Abstract

A high performance, snapshot Image Mapping Spectrometer was developed that provides fast image acquisition (100 Hz) of 16 bit hyperspectral data cubes (210x210x46) over a spectral range of 515-842 nm. Essential details of the opto-mechanical design are presented. Spectral accuracy, precision, and image reconstruction metrics such as resolution are discussed. Fluorescently stained cell samples were used to directly compare the data obtained using newly developed and the reference image mapping spectrometer. Additional experimental results are provided to demonstrate the abilities of the new spectrometer to acquire highly-resolved, motion-artifact-free hyperspectral images at high temporal sampling rates.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy

Liang Gao, Robert T. Kester, Nathan Hagen, and Tomasz S. Tkaczyk
Opt. Express 18(14) 14330-14344 (2010)

Depth-resolved image mapping spectrometer (IMS) with structured illumination

Liang Gao, Noah Bedard, Nathan Hagen, Robert T. Kester, and Tomasz S. Tkaczyk
Opt. Express 19(18) 17439-17452 (2011)

Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS)

Liang Gao, R. Theodore Smith, and Tomasz S. Tkaczyk
Biomed. Opt. Express 3(1) 48-54 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Torr and R. C. Vitz, “Extreme ultraviolet imaging spectrometer for thermospheric emissions,” Appl. Opt. 21(17), 3080–3090 (1982).
    [Crossref] [PubMed]
  2. M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).
  3. J. B. Breckinridge, N. A. Page, R. R. Shannon, and J. M. Rodgers, “Reflecting Schmidt imaging spectrometers,” Appl. Opt. 22(8), 1175–1180 (1983).
    [Crossref] [PubMed]
  4. G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sens. GE-22(6), 546–549 (1984).
    [Crossref]
  5. J. P. Rode, M. L. Brownell, and M. Herring, “HgCdTe infrared focal plane arrays for imaging spectrometer applications,” Advanced Infrared Sensor Technology 395, 48–54 (1983).
    [Crossref]
  6. C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology 2599, 264–272 (1996).
    [Crossref]
  7. M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access 6, 14118–14129 (2018).
    [Crossref]
  8. M. T. Eismann, Hyperspectral Remote Sensing,(SPIE Press, 2012).
  9. D.-W. Sun, Hyperspectral Imaging for Food Quality Analysis and Control, (Elsevier, 2010).
  10. E. Keith, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5158, 380–391 (2004).
  11. V. Sivakumar, R. Neelakantan, and M. Santosh, “Lunar surface mineralogy using hyperspectral data: implications for primordial crust in the Earth-Moon system,” Geoscience Frontiers 8(3), 457–465 (2017).
    [Crossref]
  12. P. S. Thenkabail, J. G. Lyon, and A. Huete, Hyperspectral Remote Sensing of Vegetation, (CRC Press, 2012).
  13. L. Shen, H. Xu, and X. Guo, “Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework,” Sensors (Basel) 12(6), 7778–7803 (2012).
    [Crossref] [PubMed]
  14. F. Zhang and G. Zhou, “Estimation of canopy water content by means of hyperspectral indices based on drought stress gradient experiments of maize in the north plain China,” Remote Sens. 7(11), 15203–15223 (2015).
    [Crossref]
  15. A. Majda, R. Wietecha-Posluszny, A. Mendys, A. Wojtowicz, and B. Lydzba-Kopczynska, “Hyperspectral imaging and multivariate analysis in the dried blood spots investigations,” Appl. Phys., A Mater. Sci. Process. 124(4), 312 (2018).
    [Crossref]
  16. G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G. Aalders, “Hyperspectral imaging for non-contact analysis of forensic traces,” Forensic Sci. Int. 223(1-3), 28–39 (2012).
    [Crossref] [PubMed]
  17. H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
    [Crossref]
  18. S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
    [Crossref]
  19. A. Baiano, “Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review,” J. Food Eng. 214, 10–15 (2017).
    [Crossref]
  20. Y. Zheng, J. Bai, J. Xu, X. Li, and Y. Zhang, “A discrimination model in waste plastics sorting using NIR hyperspectral imaging system,” Waste Manag. 72, 87–98 (2018).
    [Crossref] [PubMed]
  21. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
    [Crossref] [PubMed]
  22. M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
    [Crossref]
  23. R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69A(8), 748–758 (2006).
    [Crossref] [PubMed]
  24. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
    [Crossref] [PubMed]
  25. J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J. 2(3), 143–155 (2008).
    [Crossref] [PubMed]
  26. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  27. S. Nag, T. Hewagama, G. T. Georgiev, B. Pasquale, S. Aslam, and C. K. Gatebe, “Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing,” IEEE Sensors 17(16), 5252–5268 (2017).
    [Crossref]
  28. N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51(11), 111702 (2012).
    [Crossref] [PubMed]
  29. A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
    [Crossref] [PubMed]
  30. L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17(15), 12293–12308 (2009).
    [Crossref] [PubMed]
  31. L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
    [Crossref] [PubMed]
  32. T. U. Nguyen, M. C. Pierce, L. Higgins, and T. S. Tkaczyk, “Snapshot 3D optical coherence tomography system using image mapping spectrometry,” Opt. Express 21(11), 13758–13772 (2013).
    [Crossref] [PubMed]
  33. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
    [Crossref] [PubMed]
  34. N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
    [PubMed]
  35. J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
    [Crossref] [PubMed]

2018 (3)

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

A. Majda, R. Wietecha-Posluszny, A. Mendys, A. Wojtowicz, and B. Lydzba-Kopczynska, “Hyperspectral imaging and multivariate analysis in the dried blood spots investigations,” Appl. Phys., A Mater. Sci. Process. 124(4), 312 (2018).
[Crossref]

Y. Zheng, J. Bai, J. Xu, X. Li, and Y. Zhang, “A discrimination model in waste plastics sorting using NIR hyperspectral imaging system,” Waste Manag. 72, 87–98 (2018).
[Crossref] [PubMed]

2017 (3)

A. Baiano, “Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review,” J. Food Eng. 214, 10–15 (2017).
[Crossref]

V. Sivakumar, R. Neelakantan, and M. Santosh, “Lunar surface mineralogy using hyperspectral data: implications for primordial crust in the Earth-Moon system,” Geoscience Frontiers 8(3), 457–465 (2017).
[Crossref]

S. Nag, T. Hewagama, G. T. Georgiev, B. Pasquale, S. Aslam, and C. K. Gatebe, “Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing,” IEEE Sensors 17(16), 5252–5268 (2017).
[Crossref]

2016 (1)

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

2015 (1)

F. Zhang and G. Zhou, “Estimation of canopy water content by means of hyperspectral indices based on drought stress gradient experiments of maize in the north plain China,” Remote Sens. 7(11), 15203–15223 (2015).
[Crossref]

2014 (2)

S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
[Crossref]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

2013 (3)

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

T. U. Nguyen, M. C. Pierce, L. Higgins, and T. S. Tkaczyk, “Snapshot 3D optical coherence tomography system using image mapping spectrometry,” Opt. Express 21(11), 13758–13772 (2013).
[Crossref] [PubMed]

2012 (7)

L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[PubMed]

N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51(11), 111702 (2012).
[Crossref] [PubMed]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
[Crossref] [PubMed]

G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G. Aalders, “Hyperspectral imaging for non-contact analysis of forensic traces,” Forensic Sci. Int. 223(1-3), 28–39 (2012).
[Crossref] [PubMed]

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
[Crossref]

L. Shen, H. Xu, and X. Guo, “Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework,” Sensors (Basel) 12(6), 7778–7803 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2008 (1)

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J. 2(3), 143–155 (2008).
[Crossref] [PubMed]

2006 (1)

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69A(8), 748–758 (2006).
[Crossref] [PubMed]

2004 (1)

E. Keith, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5158, 380–391 (2004).

2002 (1)

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

1996 (1)

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology 2599, 264–272 (1996).
[Crossref]

1984 (1)

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sens. GE-22(6), 546–549 (1984).
[Crossref]

1983 (2)

J. P. Rode, M. L. Brownell, and M. Herring, “HgCdTe infrared focal plane arrays for imaging spectrometer applications,” Advanced Infrared Sensor Technology 395, 48–54 (1983).
[Crossref]

J. B. Breckinridge, N. A. Page, R. R. Shannon, and J. M. Rodgers, “Reflecting Schmidt imaging spectrometers,” Appl. Opt. 22(8), 1175–1180 (1983).
[Crossref] [PubMed]

1982 (1)

Aalders, M. C. G.

G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G. Aalders, “Hyperspectral imaging for non-contact analysis of forensic traces,” Forensic Sci. Int. 223(1-3), 28–39 (2012).
[Crossref] [PubMed]

Abbas, A.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Alfeld, M.

S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
[Crossref]

Aslam, S.

S. Nag, T. Hewagama, G. T. Georgiev, B. Pasquale, S. Aslam, and C. K. Gatebe, “Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing,” IEEE Sensors 17(16), 5252–5268 (2017).
[Crossref]

Bai, J.

Y. Zheng, J. Bai, J. Xu, X. Li, and Y. Zhang, “A discrimination model in waste plastics sorting using NIR hyperspectral imaging system,” Waste Manag. 72, 87–98 (2018).
[Crossref] [PubMed]

Baiano, A.

A. Baiano, “Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review,” J. Food Eng. 214, 10–15 (2017).
[Crossref]

Basty, S.

E. Keith, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5158, 380–391 (2004).

Bedard, N.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[PubMed]

Breckinridge, J. B.

Brownell, M. L.

J. P. Rode, M. L. Brownell, and M. Herring, “HgCdTe infrared focal plane arrays for imaging spectrometer applications,” Advanced Infrared Sensor Technology 395, 48–54 (1983).
[Crossref]

Calin, M. A.

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Chrisp, M.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Coffee, R. E.

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Cullen, P. J.

G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G. Aalders, “Hyperspectral imaging for non-contact analysis of forensic traces,” Forensic Sci. Int. 223(1-3), 28–39 (2012).
[Crossref] [PubMed]

De Nolf, W.

S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
[Crossref]

Dereniak, E. L.

E. Keith, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5158, 380–391 (2004).

Dik, J.

S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
[Crossref]

Dittman, M. G.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Dixon, T.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Dwight, J. G.

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Edelman, G. J.

G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G. Aalders, “Hyperspectral imaging for non-contact analysis of forensic traces,” Forensic Sci. Int. 223(1-3), 28–39 (2012).
[Crossref] [PubMed]

Elliott, A. D.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
[Crossref] [PubMed]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Figueroa, M. A.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology 2599, 264–272 (1996).
[Crossref]

Folkman, M. A.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology 2599, 264–272 (1996).
[Crossref]

Fraser, S. E.

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J. 2(3), 143–155 (2008).
[Crossref] [PubMed]

Gao, L.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
[Crossref] [PubMed]

N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51(11), 111702 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[PubMed]

L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17(15), 12293–12308 (2009).
[Crossref] [PubMed]

Gaston, E.

G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G. Aalders, “Hyperspectral imaging for non-contact analysis of forensic traces,” Forensic Sci. Int. 223(1-3), 28–39 (2012).
[Crossref] [PubMed]

Gatebe, C. K.

S. Nag, T. Hewagama, G. T. Georgiev, B. Pasquale, S. Aslam, and C. K. Gatebe, “Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing,” IEEE Sensors 17(16), 5252–5268 (2017).
[Crossref]

Georgiev, G. T.

S. Nag, T. Hewagama, G. T. Georgiev, B. Pasquale, S. Aslam, and C. K. Gatebe, “Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing,” IEEE Sensors 17(16), 5252–5268 (2017).
[Crossref]

Goetz, A. F. H.

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sens. GE-22(6), 546–549 (1984).
[Crossref]

Guo, X.

L. Shen, H. Xu, and X. Guo, “Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework,” Sensors (Basel) 12(6), 7778–7803 (2012).
[Crossref] [PubMed]

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51(11), 111702 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

Hendershot, P.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Herring, M.

J. P. Rode, M. L. Brownell, and M. Herring, “HgCdTe infrared focal plane arrays for imaging spectrometer applications,” Advanced Infrared Sensor Technology 395, 48–54 (1983).
[Crossref]

Hewagama, T.

S. Nag, T. Hewagama, G. T. Georgiev, B. Pasquale, S. Aslam, and C. K. Gatebe, “Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing,” IEEE Sensors 17(16), 5252–5268 (2017).
[Crossref]

Higgins, L.

Janssens, K.

S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
[Crossref]

Johnson, W.

E. Keith, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5158, 380–391 (2004).

Keith, E.

E. Keith, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5158, 380–391 (2004).

Kester, R.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
[Crossref] [PubMed]

Kester, R. T.

Khan, H. S.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Khan, M. J.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Khurshid, K.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Legrand, S.

S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
[Crossref]

Levenson, R. M.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69A(8), 748–758 (2006).
[Crossref] [PubMed]

Li, X.

Y. Zheng, J. Bai, J. Xu, X. Li, and Y. Zhang, “A discrimination model in waste plastics sorting using NIR hyperspectral imaging system,” Waste Manag. 72, 87–98 (2018).
[Crossref] [PubMed]

Liang, H.

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
[Crossref]

Liebling, M.

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J. 2(3), 143–155 (2008).
[Crossref] [PubMed]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Lydzba-Kopczynska, B.

A. Majda, R. Wietecha-Posluszny, A. Mendys, A. Wojtowicz, and B. Lydzba-Kopczynska, “Hyperspectral imaging and multivariate analysis in the dried blood spots investigations,” Appl. Phys., A Mater. Sci. Process. 124(4), 312 (2018).
[Crossref]

Majda, A.

A. Majda, R. Wietecha-Posluszny, A. Mendys, A. Wojtowicz, and B. Lydzba-Kopczynska, “Hyperspectral imaging and multivariate analysis in the dried blood spots investigations,” Appl. Phys., A Mater. Sci. Process. 124(4), 312 (2018).
[Crossref]

Manea, D.

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Mansfield, J. R.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69A(8), 748–758 (2006).
[Crossref] [PubMed]

Mendys, A.

A. Majda, R. Wietecha-Posluszny, A. Mendys, A. Wojtowicz, and B. Lydzba-Kopczynska, “Hyperspectral imaging and multivariate analysis in the dried blood spots investigations,” Appl. Phys., A Mater. Sci. Process. 124(4), 312 (2018).
[Crossref]

Nag, S.

S. Nag, T. Hewagama, G. T. Georgiev, B. Pasquale, S. Aslam, and C. K. Gatebe, “Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing,” IEEE Sensors 17(16), 5252–5268 (2017).
[Crossref]

Neelakantan, R.

V. Sivakumar, R. Neelakantan, and M. Santosh, “Lunar surface mineralogy using hyperspectral data: implications for primordial crust in the Earth-Moon system,” Geoscience Frontiers 8(3), 457–465 (2017).
[Crossref]

Nguyen, T. U.

O’Connell, D.

E. Keith, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5158, 380–391 (2004).

Page, N. A.

Parasca, S. V.

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Pasquale, B.

S. Nag, T. Hewagama, G. T. Georgiev, B. Pasquale, S. Aslam, and C. K. Gatebe, “Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing,” IEEE Sensors 17(16), 5252–5268 (2017).
[Crossref]

Pawlowski, M. E.

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Philbrick, R. H.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Pierce, M. C.

Piston, D. W.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
[Crossref] [PubMed]

Ramberg, E.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Rode, J. P.

J. P. Rode, M. L. Brownell, and M. Herring, “HgCdTe infrared focal plane arrays for imaging spectrometer applications,” Advanced Infrared Sensor Technology 395, 48–54 (1983).
[Crossref]

Rodgers, J. M.

Rodriguez, J. V.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Santosh, M.

V. Sivakumar, R. Neelakantan, and M. Santosh, “Lunar surface mineralogy using hyperspectral data: implications for primordial crust in the Earth-Moon system,” Geoscience Frontiers 8(3), 457–465 (2017).
[Crossref]

Savastru, D.

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Shannon, R. R.

Shen, L.

L. Shen, H. Xu, and X. Guo, “Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework,” Sensors (Basel) 12(6), 7778–7803 (2012).
[Crossref] [PubMed]

Sivakumar, V.

V. Sivakumar, R. Neelakantan, and M. Santosh, “Lunar surface mineralogy using hyperspectral data: implications for primordial crust in the Earth-Moon system,” Geoscience Frontiers 8(3), 457–465 (2017).
[Crossref]

Smith, R. T.

Sparks, A. L.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Tkaczyk, T. S.

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

T. U. Nguyen, M. C. Pierce, L. Higgins, and T. S. Tkaczyk, “Snapshot 3D optical coherence tomography system using image mapping spectrometry,” Opt. Express 21(11), 13758–13772 (2013).
[Crossref] [PubMed]

L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[PubMed]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
[Crossref] [PubMed]

N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51(11), 111702 (2012).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17(15), 12293–12308 (2009).
[Crossref] [PubMed]

Torr, M. R.

Ustione, A.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
[Crossref] [PubMed]

van der Snickt, G.

S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
[Crossref]

van Leeuwen, T. G.

G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G. Aalders, “Hyperspectral imaging for non-contact analysis of forensic traces,” Forensic Sci. Int. 223(1-3), 28–39 (2012).
[Crossref] [PubMed]

Vane, G.

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sens. GE-22(6), 546–549 (1984).
[Crossref]

Vanmeert, F.

S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
[Crossref]

Vermot, J.

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J. 2(3), 143–155 (2008).
[Crossref] [PubMed]

Vitz, R. C.

Wasinger, D.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Wellman, J. B.

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sens. GE-22(6), 546–549 (1984).
[Crossref]

Weng, C. Y.

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Wietecha-Posluszny, R.

A. Majda, R. Wietecha-Posluszny, A. Mendys, A. Wojtowicz, and B. Lydzba-Kopczynska, “Hyperspectral imaging and multivariate analysis in the dried blood spots investigations,” Appl. Phys., A Mater. Sci. Process. 124(4), 312 (2018).
[Crossref]

Willoughby, C. T.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology 2599, 264–272 (1996).
[Crossref]

Wojtowicz, A.

A. Majda, R. Wietecha-Posluszny, A. Mendys, A. Wojtowicz, and B. Lydzba-Kopczynska, “Hyperspectral imaging and multivariate analysis in the dried blood spots investigations,” Appl. Phys., A Mater. Sci. Process. 124(4), 312 (2018).
[Crossref]

Xu, H.

L. Shen, H. Xu, and X. Guo, “Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework,” Sensors (Basel) 12(6), 7778–7803 (2012).
[Crossref] [PubMed]

Xu, J.

Y. Zheng, J. Bai, J. Xu, X. Li, and Y. Zhang, “A discrimination model in waste plastics sorting using NIR hyperspectral imaging system,” Waste Manag. 72, 87–98 (2018).
[Crossref] [PubMed]

Yousaf, A.

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

Zaun, N. H.

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Zhang, F.

F. Zhang and G. Zhou, “Estimation of canopy water content by means of hyperspectral indices based on drought stress gradient experiments of maize in the north plain China,” Remote Sens. 7(11), 15203–15223 (2015).
[Crossref]

Zhang, Y.

Y. Zheng, J. Bai, J. Xu, X. Li, and Y. Zhang, “A discrimination model in waste plastics sorting using NIR hyperspectral imaging system,” Waste Manag. 72, 87–98 (2018).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng, J. Bai, J. Xu, X. Li, and Y. Zhang, “A discrimination model in waste plastics sorting using NIR hyperspectral imaging system,” Waste Manag. 72, 87–98 (2018).
[Crossref] [PubMed]

Zhou, G.

F. Zhang and G. Zhou, “Estimation of canopy water content by means of hyperspectral indices based on drought stress gradient experiments of maize in the north plain China,” Remote Sens. 7(11), 15203–15223 (2015).
[Crossref]

Advanced Infrared Sensor Technology (1)

J. P. Rode, M. L. Brownell, and M. Herring, “HgCdTe infrared focal plane arrays for imaging spectrometer applications,” Advanced Infrared Sensor Technology 395, 48–54 (1983).
[Crossref]

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (2)

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
[Crossref]

A. Majda, R. Wietecha-Posluszny, A. Mendys, A. Wojtowicz, and B. Lydzba-Kopczynska, “Hyperspectral imaging and multivariate analysis in the dried blood spots investigations,” Appl. Phys., A Mater. Sci. Process. 124(4), 312 (2018).
[Crossref]

Appl. Spectrosc. Rev. (1)

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Biomed. Opt. Express (1)

Cytometry A (1)

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69A(8), 748–758 (2006).
[Crossref] [PubMed]

Forensic Sci. Int. (1)

G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G. Aalders, “Hyperspectral imaging for non-contact analysis of forensic traces,” Forensic Sci. Int. 223(1-3), 28–39 (2012).
[Crossref] [PubMed]

Geoscience Frontiers (1)

V. Sivakumar, R. Neelakantan, and M. Santosh, “Lunar surface mineralogy using hyperspectral data: implications for primordial crust in the Earth-Moon system,” Geoscience Frontiers 8(3), 457–465 (2017).
[Crossref]

Heritage Science (1)

S. Legrand, F. Vanmeert, G. van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Heritage Science 2(1), 13 (2014).
[Crossref]

HFSP J. (1)

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J. 2(3), 143–155 (2008).
[Crossref] [PubMed]

IEEE Access (1)

M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access 6, 14118–14129 (2018).
[Crossref]

IEEE Sensors (1)

S. Nag, T. Hewagama, G. T. Georgiev, B. Pasquale, S. Aslam, and C. K. Gatebe, “Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing,” IEEE Sensors 17(16), 5252–5268 (2017).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sens. GE-22(6), 546–549 (1984).
[Crossref]

In Earth Observing Systems VII (1)

M. G. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, A. L. Sparks, N. H. Zaun, P. Hendershot, T. Dixon, R. H. Philbrick, and D. Wasinger, “Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” In Earth Observing Systems VII 4814, 111–120 (2002).

Int. Ophthalmol. Clin. (1)

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral Image Mapping Spectrometry for Retinal Oximetry Measurements in Four Diseased Eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

J. Cell Sci. (1)

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(Pt 20), 4833–4840 (2012).
[Crossref] [PubMed]

J. Food Eng. (1)

A. Baiano, “Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review,” J. Food Eng. 214, 10–15 (2017).
[Crossref]

Opt. Eng. (3)

N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51(11), 111702 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[PubMed]

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Opt. Express (4)

Proc. SPIE (1)

E. Keith, D. O’Connell, W. Johnson, S. Basty, and E. L. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5158, 380–391 (2004).

Remote Sens. (1)

F. Zhang and G. Zhou, “Estimation of canopy water content by means of hyperspectral indices based on drought stress gradient experiments of maize in the north plain China,” Remote Sens. 7(11), 15203–15223 (2015).
[Crossref]

Sensors (Basel) (1)

L. Shen, H. Xu, and X. Guo, “Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework,” Sensors (Basel) 12(6), 7778–7803 (2012).
[Crossref] [PubMed]

Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology (1)

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology 2599, 264–272 (1996).
[Crossref]

Waste Manag. (1)

Y. Zheng, J. Bai, J. Xu, X. Li, and Y. Zhang, “A discrimination model in waste plastics sorting using NIR hyperspectral imaging system,” Waste Manag. 72, 87–98 (2018).
[Crossref] [PubMed]

Other (3)

P. S. Thenkabail, J. G. Lyon, and A. Huete, Hyperspectral Remote Sensing of Vegetation, (CRC Press, 2012).

M. T. Eismann, Hyperspectral Remote Sensing,(SPIE Press, 2012).

D.-W. Sun, Hyperspectral Imaging for Food Quality Analysis and Control, (Elsevier, 2010).

Supplementary Material (2)

NameDescription
» Visualization 1       Visualization 1
» Visualization 2       Visualization 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Opto-mechanical schematic of the IMS system (a). Three-dimensional model of the complete system, with chassis walls drawn in semi-transparent mode (b). Photograph of assembled prototype with top cover removed (c).
Fig. 2
Fig. 2 Optical model of the re-imaging system of the IMS system limited to the prism-lenslet –detector assembly (a). Nominal spot diagrams for axial (Obj: 0.0, 0.0 mm) and diagonal edge field points (Obj: 9.1, 13.5 mm) for 515 and 842 nm (b).
Fig. 3
Fig. 3 Exploded view model of the lenslet assembly (a). Cross-section through the lenslet assembly with critical dimensions and elements indicated (b). Photograph of complete assembly with one-cent coin for size comparison (c).
Fig. 4
Fig. 4 Reconstructed images of the 1951 USAF resolution target (a) and Ronchi ruling (c). Designed (red line) and measured (black line) system dispersion expressed in lateral shift measured in pixel/nm (c).
Fig. 5
Fig. 5 Spectral plots at three selected emission lines of the Fianium laser. Data for nominal 540, 650 and 730 nm laser lines are presented in figures (a), (b) and (c) respectively. Red dots represent HS-IMS data averaged over the field of view, the continuous green line is for Ocean Optics spectrometer raw data, and the blue line is for HS-IMS data interpolated with a cubic spline curve. Insets in the figures depict the area in the vicinity of a laser line peak.
Fig. 6
Fig. 6 Variance vs. mean intensity signal as measured for the PCO.EDGE 5.5 camera. Raw data points are marked with red dots; the red line show raw signal linearly interpolated between sampling points and the green line depicts a first degree polynomial fitted to the linear part of the data set. Inset in the right bottom of the plot depicts magnified region of correlogram, for which average signal was below 8000 counts.
Fig. 7
Fig. 7 Pseudo-colored image of a fluorescently stained sample of a bovine pulmonary artery endothelial cell sample recorded at 537 nm for a newly developed (HS-IMS) (a) and reference (P-IMS) spectrometer (b). Intensity cross-sections though both data sets in the direction marked on (a) and (b) by white lines are given in (c) and (d). HS-IMS and P-IMS signals are drawn in blue and orange lines respectively; individually scaled signals are shown in (c) and shared y-axis scale for both plots is provided in (d). Fluorescent signal from the BPAEC sample recorded at 617 nm by the newly developed (e) and reference spectrometer (f). Intensity cross-sections in the direction marked on (e) and (f) by white lines are given in (g) and (h). Individually scaled plots with left and right hand side scale for HS-IMS and P-IMS respectively (g). Plots from (g) with single y axis scale (h). Red rectangle marks area of the field of view area shared by both systems. Axis scales are given in physical units of length in the sample space.
Fig. 8
Fig. 8 Picture of red ping pong balls dyed with Spectre 300 infrared dye (top row) and un-painted (bottom row) (a). Arbitrary selected frame, recorded at time t = 0.78 s with two ping-pong balls in free fall (b). Gray scale image sub-titled “VIS” shows hyperspectral data cube integrated over 513-605 nm and 2D image “IR” shows hyperspectral data cube integrated in range 610-777 nm. Spectral cross-sections taken at points marked with A and B through dyed (dash dotted line) and un-dyed (continuous line) (c). Movie compiled from a series of consecutive hyperspectral data cubes is given in Visualization 1. Two dimensional representations of hyperspectral data cube were flat field corrected and digitally post-processed with a 5x5 median filter for visualization purposes. Presented spectral cross-sections were averaged over a 3x3 area.
Fig. 9
Fig. 9 Images and spectral profiles of a halogen bulb emitter acquired during a power on/off cycle. A pseudo-colored, panchromatic image of the halogen bulb emitter in an off state acquired at time t = 0 (a). A panchromatic image of a tungsten emitter in an on state, acquired at time t = 2.75 s (b). Spectral intensity plots taken at t = 0.9 s, t = 1.7 s and t = 3.07 s scaled (to the detector’s dynamic range) and normalized are given in (c) and (d) respectively. Time laps recording of the halogen bulb during an on/off cycle is given in Visualization 2.

Tables (2)

Tables Icon

Table 1 Spectral accuracy and precision of IMS system as measured against Ocean Optics USB2G38810. Ocean Optics λOO –central wavelength as measured by Ocean Optics USB2G38810; Ocean Optics FWHM – full width at half maximum of laser line as measured by the Ocean Optics spectrometer; IMS λIMS – central wavelength of laser line as measured by the IMS system; IMS ± σ – standard deviation of measured central wavelength of the laser line as measured by the IMS;IMS FWHM – full width at half maximum of the laser line as measured by the IMS system; Δλ – difference between IMS and Ocean Optics central wavelength.

Tables Icon

Table 2 Quantitative comparison of fluorescent signal level between P-IMS and HS-IMS systems. Three arbitrary selected microspheres (FluoSpheres, #F8841, Thermo-Fisher) were imaged at 30, 20, 10 and 5 ms exposure times respectively. Averaged (168 images) intensity values integrated over spatial and spectral voxels of selected beads for both systems are given in columns ItotHS-IMS and ItotM-IMS. Count of photo-electrons recorded by HS-IMS and P-IMS systems over spatio-spectral voxels of each bead is given in Ie-HS-IMS and Ie-M-IMS respectively. Please note that signal recorded by P-IMS was multiplied by 0.5 to account for 2x binning in y direction.

Metrics