks in photo-thermo-refractive glass,” Opt. Lett. 37(7), 1190–1192 (2012).
[Crossref] [PubMed]

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” Journal of Holography and Speckle 5, 1–8 (2008).

Gourevitch, A.

I. Divliansky, V. Smirnov, G. Venus, A. Gourevitch, and L. Glebov, “High-power semiconductor lasers for applications requiring GHz linewidth source,” Proc. SPIE 7198, 71981N (2009).
[Crossref]

Greengard, A.

Gu, M.

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

Guo, Z.

C. Liu, Z. Guo, Y. Li, X. Wang, and S. Qu, “Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers,” J. Opt. 17(3), 035402 (2015).
[Crossref]

Hao, Z.

M. Alshershby, Z. Hao, and J. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys. 45(26), 265401 (2012).
[Crossref]

Hershcovitz, O.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Horner, J.

B. Javidi and J. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33(6), 1752-1756 (1994).

Houbertz, R.

Huang, X.

X. Huang, M. Wang, and C. Yu, “High-efficiency flat-top beam shaper fabricated by a nonlithographic technique,” Opt. Eng. 38(2), 208–213 (1999).
[Crossref]

Isobe, K.

Itoh, K.

Javidi, B.

A. Castro, Y. Frauel, and B. Javidi, “Integral imaging with large depth of field using an asymmetric phase mask,” Opt. Express 15(16), 10266–10273 (2007).
[Crossref] [PubMed]

B. Javidi and J. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33(6), 1752-1756 (1994).

Jhajj, N.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Johnson, E.

W. Mohammed, M. Pitchumani, A. Mehta, and E. Johnson, “Selective excitation of the LP11 mode in step index fiber using a phase mask,” Opt. Eng. 45(7), 074602 (2006).
[Crossref]

Jollivet, C.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54(7), 076104 (2015).
[Crossref]

Joseph, J.

Kazansky, P. G.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick volume holograms,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kong, L.

Krätzig, E.

Kumar, P.

Kurihara, D.

Kurihara, K.

Kuznetsov, A. P.

M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific Features of the Welding of Metals by Radiation of High-Power Fiber Laser,” Laser Phys. 21(8), 1530–1537 (2011).
[Crossref]

Leger, J. R.

Leyva, V.

Li, L.

Li, Q.

H. Zhao, Y. Li, H. Feng, Z. Xu, and Q. Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system,” Opt. Laser Technol. 42(4), 561–569 (2010).
[Crossref]

Li, Y.

C. Liu, Z. Guo, Y. Li, X. Wang, and S. Qu, “Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers,” J. Opt. 17(3), 035402 (2015).
[Crossref]

H. Zhao, Y. Li, H. Feng, Z. Xu, and Q. Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system,” Opt. Laser Technol. 42(4), 561–569 (2010).
[Crossref]

Y. Wang, N. Dai, Y. Li, X. Wang, and P. Lu, “Ablation and cutting of silicon wafer and micro-mold fabrication using femtosecond laser pulses,” J. Laser Appl. 19(4), 240–244 (2007).
[Crossref]

Lin, J.

M. Alshershby, Z. Hao, and J. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys. 45(26), 265401 (2012).
[Crossref]

Lin, L.

C. Cheng, L. Lin, C. Wang, and C. Chen, “Optical joint transform encryption using binary phase difference key mask,” Phys. Rev. 12(5), 367–371 (2005).

Lipson, S. G.

Liu, C.

C. Liu, Z. Guo, Y. Li, X. Wang, and S. Qu, “Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers,” J. Opt. 17(3), 035402 (2015).
[Crossref]

Loomis, G. E.

Lu, P.

Y. Wang, N. Dai, Y. Li, X. Wang, and P. Lu, “Ablation and cutting of silicon wafer and micro-mold fabrication using femtosecond laser pulses,” J. Laser Appl. 19(4), 240–244 (2007).
[Crossref]

Lumeau, J.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Matsunaga, S.

Mehta, A.

W. Mohammed, M. Pitchumani, A. Mehta, and E. Johnson, “Selective excitation of the LP11 mode in step index fiber using a phase mask,” Opt. Eng. 45(7), 074602 (2006).
[Crossref]

Milchberg, H. M.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Moed, S.

Mohammed, W.

W. Mohammed, M. Pitchumani, A. Mehta, and E. Johnson, “Selective excitation of the LP11 mode in step index fiber using a phase mask,” Opt. Eng. 45(7), 074602 (2006).
[Crossref]

Moharam, M. G.

Mokhov, S.

Neto, L.

L. Neto and Y. Sheng, “Optical implementation of image encryption using random phase encoding,” Opt. Eng. 35(9), 2459–2463 (1996).
[Crossref]

Nguyen, H. T.

Ostendorf, A.

Otomo, A.

Peithmann, K.

Perry, M. D.

Petrovskiy, V. N.

M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific Features of the Welding of Metals by Radiation of High-Power Fiber Laser,” Laser Phys. 21(8), 1530–1537 (2011).
[Crossref]

Piestun, R.

Pitchumani, M.

W. Mohammed, M. Pitchumani, A. Mehta, and E. Johnson, “Selective excitation of the LP11 mode in step index fiber using a phase mask,” Opt. Eng. 45(7), 074602 (2006).
[Crossref]

Popall, M.

Prokopova, N. M.

M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific Features of the Welding of Metals by Radiation of High-Power Fiber Laser,” Laser Phys. 21(8), 1530–1537 (2011).
[Crossref]

Qian, L.

Qiao, Z.

Qin, Z.

Qu, S.

C. Liu, Z. Guo, Y. Li, X. Wang, and S. Qu, “Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers,” J. Opt. 17(3), 035402 (2015).
[Crossref]

Rakuljic, G. A.

Rosen, J.

Rosenthal, E. W.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Rotar, V.

Rotschild, C.

Saito, S.

Schechner, Y. Y.

Schulz, J.

Schülzgen, A.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54(7), 076104 (2015).
[Crossref]

SeGall, M.

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54(7), 076104 (2015).
[Crossref]

M. SeGall, V. Rotar, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Binary volume phase masks in photo-thermo-refractive glass,” Opt. Lett. 37(7), 1190–1192 (2012).
[Crossref] [PubMed]

Segev, M.

Serbin, J.

Sheng, Y.

N. Caron and Y. Sheng, “Polynomial phase masks for extending the depth of field of a microscope,” Appl. Opt. 47(22), E39–E43 (2008).
[Crossref] [PubMed]

L. Neto and Y. Sheng, “Optical implementation of image encryption using random phase encoding,” Opt. Eng. 35(9), 2459–2463 (1996).
[Crossref]

Shimada, T.

Shin-Ichi Arimura, S.

Shore, B. W.

Singh, K.

Smirnov, V.

I. Divliansky, V. Smirnov, G. Venus, A. Gourevitch, and L. Glebov, “High-power semiconductor lasers for applications requiring GHz linewidth source,” Proc. SPIE 7198, 71981N (2009).
[Crossref]

I. Ciapurin, L. Glebov, and V. Smirnov, “Spectral combining of high-power fiber laser beams using Bragg grating in PTR glass,” Proc. SPIE 5335, 116 (2004).
[Crossref]

L. Glebov, V. Smirnov, N. Tabirian, and B. Zeldovich, “Angular selective achromatic diffraction optical grating device,” Annual OSA meeting, (2003).

Strel’tsov, A. P.

M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific Features of the Welding of Metals by Radiation of High-Power Fiber Laser,” Laser Phys. 21(8), 1530–1537 (2011).
[Crossref]

Syouji, A.

Tabirian, N.

L. Glebov, V. Smirnov, N. Tabirian, and B. Zeldovich, “Angular selective achromatic diffraction optical grating device,” Annual OSA meeting, (2003).

Tian, N.

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

Tsutsumi, N.

Uspenskiy, S. A.

M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific Features of the Welding of Metals by Radiation of High-Power Fiber Laser,” Laser Phys. 21(8), 1530–1537 (2011).
[Crossref]

Varela, A.

M. Wang, C. Yu, and A. Varela, “Efficient pseudo-nondiffracting beam shaping using a quasicontinuous-phase diffractive element,” Opt. Eng. 40(4), 517–524 (2001).
[Crossref]

Venus, G.

I. Divliansky, V. Smirnov, G. Venus, A. Gourevitch, and L. Glebov, “High-power semiconductor lasers for applications requiring GHz linewidth source,” Proc. SPIE 7198, 71981N (2009).
[Crossref]

Wahlstrand, J. K.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Wang, C.

C. Cheng, L. Lin, C. Wang, and C. Chen, “Optical joint transform encryption using binary phase difference key mask,” Phys. Rev. 12(5), 367–371 (2005).

Wang, M.

J. Yang and M. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106–3113 (2003).
[Crossref]

M. Wang, C. Yu, and A. Varela, “Efficient pseudo-nondiffracting beam shaping using a quasicontinuous-phase diffractive element,” Opt. Eng. 40(4), 517–524 (2001).
[Crossref]

X. Huang, M. Wang, and C. Yu, “High-efficiency flat-top beam shaper fabricated by a nonlithographic technique,” Opt. Eng. 38(2), 208–213 (1999).
[Crossref]

Wang, X.

C. Liu, Z. Guo, Y. Li, X. Wang, and S. Qu, “Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers,” J. Opt. 17(3), 035402 (2015).
[Crossref]

Y. Wang, N. Dai, Y. Li, X. Wang, and P. Lu, “Ablation and cutting of silicon wafer and micro-mold fabrication using femtosecond laser pulses,” J. Laser Appl. 19(4), 240–244 (2007).
[Crossref]

Wang, Y.

Y. Wang, N. Dai, Y. Li, X. Wang, and P. Lu, “Ablation and cutting of silicon wafer and micro-mold fabrication using femtosecond laser pulses,” J. Laser Appl. 19(4), 240–244 (2007).
[Crossref]

Wang, Z.

Watanabe, W.

Wiebrock, A.

Wu, S.

Xie, G.

Xu, J.

Xu, X.

Xu, Z.

H. Zhao, Y. Li, H. Feng, Z. Xu, and Q. Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system,” Opt. Laser Technol. 42(4), 561–569 (2010).
[Crossref]

Yang, J.

J. Yang and M. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106–3113 (2003).
[Crossref]

Yariv, A.

Yermachenko, M.

M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific Features of the Welding of Metals by Radiation of High-Power Fiber Laser,” Laser Phys. 21(8), 1530–1537 (2011).
[Crossref]

Yu, C.

M. Wang, C. Yu, and A. Varela, “Efficient pseudo-nondiffracting beam shaping using a quasicontinuous-phase diffractive element,” Opt. Eng. 40(4), 517–524 (2001).
[Crossref]

X. Huang, M. Wang, and C. Yu, “High-efficiency flat-top beam shaper fabricated by a nonlithographic technique,” Opt. Eng. 38(2), 208–213 (1999).
[Crossref]

Yuan, P.

Yuan, X.

Zeldovich, B.

M. SeGall, V. Rotar, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Binary volume phase masks in photo-thermo-refractive glass,” Opt. Lett. 37(7), 1190–1192 (2012).
[Crossref] [PubMed]

L. Glebov, V. Smirnov, N. Tabirian, and B. Zeldovich, “Angular selective achromatic diffraction optical grating device,” Annual OSA meeting, (2003).

Zhang, G.

Zhang, X.

Zhao, H.

H. Zhao, Y. Li, H. Feng, Z. Xu, and Q. Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system,” Opt. Laser Technol. 42(4), 561–569 (2010).
[Crossref]

Zommer, S.

Zou, K.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick volume holograms,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

J. Laser Appl. (1)

Y. Wang, N. Dai, Y. Li, X. Wang, and P. Lu, “Ablation and cutting of silicon wafer and micro-mold fabrication using femtosecond laser pulses,” J. Laser Appl. 19(4), 240–244 (2007).
[Crossref]

J. Opt. (1)

C. Liu, Z. Guo, Y. Li, X. Wang, and S. Qu, “Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers,” J. Opt. 17(3), 035402 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

M. Bauer, “Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes,” J. Phys. D Appl. Phys. 38(16), R253–R267 (2005).
[Crossref]

M. Alshershby, Z. Hao, and J. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys. 45(26), 265401 (2012).
[Crossref]

Journal of Holography and Speckle (1)

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” Journal of Holography and Speckle 5, 1–8 (2008).

Laser Phys. (1)

M. Yermachenko, A. P. Kuznetsov, V. N. Petrovskiy, N. M. Prokopova, A. P. Strel’tsov, and S. A. Uspenskiy, “Specific Features of the Welding of Metals by Radiation of High-Power Fiber Laser,” Laser Phys. 21(8), 1530–1537 (2011).
[Crossref]

Nat. Photonics (1)

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4(3), 188–193 (2010).
[Crossref]

Opt. Eng. (7)

M. SeGall, I. Divliansky, C. Jollivet, A. Schülzgen, and L. B. Glebov, “Holographically encoded volume phase masks,” Opt. Eng. 54(7), 076104 (2015).
[Crossref]

W. Mohammed, M. Pitchumani, A. Mehta, and E. Johnson, “Selective excitation of the LP11 mode in step index fiber using a phase mask,” Opt. Eng. 45(7), 074602 (2006).
[Crossref]

B. Javidi and J. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33(6), 1752-1756 (1994).

L. Neto and Y. Sheng, “Optical implementation of image encryption using random phase encoding,” Opt. Eng. 35(9), 2459–2463 (1996).
[Crossref]

J. Yang and M. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106–3113 (2003).
[Crossref]

X. Huang, M. Wang, and C. Yu, “High-efficiency flat-top beam shaper fabricated by a nonlithographic technique,” Opt. Eng. 38(2), 208–213 (1999).
[Crossref]

M. Wang, C. Yu, and A. Varela, “Efficient pseudo-nondiffracting beam shaping using a quasicontinuous-phase diffractive element,” Opt. Eng. 40(4), 517–524 (2001).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

H. Zhao, Y. Li, H. Feng, Z. Xu, and Q. Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system,” Opt. Laser Technol. 42(4), 561–569 (2010).
[Crossref]

Opt. Lett. (9)

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref] [PubMed]

G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
[Crossref] [PubMed]

J. Rosen, M. Segev, and A. Yariv, “Wavelength-multiplexed computer-generated volume holography,” Opt. Lett. 18(9), 744–746 (1993).
[Crossref] [PubMed]

J. R. Leger, D. Chen, and Z. Wang, “Diffractive optical element for mode shaping of a Nd:YAG laser,” Opt. Lett. 19(2), 108–110 (1994).
[Crossref] [PubMed]

H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, “High-efficiency fused-silica transmission gratings,” Opt. Lett. 22(3), 142–144 (1997).
[Crossref] [PubMed]

A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31(2), 181–183 (2006).
[Crossref] [PubMed]

M. SeGall, V. Rotar, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Binary volume phase masks in photo-thermo-refractive glass,” Opt. Lett. 37(7), 1190–1192 (2012).
[Crossref] [PubMed]

S. Wu, X. Yuan, X. Zhang, J. Feng, K. Zou, and G. Zhang, “Broadband angular filtering with a volume Bragg grating and a surface grating pair,” Opt. Lett. 39(14), 4068–4071 (2014).
[Crossref] [PubMed]

Z. Qiao, L. Kong, G. Xie, Z. Qin, P. Yuan, L. Qian, X. Xu, J. Xu, and D. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42(13), 2547–2550 (2017).
[Crossref] [PubMed]

Phys. Rev. (1)

C. Cheng, L. Lin, C. Wang, and C. Chen, “Optical joint transform encryption using binary phase difference key mask,” Phys. Rev. 12(5), 367–371 (2005).

Phys. Rev. X (1)

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of Long-Lived High-Power Optical Waveguides in Air,” Phys. Rev. X 4(1), 011027 (2014).
[Crossref]

Proc. SPIE (2)

I. Ciapurin, L. Glebov, and V. Smirnov, “Spectral combining of high-power fiber laser beams using Bragg grating in PTR glass,” Proc. SPIE 5335, 116 (2004).
[Crossref]

I. Divliansky, V. Smirnov, G. Venus, A. Gourevitch, and L. Glebov, “High-power semiconductor lasers for applications requiring GHz linewidth source,” Proc. SPIE 7198, 71981N (2009).
[Crossref]

Sci. Rep. (1)

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5(1), 13580 (2015).
[Crossref] [PubMed]

Other (7)

L. Glebov, V. Smirnov, N. Tabirian, and B. Zeldovich, “Angular selective achromatic diffraction optical grating device,” Annual OSA meeting, (2003).

L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” Encyclopedia of Smart Materials, Vol. 2 (eds Schwartz, M.), (John Wiley & Sons, 2002).

S. Kaim, G. Venus, V. Smirnov, B. Y. Zeldovich, and L. B. Glebov, “Scheme ASADOG for stretching or compressing short optical pulses,” Frontiers in Optics, OSA Technical Digest (2013).

C. Moser, Z. Monemhaghdoust, C. Depeursinge, and Y. Emery, “ Digital holographic device,” US Patent 2017/0003650 A1 (2017).

J. A. Britten, “Multilayer dielectric transmission gratings having maximal transmitted diffraction efficiency,” US Patent 2010/0208346 A1 (2010).

M. Bass, Handbook of Optics, 2nd edn, (McGraw-Hill, 1994), (Vol. 2).

D. Mawet, C. Lenaerts, V. Moreau, Y. Renotte, D. Rouan, and J. Surdej, Achromatic four quadrant phase mask coronagraph using the dispersion of form birefringence in astronomy with high contrast imaging, eds Aime C. & Soummer, R. (Cambridge University, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Recording setup for encoding a conventional phase mask into a volume Bragg grating. BS – beam splitter, M – mirror.
Fig. 2
Fig. 2 (a) A probe beam incident at the Bragg angle is diffracted by a holographic phase mask (HPM) with a single phase dislocation along one axis. Numerical simulations results demonstrating: (b) the diffracted beam phase profile and (c) the local diffracted intensity of a plane wave for beams of different wavelength. (d) The diffraction efficiency of an HPM at 1064 nm relative to a standard transmitting volume Bragg grating as a function of beam diameter when a binary phase dislocation is encoded along the x-axis. Here, the coordinate origin is the center of the front surface of the HPM. (e) The diffracted beam phase profile and (f) the local diffracted intensity when a binary phase dislocation is encoded along the y-axis for beams of different wavelength [27].
Fig. 3
Fig. 3 (a) Simulated far field profile of a beam after passing through an ideal four-sector binary mask and the diffracted beam from a four-sector HPM at (b) 632.8 nm, (c) 975 nm, and (d) 1064 nm (Sizes are not to scale) [27].
Fig. 4
Fig. 4 Concept of using surface gratings pairs to meet the Bragg condition for various wavelengths at the same incident angle, allowing applications such as achromatic mode conversion.
Fig. 5
Fig. 5 Normalized spectra of diffraction efficiency for a surface grating and a transmitting volume Bragg grating.
Fig. 6
Fig. 6 Far field images of the Gaussian beams converted to TEM11 mode for an (a) 488 nm (b) 543 nm (c) 632 nm, and (d) 765 nm diode, (e) 1064 nm, and (f) 1550 nm laser (Sizes are not to scale).
Fig. 7
Fig. 7 Comparison of measured and simulated diffraction efficiencies for the (a) surface grating at normal incidence, (b) the HPM at each source’s wavelength Bragg condition, and (c) the AHPM system at normal incidence for all sources.
Fig. 8
Fig. 8 Far field images of (a) the sources Gaussian output and (b) the resulting beam after attempting TEM00 to TEM11 mode conversion using only the HPM. Angular dispersion results in beam smearing in plane of diffraction.
Fig. 9
Fig. 9 Far field images of femtosecond beam mode conversion from TEM00 to (a) TEM10, (b) TEM11, and (c) TEM01 after passing the single mode beam through the AHPM (Sizes are not to scale).
Fig. 10
Fig. 10 The original femtosecond pulse spectrum and output spectra after conversion with HPM and AHPM.

Tables (1)

Tables Icon

Table 1 FemtoFErb 780 Femtosecond Laser Specifications

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( ( ( k 1 k 2 ) r + φ ( x , y , z ) )
n ( x , y , z ) = n 0 + n 1 cos ( K r + φ ( x , y ) ) ,
2 E k p 2 n 2 E = 0.
E ( x , y , z ) = A ( x , y , z ) e ( i k p r ) + B ( x , y , z ) e ( i k d r ) ,
1 k p ( k p , x A x +   k p , y A y + k p , z A z ) = i κ e i φ ( x , y ) B 1 k d ( k d , x B x +   k d , y B y + k d , z B z ) = i κ e i φ ( x , y ) A
2 π i k p ( f x k p , x +   f y k p , y ) A ˜ + k p , z k p A ˜ z = F { i κ e i φ ( x , y ) B } 2 π i k p ( f x k d , x +   f y k d , y ) B ˜ + k d , z k d B ˜ z = F { i κ e i φ ( x , y ) A }
A ˜ ( f x , f y , z + Δ z ) = A ˜ ( f x ,   f y , z ) e ( i 2 π k p , z ( f x k p , x   + f y k p , y ) Δ z )   B ˜ ( f x , f y , z + Δ z ) = B ˜ ( f x ,   f y , z ) e ( i 2 π k d , z ( f x k d , x   + f y k d , y ) Δ z )   .
A ( x , y , z + Δ z ) =   F 1 { A ˜ ( f x , f y , z + Δ z ) } i κ e i φ ( x , y ) B ( x , y , z ) Δ z B ( x , y , z + Δ z ) =   F 1 { B ˜ ( f x , f y , z + Δ z ) } i κ e i φ ( x , y ) A ( x , y , z ) Δ z .
2 Λ V B G sin θ B = λ ,
2 Λ S G sin θ = m λ ,

Metrics