Abstract

We introduce a new design and development of a compound refractive X-ray zoom lens for energy scans in X-ray microscopy. Energy scans are, in principle, equivalent to radial scans in the reciprocal space for X-ray diffraction. Thanks to the absence of sample or detector motions, energy scans are better suited for microscopy, which requires high stability. In addition, close to the absorption edge of an element, energy scans can yield chemical information when coupled with resonant effects in full field diffraction X-ray microscopy (FFDXM) or X-ray absorption near edge structure (XANES) microscopy. Here, we demonstrate the concept by using a customized compound refractive X-ray zoom lens for 11 keV near the Ge Kα-edge. The working distance and magnification were kept constant during the energy scans by adapting the lens composition on switchable zoom lens fingers. This alleviates the need to reposition the lens while changing the energy and makes quantitative analysis more convenient for FFDXM. The fabricated zoom lens was characterized and proven suitable for the proposed measurement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Miniaturized compound refractive X-ray zoom lens

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr
Opt. Express 25(19) 22455-22466 (2017)

Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime

Joan Vila-Comamala, Sergey Gorelick, Elina Färm, Cameron M. Kewish, Ana Diaz, Ray Barrett, Vitaliy A. Guzenko, Mikko Ritala, and Christian David
Opt. Express 19(1) 175-184 (2011)

Microfocusing transfocator for 1D and 2D compound refractive lenses

A. V. Zozulya, S. Bondarenko, A. Schavkan, F. Westermeier, G. Grübel, and M. Sprung
Opt. Express 20(17) 18967-18976 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
    [Crossref] [PubMed]
  2. T. W. Cornelius, D. Carbone, V. L. R. Jacques, T. U. Schülli, and T. H. Metzger, “Three-dimensional diffraction mapping by tuning the X-ray energy,” J. Synchrotron Radiat. 18(Pt 3), 413–417 (2011).
    [Crossref] [PubMed]
  3. S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
    [Crossref]
  4. M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
    [Crossref]
  5. E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
    [Crossref] [PubMed]
  6. E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
    [Crossref]
  7. Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
    [Crossref]
  8. F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
    [Crossref]
  9. E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
    [Crossref]
  10. H. Renevier, J. Coraux, M. G. Proietti, V. Favre-Nicolin, and B. Daudin, “Multiwavelength anomalous diffraction (MAD) and diffraction anomalous fine structure (DAFS) in the study of structural properties of nanostructures,” Acta Crystallogr. A 63(a1), 63 (2007).
    [Crossref]
  11. R. J. Marks II, Introduction to Shannon Sampling and Interpolation Theory (Springer, 1991).
  12. V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
    [Crossref]
  13. V. G. Kohn, “An Exact Theory of Imaging with a Parabolic Continuously Refractive X-ray Lens,” J. Exp. Theor. Phys. 97(1), 204–215 (2003).
    [Crossref]
  14. E. Hecht, Optics / Eugene Hecht (Addison-Wesley, 2002), Chap. 5&6.
  15. E. Gullikson, “Index of refraction,” http://henke.lbl.gov/optical_constants/getdb2.html .
  16. V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
    [Crossref]
  17. A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
    [Crossref]
  18. KNMF Laboratory for Micro- and Nanostructuring, “Electron Beam Lithography,” https://www.knmf.kit.edu/downloads/KNMF_Technology_Description_1_IMT_EBL.pdf
  19. O. Mandula, M. Elzo Aizarna, J. Eymery, M. Burghammer, and V. Favre-Nicolin, “PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures,” J. Appl. Cryst. 49(5), 1842–1848 (2016).
    [Crossref]

2018 (2)

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

2017 (1)

2016 (2)

O. Mandula, M. Elzo Aizarna, J. Eymery, M. Burghammer, and V. Favre-Nicolin, “PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures,” J. Appl. Cryst. 49(5), 1842–1848 (2016).
[Crossref]

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

2014 (1)

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

2013 (1)

S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
[Crossref]

2011 (1)

T. W. Cornelius, D. Carbone, V. L. R. Jacques, T. U. Schülli, and T. H. Metzger, “Three-dimensional diffraction mapping by tuning the X-ray energy,” J. Synchrotron Radiat. 18(Pt 3), 413–417 (2011).
[Crossref] [PubMed]

2009 (1)

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

2007 (1)

H. Renevier, J. Coraux, M. G. Proietti, V. Favre-Nicolin, and B. Daudin, “Multiwavelength anomalous diffraction (MAD) and diffraction anomalous fine structure (DAFS) in the study of structural properties of nanostructures,” Acta Crystallogr. A 63(a1), 63 (2007).
[Crossref]

2004 (1)

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

2003 (3)

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

V. G. Kohn, “An Exact Theory of Imaging with a Parabolic Continuously Refractive X-ray Lens,” J. Exp. Theor. Phys. 97(1), 204–215 (2003).
[Crossref]

2001 (1)

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Achenbach, S.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

Albani, M.

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

Allain, M.

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Baron, A. Q. R.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Baumbach, T.

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

Burghammer, M.

O. Mandula, M. Elzo Aizarna, J. Eymery, M. Burghammer, and V. Favre-Nicolin, “PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures,” J. Appl. Cryst. 49(5), 1842–1848 (2016).
[Crossref]

Carbone, D.

T. W. Cornelius, D. Carbone, V. L. R. Jacques, T. U. Schülli, and T. H. Metzger, “Three-dimensional diffraction mapping by tuning the X-ray energy,” J. Synchrotron Radiat. 18(Pt 3), 413–417 (2011).
[Crossref] [PubMed]

Cecilia, A.

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

Cha, W.

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Chamard, V.

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Coraux, J.

H. Renevier, J. Coraux, M. G. Proietti, V. Favre-Nicolin, and B. Daudin, “Multiwavelength anomalous diffraction (MAD) and diffraction anomalous fine structure (DAFS) in the study of structural properties of nanostructures,” Acta Crystallogr. A 63(a1), 63 (2007).
[Crossref]

Cornelius, T. W.

T. W. Cornelius, D. Carbone, V. L. R. Jacques, T. U. Schülli, and T. H. Metzger, “Three-dimensional diffraction mapping by tuning the X-ray energy,” J. Synchrotron Radiat. 18(Pt 3), 413–417 (2011).
[Crossref] [PubMed]

Daudin, B.

H. Renevier, J. Coraux, M. G. Proietti, V. Favre-Nicolin, and B. Daudin, “Multiwavelength anomalous diffraction (MAD) and diffraction anomalous fine structure (DAFS) in the study of structural properties of nanostructures,” Acta Crystallogr. A 63(a1), 63 (2007).
[Crossref]

Drakopoulos, M.

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Elzo Aizarna, M.

O. Mandula, M. Elzo Aizarna, J. Eymery, M. Burghammer, and V. Favre-Nicolin, “PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures,” J. Appl. Cryst. 49(5), 1842–1848 (2016).
[Crossref]

Eymery, J.

O. Mandula, M. Elzo Aizarna, J. Eymery, M. Burghammer, and V. Favre-Nicolin, “PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures,” J. Appl. Cryst. 49(5), 1842–1848 (2016).
[Crossref]

Favre-Nicolin, V.

O. Mandula, M. Elzo Aizarna, J. Eymery, M. Burghammer, and V. Favre-Nicolin, “PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures,” J. Appl. Cryst. 49(5), 1842–1848 (2016).
[Crossref]

H. Renevier, J. Coraux, M. G. Proietti, V. Favre-Nicolin, and B. Daudin, “Multiwavelength anomalous diffraction (MAD) and diffraction anomalous fine structure (DAFS) in the study of structural properties of nanostructures,” Acta Crystallogr. A 63(a1), 63 (2007).
[Crossref]

Fuoss, P. H.

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Gailhanou, M.

S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
[Crossref]

Greving, I.

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref] [PubMed]

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

Grigoriev, M.

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Haag, S. T.

S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
[Crossref]

Harder, R.

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Hruszkewycz, S. O.

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Hurst, M.

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

Isa, F.

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

Isella, G.

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

Ishii, M.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Ishikawa, T.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Jacques, V. L. R.

T. W. Cornelius, D. Carbone, V. L. R. Jacques, T. U. Schülli, and T. H. Metzger, “Three-dimensional diffraction mapping by tuning the X-ray energy,” J. Synchrotron Radiat. 18(Pt 3), 413–417 (2011).
[Crossref] [PubMed]

Jung, A.

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

Kluge, M.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

Kohn, V. G.

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

V. G. Kohn, “An Exact Theory of Imaging with a Parabolic Continuously Refractive X-ray Lens,” J. Exp. Theor. Phys. 97(1), 204–215 (2003).
[Crossref]

Kornemann, E.

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref] [PubMed]

Krywka, C.

Kuznetsov, S.

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Labat, S.

S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
[Crossref]

Last, A.

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref] [PubMed]

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

Leake, S. J.

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Mandula, O.

O. Mandula, M. Elzo Aizarna, J. Eymery, M. Burghammer, and V. Favre-Nicolin, “PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures,” J. Appl. Cryst. 49(5), 1842–1848 (2016).
[Crossref]

Márkus, O.

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref] [PubMed]

Marschall, F.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

Marzegalli, A.

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

Maser, J.

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Meduna, M.

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

Metzger, T. H.

T. W. Cornelius, D. Carbone, V. L. R. Jacques, T. U. Schülli, and T. H. Metzger, “Three-dimensional diffraction mapping by tuning the X-ray energy,” J. Synchrotron Radiat. 18(Pt 3), 413–417 (2011).
[Crossref] [PubMed]

Miglio, L.

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

Mittemeijer, E. J.

S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
[Crossref]

Mohr, J.

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref] [PubMed]

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Nazmov, V.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Ogurreck, M.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

Ohishi, Y.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Opolka, A.

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref] [PubMed]

Proietti, M. G.

H. Renevier, J. Coraux, M. G. Proietti, V. Favre-Nicolin, and B. Daudin, “Multiwavelength anomalous diffraction (MAD) and diffraction anomalous fine structure (DAFS) in the study of structural properties of nanostructures,” Acta Crystallogr. A 63(a1), 63 (2007).
[Crossref]

Renevier, H.

H. Renevier, J. Coraux, M. G. Proietti, V. Favre-Nicolin, and B. Daudin, “Multiwavelength anomalous diffraction (MAD) and diffraction anomalous fine structure (DAFS) in the study of structural properties of nanostructures,” Acta Crystallogr. A 63(a1), 63 (2007).
[Crossref]

Reznikova, E.

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Richard, M.-I.

S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
[Crossref]

Saile, V.

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Sawhney, K.

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

Schülli, T. U.

T. W. Cornelius, D. Carbone, V. L. R. Jacques, T. U. Schülli, and T. H. Metzger, “Three-dimensional diffraction mapping by tuning the X-ray energy,” J. Synchrotron Radiat. 18(Pt 3), 413–417 (2011).
[Crossref] [PubMed]

Shimomura, O.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Simon, M.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

Snigirev, A.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

Snigireva, I.

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Storm, M.

Thomas, O.

S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
[Crossref]

Ulvestad, A.

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Vogt, H.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

von Känel, H.

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

Weitkamp, T.

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

Welzel, U.

S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
[Crossref]

Zhou, T.

Zweiacker, K.

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

Acta Crystallogr. A (1)

H. Renevier, J. Coraux, M. G. Proietti, V. Favre-Nicolin, and B. Daudin, “Multiwavelength anomalous diffraction (MAD) and diffraction anomalous fine structure (DAFS) in the study of structural properties of nanostructures,” Acta Crystallogr. A 63(a1), 63 (2007).
[Crossref]

J. Appl. Cryst. (2)

M. Meduňa, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, and H. von Känel, “Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals,” J. Appl. Cryst. 51(2), 368–385 (2018).
[Crossref]

O. Mandula, M. Elzo Aizarna, J. Eymery, M. Burghammer, and V. Favre-Nicolin, “PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures,” J. Appl. Cryst. 49(5), 1842–1848 (2016).
[Crossref]

J. Exp. Theor. Phys. (1)

V. G. Kohn, “An Exact Theory of Imaging with a Parabolic Continuously Refractive X-ray Lens,” J. Exp. Theor. Phys. 97(1), 204–215 (2003).
[Crossref]

J. Phys. Conf. Ser. (2)

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys. Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys. Conf. Ser. 186, 012070 (2009).
[Crossref]

J. Synchrotron Radiat. (1)

T. W. Cornelius, D. Carbone, V. L. R. Jacques, T. U. Schülli, and T. H. Metzger, “Three-dimensional diffraction mapping by tuning the X-ray energy,” J. Synchrotron Radiat. 18(Pt 3), 413–417 (2011).
[Crossref] [PubMed]

Microsc. Microanal. (1)

E. Kornemann, O. Márkus, A. Opolka, K. Sawhney, A. Cecilia, M. Hurst, T. Baumbach, A. Last, and J. Mohr, “Optical Characterization of an X-ray Zoom Lens,” Microsc. Microanal. 24(S2), 268–269 (2018).
[Crossref]

Microsyst. Technol. (1)

V. Nazmov, E. Reznikova, J. Mohr, A. Snigirev, I. Snigireva, S. Achenbach, and V. Saile, “Fabrication and preliminary testing of X-ray lenses in thick SU-8 resist layers,” Microsyst. Technol. 10(10), 716–721 (2004).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res. A 467–468, 962–965 (2001).
[Crossref]

Opt. Commun. (1)

V. G. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

Opt. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: A methodology for determination of composition and strain fields,” Phys. Rev. B Condens. Matter Mater. Phys. 87(3), 035408 (2013).
[Crossref]

Phys. Rev. Lett. (1)

W. Cha, A. Ulvestad, M. Allain, V. Chamard, R. Harder, S. J. Leake, J. Maser, P. H. Fuoss, and S. O. Hruszkewycz, “Three dimensional variable-wavelength x-ray bragg coherent diffraction imaging,” Phys. Rev. Lett. 117(22), 225501 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Snigirev, I. Snigireva, M. Drakopoulos, V. Nazmov, E. Reznikova, S. Kuznetsov, M. Grigoriev, J. Mohr, and V. Saile, “Focusing properties of X-ray polymer refractive lenses from SU-8 resist layer,” Proc. SPIE 5195, 21 (2003).
[Crossref]

Other (4)

KNMF Laboratory for Micro- and Nanostructuring, “Electron Beam Lithography,” https://www.knmf.kit.edu/downloads/KNMF_Technology_Description_1_IMT_EBL.pdf

E. Hecht, Optics / Eugene Hecht (Addison-Wesley, 2002), Chap. 5&6.

E. Gullikson, “Index of refraction,” http://henke.lbl.gov/optical_constants/getdb2.html .

R. J. Marks II, Introduction to Shannon Sampling and Interpolation Theory (Springer, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 CAD model of the FFDXM in situ setup at ID01, ESRF (top), with sketch of optical path through sample in Bragg-condition, objective (X-ray zoom lens) and detector (bottom). z = 0 is defined to be at the first edge of the first zoom lens finger. The sample distance sd is the distance from the sample plane to z = 0 and the working distance wd is the distance from the detector plane from z = 0.
Fig. 2
Fig. 2 X-ray lens system with optical path of two simulated rays (blue), labeled parameters and constructed (red rays) principle plains H and H’.
Fig. 3
Fig. 3 X-ray zoom lens as a CAD drawing (left) with the first (front) zoom lens fingers with horizontal and vertical focusing lens element (orange) moved out of the beam path and all other zoom lens fingers positioned in the beam for a point focus lens. Radiographs at 11 keV of the X-ray zoom lens with six lens elements of each direction aligned in the beam (middle) and all lens elements moved out of the beam (right).
Fig. 4
Fig. 4 X-ray zoom lens layout for the energy scan with FFDXM at nine different energies around the Ge Kα-edge. There are 22 zoom lens fingers (shown as grey and green stripes) respectively for the horizontal focusing lens elements (h01-h22) and the vertical focusing lens elements (v01-v22). In each of the nine configurations, six zoom lens fingers with overall N = 18 lens elements are positioned in the beam path, for vertical and horizontal direction respectively. The configuration #5 for the exact photon energy at the Ge Kα-edge of EPh_GeK = 11.103 keV is highlighted in green.
Fig. 5
Fig. 5 X-ray zoom lens with customized lens layout for the energy scan in FFDXM. The lens elements are positioned on the free end of the bendable zoom lens fingers. The zoom lens fingers are preloaded with a stainless steel bar (left) for the precise positioning in the beam path. In the picture on the right the first two zoom lens fingers are bent out of the beam, all the other zoom lens fingers are positioned in the beam and the lens elements from both directions are crossing each other.
Fig. 6
Fig. 6 Beam profiles of the X-ray zoom lens in configuration #5 at 11.103 keV showing the caustic focus profiles along the beam path in horizontal (1a) and vertical (1b) direction. Point focus is achieved as evidenced by the beam profile in the focal plane (2).
Fig. 7
Fig. 7 Results of ptychography measurements of a point focus zoom lens at ESRF, ID01, with focal distances f and focal spot sizes σ in three configurations at their intended photon energy (left) and one configuration compared with its performance at 50 eV higher photon energy (right).
Fig. 8
Fig. 8 Test pattern with vertical and horizontal line structures of different sizes imaged by the X-ray zoom lens with a FoV of 86 µm x 86 µm in configuration #6 at EPh = 11.103 keV (top left). A more detailed view is shown (top right) for the smallest resolvable structures. On the bottom are shown a comparison between three images taken with (a) configuration #6 its intended energy and (c) 45 eV above, and (c) configuration #9 at its intended energy.

Tables (4)

Tables Icon

Table 1 Parameters of nine optimized X-ray zoom lens configurations for energy scans with FFDXM around Ge Kα-edge at 11.103 keV (config. #5). Sample distance sd and working distance wd are kept constant during energy scan resulting in nearly constant effective focal length fzl and magnification M.

Tables Icon

Table 2 Parameters for configuration #5 of the X-ray zoom lens for the energy scan with FFDXM around the Ge Kα-edge at 11.103 keV. Sample distance sd stays constant during the energy scan. This static CRL objective yields a nearly constant effective focal length fzl, but the working distance wd and magnification M change drastically.

Tables Icon

Table 3 Comparison between the focal distances and focal spot sizes obtained by ptychography reconstructions and by simulations for the designed zoom lens. The result is shown for configurations #4, #5, #9 at their intended photon energy and for configuration #5 at 50 eV above its intended photon energy.

Tables Icon

Table 4 Focal spot shift of a chromatic CRL compared to the adaptive X-ray zoom lens from ptychography reconstruction results and from simulated data.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M= 4 p CMOS σ min .
f= R 2δN + L CRL 6 .
n=1δ+iβ.
δ= 0.00027142 (E/keV)²
s o = s i M .
L lens =w+2( A² 8R ).
L 1 L 2 = A 2 4 ( 1 R 1 R+ΔR )ΔR ( A 2R ) 2