Abstract

Broadband polarimetric imaging consists of forming an image under spectrally wide illumination after having optimized the polarization state analyzer (PSA) to maximize the target/background discriminability. In previous works, the image sensor was monochrome, and only the intensity contrast was optimized. However, due to its spectrally varying response, the PSA not only changes the light’s intensity, but also its color. This color information can serve as a further parameter to improve discrimination. In this paper, we employ a color camera in a broadband Stokes (passive) polarimetric imaging system and take into color difference’s contribution to discrimination ability in optimizing the PSA setting. We show through experiments that a significant improvement of discrimination ability over monochrome imaging is obtained, especially when there are multiple objects in the scene.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Colorimetric discrimination for Stokes polarimetric imaging

Mingxuan Yu, Hesong Huang, Haofeng Hu, Lan Wu, Hongchen Zhai, and Tiegen Liu
Opt. Express 25(4) 3765-3773 (2017)

General state contrast imaging: an optimized polarimetric imaging modality insensitive to spatial intensity fluctuations

Guillaume Anna, Françcois Goudail, and Daniel Dolfi
J. Opt. Soc. Am. A 29(6) 892-900 (2012)

Contrast optimization in broadband passive polarimetric imaging

Matthieu Boffety, Haofeng Hu, and François Goudail
Opt. Lett. 39(23) 6759-6762 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Anna, F. Goudail, and D. Dolfi, “Polarimetric target detection in the presence of spatially fluctuating Mueller matrices,” Opt. Lett. 36(23), 4590–4592 (2011).
    [Crossref] [PubMed]
  2. M. K. Kupinski, J. Bankhead, A. Stohn, and R. Chipman, “Binary classification of Mueller matrix images from an optimization of Poincaré coordinates,” J. Opt. Soc. Am. A 34(6), 983–990 (2017).
    [Crossref] [PubMed]
  3. J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Design and optimization of partial Mueller matrix polarimeters,” Appl. Opt. 49(12), 2326–2333 (2010).
    [Crossref] [PubMed]
  4. B. Huang, T. Liu, J. Han, and H. Hu, “Polarimetric target detection under uneven illumination,” Opt. Express 23(18), 23603–23612 (2015).
    [Crossref] [PubMed]
  5. J. Fade, S. Panigrahi, A. Carré, L. Frein, C. Hamel, F. Bretenaker, H. Ramachandran, and M. Alouini, “Long-range polarimetric imaging through fog,” Appl. Opt. 53(18), 3854–3865 (2014).
    [Crossref] [PubMed]
  6. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  7. J. Álvarez, C. Serrano, D. Hill, and J. Martínez-Pastor, “Real-time polarimetric optical sensor using macroporous alumina membranes,” Opt. Lett. 38(7), 1058–1060 (2013).
    [Crossref] [PubMed]
  8. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
    [Crossref] [PubMed]
  9. M. Richert, X. Orlik, and A. De Martino, “Adapted polarization state contrast image,” Opt. Express 17(16), 14199–14210 (2009).
    [Crossref] [PubMed]
  10. M. Boffety, H. Hu, and F. Goudail, “Contrast optimization in broadband passive polarimetric imaging,” Opt. Lett. 39(23), 6759–6762 (2014).
    [Crossref] [PubMed]
  11. L. Thomas, M. Boffety, and F. Goudail, “Improving target discrimination ability of active polarization imagers by spectral broadening,” Opt. Express 23(26), 33514–33528 (2015).
    [Crossref] [PubMed]
  12. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
    [Crossref] [PubMed]
  13. M. Wan, G. Gu, W. Qian, K. Ren, and Q. Chen, “Stokes-vector-based polarimetric imaging system for adaptive target/background contrast enhancement,” Appl. Opt. 55(21), 5513–5519 (2016).
    [Crossref] [PubMed]
  14. Y. Gu, C. Carrizo, A. A. Gilerson, P. C. Brady, M. E. Cummings, M. S. Twardowski, J. M. Sullivan, A. I. Ibrahim, and G. W. Kattawar, “Polarimetric imaging and retrieval of target polarization characteristics in underwater environment,” Appl. Opt. 55(3), 626–637 (2016).
    [Crossref] [PubMed]
  15. D. Sabatke, A. Locke, E. Dereniak, and R. McMillan, “Linear calibration and reconstruction techniques for channeled spectropolarimetry,” Opt. Express 11(22), 2940–2952 (2003).
    [Crossref] [PubMed]
  16. M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color camera,” IEEE Photonics J. 8(5), 6900910 (2016).
    [Crossref]
  17. G. Anna, H. Sauer, F. Goudail, and D. Dolfi, “Fully tunable active polarization imager for contrast enhancement and partial polarimetry,” Appl. Opt. 51(21), 5302–5309 (2012).
    [Crossref] [PubMed]
  18. M. Yu, H. Huang, H. Hu, L. Wu, H. Zhai, and T. Liu, “Colorimetric discrimination for Stokes polarimetric imaging,” Opt. Express 25(4), 3765–3773 (2017).
    [Crossref] [PubMed]
  19. S. Manhas, J. Vizet, S. Deby, J. C. Vanel, P. Boito, M. Verdier, A. De Martino, and D. Pagnoux, “Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications,” Opt. Express 23(3), 3047–3054 (2015).
    [Crossref] [PubMed]
  20. L. Kontenis, M. Samim, S. Krouglov, and V. Barzda, “Third-harmonic generation Stokes-Mueller polarimetric microscopy,” Opt. Express 25(12), 13174–13189 (2017).
    [Crossref] [PubMed]
  21. G. Anna, F. Goudail, and D. Dolfi, “General state contrast imaging: an optimized polarimetric imaging modality insensitive to spatial intensity fluctuations,” J. Opt. Soc. Am. A 29(6), 892–900 (2012).
    [Crossref] [PubMed]

2017 (3)

2016 (3)

2015 (3)

2014 (2)

2013 (1)

2012 (2)

2011 (3)

2010 (1)

2009 (1)

2006 (1)

2003 (1)

Alouini, M.

Álvarez, J.

Anna, G.

Antonelli, M.-R.

Bankhead, J.

Barzda, V.

Benali, A.

Boffety, M.

Boito, P.

Brady, P. C.

Bretenaker, F.

Carré, A.

Carrizo, C.

Chen, Q.

Chenault, D. B.

Chipman, R.

Cummings, M. E.

De Martino, A.

Deby, S.

Dereniak, E.

Dereniak, E. L.

Dolfi, D.

Escuti, M. J.

Fade, J.

Frein, L.

Gayet, B.

Gilerson, A. A.

Goldstein, D. L.

Goudail, F.

Gu, G.

Gu, Y.

Hamel, C.

Han, J.

Hill, D.

Hoover, B. G.

Hu, H.

Huang, B.

M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color camera,” IEEE Photonics J. 8(5), 6900910 (2016).
[Crossref]

B. Huang, T. Liu, J. Han, and H. Hu, “Polarimetric target detection under uneven illumination,” Opt. Express 23(18), 23603–23612 (2015).
[Crossref] [PubMed]

Huang, H.

M. Yu, H. Huang, H. Hu, L. Wu, H. Zhai, and T. Liu, “Colorimetric discrimination for Stokes polarimetric imaging,” Opt. Express 25(4), 3765–3773 (2017).
[Crossref] [PubMed]

M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color camera,” IEEE Photonics J. 8(5), 6900910 (2016).
[Crossref]

Ibrahim, A. I.

Johnson, S. J.

Kattawar, G. W.

Kontenis, L.

Krouglov, S.

Kudenov, M. W.

Kupinski, M. K.

Liu, T.

Locke, A.

Manhas, S.

Martínez-Pastor, J.

McMillan, R.

Novikova, T.

Oka, K.

Orlik, X.

Pagnoux, D.

Panigrahi, S.

Pierangelo, A.

Qian, W.

Ramachandran, H.

Ren, K.

Richert, M.

Sabatke, D.

Samim, M.

Sauer, H.

Serrano, C.

Shaw, J. A.

Stohn, A.

Sullivan, J. M.

Thomas, L.

Twardowski, M. S.

Tyo, J. S.

Validire, P.

Vanel, J. C.

Verdier, M.

Vizet, J.

Wan, M.

Wang, Z.

Wu, L.

Yu, M.

M. Yu, H. Huang, H. Hu, L. Wu, H. Zhai, and T. Liu, “Colorimetric discrimination for Stokes polarimetric imaging,” Opt. Express 25(4), 3765–3773 (2017).
[Crossref] [PubMed]

M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color camera,” IEEE Photonics J. 8(5), 6900910 (2016).
[Crossref]

Zhai, H.

Appl. Opt. (7)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Design and optimization of partial Mueller matrix polarimeters,” Appl. Opt. 49(12), 2326–2333 (2010).
[Crossref] [PubMed]

M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
[Crossref] [PubMed]

G. Anna, H. Sauer, F. Goudail, and D. Dolfi, “Fully tunable active polarization imager for contrast enhancement and partial polarimetry,” Appl. Opt. 51(21), 5302–5309 (2012).
[Crossref] [PubMed]

J. Fade, S. Panigrahi, A. Carré, L. Frein, C. Hamel, F. Bretenaker, H. Ramachandran, and M. Alouini, “Long-range polarimetric imaging through fog,” Appl. Opt. 53(18), 3854–3865 (2014).
[Crossref] [PubMed]

Y. Gu, C. Carrizo, A. A. Gilerson, P. C. Brady, M. E. Cummings, M. S. Twardowski, J. M. Sullivan, A. I. Ibrahim, and G. W. Kattawar, “Polarimetric imaging and retrieval of target polarization characteristics in underwater environment,” Appl. Opt. 55(3), 626–637 (2016).
[Crossref] [PubMed]

M. Wan, G. Gu, W. Qian, K. Ren, and Q. Chen, “Stokes-vector-based polarimetric imaging system for adaptive target/background contrast enhancement,” Appl. Opt. 55(21), 5513–5519 (2016).
[Crossref] [PubMed]

IEEE Photonics J. (1)

M. Yu, T. Liu, H. Huang, H. Hu, and B. Huang, “Multispectral Stokes imaging polarimetry based on color camera,” IEEE Photonics J. 8(5), 6900910 (2016).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Express (8)

L. Kontenis, M. Samim, S. Krouglov, and V. Barzda, “Third-harmonic generation Stokes-Mueller polarimetric microscopy,” Opt. Express 25(12), 13174–13189 (2017).
[Crossref] [PubMed]

D. Sabatke, A. Locke, E. Dereniak, and R. McMillan, “Linear calibration and reconstruction techniques for channeled spectropolarimetry,” Opt. Express 11(22), 2940–2952 (2003).
[Crossref] [PubMed]

M. Richert, X. Orlik, and A. De Martino, “Adapted polarization state contrast image,” Opt. Express 17(16), 14199–14210 (2009).
[Crossref] [PubMed]

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[Crossref] [PubMed]

M. Yu, H. Huang, H. Hu, L. Wu, H. Zhai, and T. Liu, “Colorimetric discrimination for Stokes polarimetric imaging,” Opt. Express 25(4), 3765–3773 (2017).
[Crossref] [PubMed]

S. Manhas, J. Vizet, S. Deby, J. C. Vanel, P. Boito, M. Verdier, A. De Martino, and D. Pagnoux, “Demonstration of full 4×4 Mueller polarimetry through an optical fiber for endoscopic applications,” Opt. Express 23(3), 3047–3054 (2015).
[Crossref] [PubMed]

B. Huang, T. Liu, J. Han, and H. Hu, “Polarimetric target detection under uneven illumination,” Opt. Express 23(18), 23603–23612 (2015).
[Crossref] [PubMed]

L. Thomas, M. Boffety, and F. Goudail, “Improving target discrimination ability of active polarization imagers by spectral broadening,” Opt. Express 23(26), 33514–33528 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Supplementary Material (1)

NameDescription
» Visualization 1       The variation of the colors of a scene with four different regions with the PSA voltages.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Quantum efficiencies of RGB channels of the color camera (AVT Stringray F-033C)
Fig. 2
Fig. 2 (a) The schematic of the experiment setup. (b) Spectrum of the LED light source.
Fig. 3
Fig. 3 The schematic of the scene containing two regions.
Fig. 4
Fig. 4 The intensity image of the scene.
Fig. 5
Fig. 5 Left column: Monochrome polarimetric contrast C, defined in Eq. (8), as a function of (V1, V2) for (a) the scene with 2 regions, (c) the scene with 3 regions, (e) the scene with 4 regions. Contrast values are normalized to 1 in all maps separately. Right column: polarimetric monochrome image with optimal contrast of (b) the scene with 2 regions, (d) the scene with 3 regions, (f) the scene with 4 regions.
Fig. 6
Fig. 6 Left column: Color polarimetric contrast as a function of (V1, V2) for (a) the scene with 2 regions, (c) the scene with 3 regions, (e) the scene with 4 regions. Contrast values are normalized to 1 in all maps separately. Right column: color polarimetric image with optimal contrast of (b) the scene with 2 regions, (d) the scene with 3 regions, (f) the scene with 4 regions.
Fig. 7
Fig. 7 (a) Schematic of the coordinates of three objects and the corresponding triangle in RGB color space. (b) Schematic of the coordinates of four objects and the corresponding tetrahedron in RGB color space.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i u = 1 2 T ( V 1 , V 2 ) T S u ,u[a,b],
T opt =arg max T (| i a i b |)=arg max ( V 1 - V 2 ) { | 1 2 T( V 1 , V 2 ) T ( S a S b ) | }.
I u = 1 2 T ( V 1 , V 2 ,λ) T S u (λ)dλ,u[a,b].
T opt =arg max T { | I a I b | } =arg max ( V 1 , V 2 ) { | 1 2 T( V 1 , V 2 ,λ ) T [ S a (λ) S b (λ) ]dλ | }.
i k ( V 1 , V 2 )= 1 2 Q k (λ)T( V 1 , V 2 ,λ ) T S(λ)dλ ,k[R,G,B].
P i =( R i , G i , B i )=( i R u ( V 1 , V 2 ), i G u ( V 1 , V 2 ), i B u ( V 1 , V 2 ) ),u[a,b].
T opt ( V 1 , V 2 )=arg max V 1 , V 2 { ( R a R b ) 2 + ( G a G b ) 2 + ( B a B b ) 2 }.
C= j=1 n1 i=j+1 n d ij ,
d ij =| I i I j |

Metrics