Abstract

Novel approaches for digital data storage are imperative, as storage capacities are drastically being outpaced by the exponential growth in data generation. Optical data storage represents the most promising alternative to traditional magnetic and solid-state data storage. In this paper, a novel and energy efficient approach to optical data storage using rare-earth ion doped inorganic insulators is demonstrated. In particular, the nanocrystalline alkaline earth halide BaFCl:Sm is shown to provide great potential for multilevel optical data storage. Proof-of-concept demonstrations reveal for the first time that these phosphors could be used for rewritable, multilevel optical data storage on the physical dimensions of a single nanocrystal. Multilevel information storage is based on the very efficient and reversible conversion of Sm3+ to Sm2+ ions upon exposure to UV-C light. The stored information is then read-out using confocal optics by employing the photoluminescence of the Sm2+ ions in the nanocrystals, with the signal strength depending on the UV-C fluence used during the write step. The latter serves as the mechanism for multilevel data storage in the individual nanocrystals, as demonstrated in this paper. This data storage platform has the potential to be extended to 2D and 3D memory for storage densities that could potentially approach petabyte/cm3 levels.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient valence state switching of samarium in BaFCl:Sm nanocrystals in the deep UV for multilevel optical data storage

Hans Riesen, Kate Badek, Tanya M. Monro, and Nicolas Riesen
Opt. Mater. Express 6(10) 3097-3108 (2016)

Rewritable optical data storage in azobenzene copolymers

Denis Gindre, Alex Boeglin, Alain Fort, Loïc Mager, and Kokou D. Dorkenoo
Opt. Express 14(21) 9896-9901 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
    [Crossref] [PubMed]
  2. J. Gantz and D. Reinsel, The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East. Framingham, MA: IDC 2012. Available from: https://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf .
  3. A. M. Earman, “Optical data storage with electron trapping materials using M-ary data channel coding,” in Optical Data Storage Topical Meeting, (SPIE, 1992), pp. 92–103.
  4. S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
    [Crossref] [PubMed]
  5. J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
    [Crossref] [PubMed]
  6. M. Savoini, P. Biagioni, L. Duò, and M. Finazzi, “All-optical subdiffraction multilevel data encoding onto azo-polymeric thin films,” Opt. Lett. 34(6), 761–763 (2009).
    [Crossref] [PubMed]
  7. D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
    [Crossref]
  8. H.-P. D. Shieh, Y.-L. Chen, and C.-H. Wu, “Multilevel recording in erasable phase-change media by light intensity modulation,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1850–1854 (2001).
    [Crossref]
  9. Y. Tang, J. Pei, Y. Ni, L. Pan, H. Hu, and B. Zhang, “Multi-level read-only recording using signal waveform modulation,” Opt. Express 16(9), 6156–6162 (2008).
    [Crossref] [PubMed]
  10. Y. Hu, Z. Zhang, Y. Chen, Q. Zhang, and W. Huang, “Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film,” Opt. Lett. 35(1), 46–48 (2010).
    [Crossref] [PubMed]
  11. Y. Hu, D. Wu, J. Li, W. Huang, and J. Chu, “Two-stage optical recording: photoinduced birefringence and surface-mediated bits storage in bisazo-containing copolymers towards ultrahigh data memory,” Opt. Express 24(20), 23557–23565 (2016).
    [Crossref] [PubMed]
  12. H. Hagemann, V. D’Anna, M. Lawson Daku, and F. Kubel, “Crystal chemistry in the barium fluoride chloride system,” Cryst. Growth Des. 12(3), 1124–1131 (2012).
    [Crossref]
  13. R. Jaaniso and H. Bill, “High-temperature spectral hole burning on Sm-doped single crystal materials of PbFCl family,” J. Lumin. 64(1-6), 173–179 (1995).
    [Crossref]
  14. R. Jaaniso, H. Hagemann, and H. Bill, “Members of the PbFCI-type family: possible candidates for room-temperature photochemical hole burning,” CHIMIA Intern. J. Chem. 46, 133–137 (1992).
  15. H. Bill, R. Jaaniso, H. Hagemann, D. Lovy, A. Monnier, and M. Schnieper, “High-temperature spectral hole burning on samarium (II) in single crystals of the lead fluorohalide structure family and in thin films of calcium fluoride,” Opt. Eng. 34(8), 2333–2338 (1995).
    [Crossref]
  16. W. Moerner, W. Lenth, and G. Bjorklund, “Frequency domain optical storage and other applications of persistent spectral hole-burning,” in Persistent Spectral Hole-Burning: Science and Applications (Springer, 1988), pp. 251–307.
  17. J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
    [Crossref]
  18. X. Xu, X. Yu, T. Wang, W. Bian, and J. Qiu, “Rewritable LPL in Sm3+-doped borate glass with the assistance of defects induced by femtosecond laser,” Opt. Mater. Express 6(2), 402–408 (2016).
    [Crossref]
  19. H. Riesen, K. Badek, T. M. Monro, and N. Riesen, “Highly efficient valence state switching of samarium in BaFCl:Sm nanocrystals in the deep UV for multilevel optical data storage,” Opt. Mater. Express 6(10), 3097–3108 (2016).
    [Crossref]
  20. Z. Liu, M. Stevens-Kalceff, and H. Riesen, “Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl:Sm3+ X-ray storage phosphor,” J. Phys. Chem. C 116(14), 8322–8331 (2012).
    [Crossref]
  21. E. Radzhabov and V. Otroshok, “Optical spectra of oxygen defects in BaFCl and BaFBr crystals,” J. Phys. Chem. Solids 56(1), 1–7 (1995).
    [Crossref]
  22. H. Riesen and W. A. Kaczmarek, “Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+: a photoluminescent X-ray storage phosphor,” Inorg. Chem. 46(18), 7235–7237 (2007).
    [Crossref] [PubMed]
  23. T. Smeeton, K. Welna, E. Boardman, R. Pereira, and V. Berryman-Bousquet, “Compact UVC laser shows promise for environmental sensing,” Photon. Spectra 51, 40–44 (2017).
  24. Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
    [Crossref]
  25. X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
    [Crossref] [PubMed]
  26. Z. Liu, M. A. Stevens-Kalceff, X. Wang, and H. Riesen, “Mechanochemical synthesis of nanocrystalline BaFCl: Sm3+ storage phosphor by ball milling,” Chem. Phys. Lett. 588, 193–197 (2013).
    [Crossref]
  27. A. N. Shipway, M. Greenwald, N. Jaber, A. M. Litwak, and B. J. Reisman, “A new medium for two-photon volumetric data recording and playback,” Jpn. J. Appl. Phys. 45(2B), 1229–1234 (2006).
    [Crossref]

2017 (1)

T. Smeeton, K. Welna, E. Boardman, R. Pereira, and V. Berryman-Bousquet, “Compact UVC laser shows promise for environmental sensing,” Photon. Spectra 51, 40–44 (2017).

2016 (4)

2014 (3)

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

2013 (1)

Z. Liu, M. A. Stevens-Kalceff, X. Wang, and H. Riesen, “Mechanochemical synthesis of nanocrystalline BaFCl: Sm3+ storage phosphor by ball milling,” Chem. Phys. Lett. 588, 193–197 (2013).
[Crossref]

2012 (2)

H. Hagemann, V. D’Anna, M. Lawson Daku, and F. Kubel, “Crystal chemistry in the barium fluoride chloride system,” Cryst. Growth Des. 12(3), 1124–1131 (2012).
[Crossref]

Z. Liu, M. Stevens-Kalceff, and H. Riesen, “Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl:Sm3+ X-ray storage phosphor,” J. Phys. Chem. C 116(14), 8322–8331 (2012).
[Crossref]

2011 (1)

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (1)

2007 (1)

H. Riesen and W. A. Kaczmarek, “Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+: a photoluminescent X-ray storage phosphor,” Inorg. Chem. 46(18), 7235–7237 (2007).
[Crossref] [PubMed]

2006 (1)

A. N. Shipway, M. Greenwald, N. Jaber, A. M. Litwak, and B. J. Reisman, “A new medium for two-photon volumetric data recording and playback,” Jpn. J. Appl. Phys. 45(2B), 1229–1234 (2006).
[Crossref]

2002 (1)

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

2001 (1)

H.-P. D. Shieh, Y.-L. Chen, and C.-H. Wu, “Multilevel recording in erasable phase-change media by light intensity modulation,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1850–1854 (2001).
[Crossref]

1999 (1)

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

1995 (3)

R. Jaaniso and H. Bill, “High-temperature spectral hole burning on Sm-doped single crystal materials of PbFCl family,” J. Lumin. 64(1-6), 173–179 (1995).
[Crossref]

H. Bill, R. Jaaniso, H. Hagemann, D. Lovy, A. Monnier, and M. Schnieper, “High-temperature spectral hole burning on samarium (II) in single crystals of the lead fluorohalide structure family and in thin films of calcium fluoride,” Opt. Eng. 34(8), 2333–2338 (1995).
[Crossref]

E. Radzhabov and V. Otroshok, “Optical spectra of oxygen defects in BaFCl and BaFBr crystals,” J. Phys. Chem. Solids 56(1), 1–7 (1995).
[Crossref]

1992 (1)

R. Jaaniso, H. Hagemann, and H. Bill, “Members of the PbFCI-type family: possible candidates for room-temperature photochemical hole burning,” CHIMIA Intern. J. Chem. 46, 133–137 (1992).

Badek, K.

Beresna, M.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Berryman-Bousquet, V.

T. Smeeton, K. Welna, E. Boardman, R. Pereira, and V. Berryman-Bousquet, “Compact UVC laser shows promise for environmental sensing,” Photon. Spectra 51, 40–44 (2017).

Biagioni, P.

Bian, W.

Bill, H.

R. Jaaniso and H. Bill, “High-temperature spectral hole burning on Sm-doped single crystal materials of PbFCl family,” J. Lumin. 64(1-6), 173–179 (1995).
[Crossref]

H. Bill, R. Jaaniso, H. Hagemann, D. Lovy, A. Monnier, and M. Schnieper, “High-temperature spectral hole burning on samarium (II) in single crystals of the lead fluorohalide structure family and in thin films of calcium fluoride,” Opt. Eng. 34(8), 2333–2338 (1995).
[Crossref]

R. Jaaniso, H. Hagemann, and H. Bill, “Members of the PbFCI-type family: possible candidates for room-temperature photochemical hole burning,” CHIMIA Intern. J. Chem. 46, 133–137 (1992).

Boardman, E.

T. Smeeton, K. Welna, E. Boardman, R. Pereira, and V. Berryman-Bousquet, “Compact UVC laser shows promise for environmental sensing,” Photon. Spectra 51, 40–44 (2017).

Chen, Y.

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Y. Hu, Z. Zhang, Y. Chen, Q. Zhang, and W. Huang, “Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film,” Opt. Lett. 35(1), 46–48 (2010).
[Crossref] [PubMed]

Chen, Y.-L.

H.-P. D. Shieh, Y.-L. Chen, and C.-H. Wu, “Multilevel recording in erasable phase-change media by light intensity modulation,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1850–1854 (2001).
[Crossref]

Chu, J.

Y. Hu, D. Wu, J. Li, W. Huang, and J. Chu, “Two-stage optical recording: photoinduced birefringence and surface-mediated bits storage in bisazo-containing copolymers towards ultrahigh data memory,” Opt. Express 24(20), 23557–23565 (2016).
[Crossref] [PubMed]

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

D’Anna, V.

H. Hagemann, V. D’Anna, M. Lawson Daku, and F. Kubel, “Crystal chemistry in the barium fluoride chloride system,” Cryst. Growth Des. 12(3), 1124–1131 (2012).
[Crossref]

Day, D.

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

Dhomkar, S.

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref] [PubMed]

Duò, L.

Finazzi, M.

Ganic, D.

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

Gecevicius, M.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Greenwald, M.

A. N. Shipway, M. Greenwald, N. Jaber, A. M. Litwak, and B. J. Reisman, “A new medium for two-photon volumetric data recording and playback,” Jpn. J. Appl. Phys. 45(2B), 1229–1234 (2006).
[Crossref]

Gu, M.

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

Hagemann, H.

H. Hagemann, V. D’Anna, M. Lawson Daku, and F. Kubel, “Crystal chemistry in the barium fluoride chloride system,” Cryst. Growth Des. 12(3), 1124–1131 (2012).
[Crossref]

H. Bill, R. Jaaniso, H. Hagemann, D. Lovy, A. Monnier, and M. Schnieper, “High-temperature spectral hole burning on samarium (II) in single crystals of the lead fluorohalide structure family and in thin films of calcium fluoride,” Opt. Eng. 34(8), 2333–2338 (1995).
[Crossref]

R. Jaaniso, H. Hagemann, and H. Bill, “Members of the PbFCI-type family: possible candidates for room-temperature photochemical hole burning,” CHIMIA Intern. J. Chem. 46, 133–137 (1992).

Henshaw, J.

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref] [PubMed]

Hilbert, M.

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
[Crossref] [PubMed]

Hirao, K.

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Hu, H.

Hu, Y.

Huang, W.

Jaaniso, R.

H. Bill, R. Jaaniso, H. Hagemann, D. Lovy, A. Monnier, and M. Schnieper, “High-temperature spectral hole burning on samarium (II) in single crystals of the lead fluorohalide structure family and in thin films of calcium fluoride,” Opt. Eng. 34(8), 2333–2338 (1995).
[Crossref]

R. Jaaniso and H. Bill, “High-temperature spectral hole burning on Sm-doped single crystal materials of PbFCl family,” J. Lumin. 64(1-6), 173–179 (1995).
[Crossref]

R. Jaaniso, H. Hagemann, and H. Bill, “Members of the PbFCI-type family: possible candidates for room-temperature photochemical hole burning,” CHIMIA Intern. J. Chem. 46, 133–137 (1992).

Jaber, N.

A. N. Shipway, M. Greenwald, N. Jaber, A. M. Litwak, and B. J. Reisman, “A new medium for two-photon volumetric data recording and playback,” Jpn. J. Appl. Phys. 45(2B), 1229–1234 (2006).
[Crossref]

Jayakumar, H.

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref] [PubMed]

Kaczmarek, W. A.

H. Riesen and W. A. Kaczmarek, “Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+: a photoluminescent X-ray storage phosphor,” Inorg. Chem. 46(18), 7235–7237 (2007).
[Crossref] [PubMed]

Kazansky, P. G.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Kubel, F.

H. Hagemann, V. D’Anna, M. Lawson Daku, and F. Kubel, “Crystal chemistry in the barium fluoride chloride system,” Cryst. Growth Des. 12(3), 1124–1131 (2012).
[Crossref]

Lawson Daku, M.

H. Hagemann, V. D’Anna, M. Lawson Daku, and F. Kubel, “Crystal chemistry in the barium fluoride chloride system,” Cryst. Growth Des. 12(3), 1124–1131 (2012).
[Crossref]

Li, J.

Y. Hu, D. Wu, J. Li, W. Huang, and J. Chu, “Two-stage optical recording: photoinduced birefringence and surface-mediated bits storage in bisazo-containing copolymers towards ultrahigh data memory,” Opt. Express 24(20), 23557–23565 (2016).
[Crossref] [PubMed]

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Litwak, A. M.

A. N. Shipway, M. Greenwald, N. Jaber, A. M. Litwak, and B. J. Reisman, “A new medium for two-photon volumetric data recording and playback,” Jpn. J. Appl. Phys. 45(2B), 1229–1234 (2006).
[Crossref]

Liu, Z.

Z. Liu, M. A. Stevens-Kalceff, X. Wang, and H. Riesen, “Mechanochemical synthesis of nanocrystalline BaFCl: Sm3+ storage phosphor by ball milling,” Chem. Phys. Lett. 588, 193–197 (2013).
[Crossref]

Z. Liu, M. Stevens-Kalceff, and H. Riesen, “Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl:Sm3+ X-ray storage phosphor,” J. Phys. Chem. C 116(14), 8322–8331 (2012).
[Crossref]

Liu, Z. Q.

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

López, P.

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
[Crossref] [PubMed]

Lovy, D.

H. Bill, R. Jaaniso, H. Hagemann, D. Lovy, A. Monnier, and M. Schnieper, “High-temperature spectral hole burning on samarium (II) in single crystals of the lead fluorohalide structure family and in thin films of calcium fluoride,” Opt. Eng. 34(8), 2333–2338 (1995).
[Crossref]

Ma, J.

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Meriles, C. A.

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref] [PubMed]

Mitsuyu, T.

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Miura, K.

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Monnier, A.

H. Bill, R. Jaaniso, H. Hagemann, D. Lovy, A. Monnier, and M. Schnieper, “High-temperature spectral hole burning on samarium (II) in single crystals of the lead fluorohalide structure family and in thin films of calcium fluoride,” Opt. Eng. 34(8), 2333–2338 (1995).
[Crossref]

Monro, T. M.

Ni, Y.

Otroshok, V.

E. Radzhabov and V. Otroshok, “Optical spectra of oxygen defects in BaFCl and BaFBr crystals,” J. Phys. Chem. Solids 56(1), 1–7 (1995).
[Crossref]

Pan, L.

Pei, J.

Pereira, R.

T. Smeeton, K. Welna, E. Boardman, R. Pereira, and V. Berryman-Bousquet, “Compact UVC laser shows promise for environmental sensing,” Photon. Spectra 51, 40–44 (2017).

Qiu, J.

X. Xu, X. Yu, T. Wang, W. Bian, and J. Qiu, “Rewritable LPL in Sm3+-doped borate glass with the assistance of defects induced by femtosecond laser,” Opt. Mater. Express 6(2), 402–408 (2016).
[Crossref]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Radzhabov, E.

E. Radzhabov and V. Otroshok, “Optical spectra of oxygen defects in BaFCl and BaFBr crystals,” J. Phys. Chem. Solids 56(1), 1–7 (1995).
[Crossref]

Reisman, B. J.

A. N. Shipway, M. Greenwald, N. Jaber, A. M. Litwak, and B. J. Reisman, “A new medium for two-photon volumetric data recording and playback,” Jpn. J. Appl. Phys. 45(2B), 1229–1234 (2006).
[Crossref]

Riesen, H.

H. Riesen, K. Badek, T. M. Monro, and N. Riesen, “Highly efficient valence state switching of samarium in BaFCl:Sm nanocrystals in the deep UV for multilevel optical data storage,” Opt. Mater. Express 6(10), 3097–3108 (2016).
[Crossref]

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

Z. Liu, M. A. Stevens-Kalceff, X. Wang, and H. Riesen, “Mechanochemical synthesis of nanocrystalline BaFCl: Sm3+ storage phosphor by ball milling,” Chem. Phys. Lett. 588, 193–197 (2013).
[Crossref]

Z. Liu, M. Stevens-Kalceff, and H. Riesen, “Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl:Sm3+ X-ray storage phosphor,” J. Phys. Chem. C 116(14), 8322–8331 (2012).
[Crossref]

H. Riesen and W. A. Kaczmarek, “Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+: a photoluminescent X-ray storage phosphor,” Inorg. Chem. 46(18), 7235–7237 (2007).
[Crossref] [PubMed]

Riesen, N.

Savoini, M.

Schnieper, M.

H. Bill, R. Jaaniso, H. Hagemann, D. Lovy, A. Monnier, and M. Schnieper, “High-temperature spectral hole burning on samarium (II) in single crystals of the lead fluorohalide structure family and in thin films of calcium fluoride,” Opt. Eng. 34(8), 2333–2338 (1995).
[Crossref]

Shieh, H.-P. D.

H.-P. D. Shieh, Y.-L. Chen, and C.-H. Wu, “Multilevel recording in erasable phase-change media by light intensity modulation,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1850–1854 (2001).
[Crossref]

Shipway, A. N.

A. N. Shipway, M. Greenwald, N. Jaber, A. M. Litwak, and B. J. Reisman, “A new medium for two-photon volumetric data recording and playback,” Jpn. J. Appl. Phys. 45(2B), 1229–1234 (2006).
[Crossref]

Smeeton, T.

T. Smeeton, K. Welna, E. Boardman, R. Pereira, and V. Berryman-Bousquet, “Compact UVC laser shows promise for environmental sensing,” Photon. Spectra 51, 40–44 (2017).

Stevens-Kalceff, M.

Z. Liu, M. Stevens-Kalceff, and H. Riesen, “Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl:Sm3+ X-ray storage phosphor,” J. Phys. Chem. C 116(14), 8322–8331 (2012).
[Crossref]

Stevens-Kalceff, M. A.

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

Z. Liu, M. A. Stevens-Kalceff, X. Wang, and H. Riesen, “Mechanochemical synthesis of nanocrystalline BaFCl: Sm3+ storage phosphor by ball milling,” Chem. Phys. Lett. 588, 193–197 (2013).
[Crossref]

Suzuki, T.

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Tang, Y.

Wang, T.

Wang, X.

Z. Liu, M. A. Stevens-Kalceff, X. Wang, and H. Riesen, “Mechanochemical synthesis of nanocrystalline BaFCl: Sm3+ storage phosphor by ball milling,” Chem. Phys. Lett. 588, 193–197 (2013).
[Crossref]

Wang, X. L.

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

Welna, K.

T. Smeeton, K. Welna, E. Boardman, R. Pereira, and V. Berryman-Bousquet, “Compact UVC laser shows promise for environmental sensing,” Photon. Spectra 51, 40–44 (2017).

Wu, C.-H.

H.-P. D. Shieh, Y.-L. Chen, and C.-H. Wu, “Multilevel recording in erasable phase-change media by light intensity modulation,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1850–1854 (2001).
[Crossref]

Wu, D.

Xu, X.

Yu, X.

Zhang, B.

Zhang, J.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Zhang, Q.

Zhang, Z.

Appl. Phys. Lett. (1)

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Chem. Phys. Lett. (1)

Z. Liu, M. A. Stevens-Kalceff, X. Wang, and H. Riesen, “Mechanochemical synthesis of nanocrystalline BaFCl: Sm3+ storage phosphor by ball milling,” Chem. Phys. Lett. 588, 193–197 (2013).
[Crossref]

CHIMIA Intern. J. Chem. (1)

R. Jaaniso, H. Hagemann, and H. Bill, “Members of the PbFCI-type family: possible candidates for room-temperature photochemical hole burning,” CHIMIA Intern. J. Chem. 46, 133–137 (1992).

Cryst. Growth Des. (1)

H. Hagemann, V. D’Anna, M. Lawson Daku, and F. Kubel, “Crystal chemistry in the barium fluoride chloride system,” Cryst. Growth Des. 12(3), 1124–1131 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Inorg. Chem. (2)

X. L. Wang, Z. Q. Liu, M. A. Stevens-Kalceff, and H. Riesen, “Mechanochemical preparation of nanocrystalline BaFCl doped with samarium in the 2+ oxidation state,” Inorg. Chem. 53(17), 8839–8841 (2014).
[Crossref] [PubMed]

H. Riesen and W. A. Kaczmarek, “Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+: a photoluminescent X-ray storage phosphor,” Inorg. Chem. 46(18), 7235–7237 (2007).
[Crossref] [PubMed]

J. Lumin. (1)

R. Jaaniso and H. Bill, “High-temperature spectral hole burning on Sm-doped single crystal materials of PbFCl family,” J. Lumin. 64(1-6), 173–179 (1995).
[Crossref]

J. Phys. Chem. C (1)

Z. Liu, M. Stevens-Kalceff, and H. Riesen, “Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl:Sm3+ X-ray storage phosphor,” J. Phys. Chem. C 116(14), 8322–8331 (2012).
[Crossref]

J. Phys. Chem. Solids (1)

E. Radzhabov and V. Otroshok, “Optical spectra of oxygen defects in BaFCl and BaFBr crystals,” J. Phys. Chem. Solids 56(1), 1–7 (1995).
[Crossref]

Jpn. J. Appl. Phys. (2)

H.-P. D. Shieh, Y.-L. Chen, and C.-H. Wu, “Multilevel recording in erasable phase-change media by light intensity modulation,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1850–1854 (2001).
[Crossref]

A. N. Shipway, M. Greenwald, N. Jaber, A. M. Litwak, and B. J. Reisman, “A new medium for two-photon volumetric data recording and playback,” Jpn. J. Appl. Phys. 45(2B), 1229–1234 (2006).
[Crossref]

Opt. Eng. (1)

H. Bill, R. Jaaniso, H. Hagemann, D. Lovy, A. Monnier, and M. Schnieper, “High-temperature spectral hole burning on samarium (II) in single crystals of the lead fluorohalide structure family and in thin films of calcium fluoride,” Opt. Eng. 34(8), 2333–2338 (1995).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Photon. Spectra (1)

T. Smeeton, K. Welna, E. Boardman, R. Pereira, and V. Berryman-Bousquet, “Compact UVC laser shows promise for environmental sensing,” Photon. Spectra 51, 40–44 (2017).

Phys. Rev. Lett. (1)

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Sci. Adv. (1)

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref] [PubMed]

Science (1)

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
[Crossref] [PubMed]

Other (3)

J. Gantz and D. Reinsel, The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East. Framingham, MA: IDC 2012. Available from: https://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf .

A. M. Earman, “Optical data storage with electron trapping materials using M-ary data channel coding,” in Optical Data Storage Topical Meeting, (SPIE, 1992), pp. 92–103.

W. Moerner, W. Lenth, and G. Bjorklund, “Frequency domain optical storage and other applications of persistent spectral hole-burning,” in Persistent Spectral Hole-Burning: Science and Applications (Springer, 1988), pp. 251–307.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup with custom scanning confocal microscope arrangement for read-out. Solid lines represent fibers, glowing lines are free-space propagation. BPF: Bandpass filter, BS: Beamsplitter, DBS: Dichroic beamsplitter, WLS: White light source.
Fig. 2
Fig. 2 SCM images (200 × 200 µm2) of dispersed BaFCl:Sm3+ nanocrystals before and after UV-C (185 nm, t >10 mins, P~200 µW/cm2) exposure (a) with and (b) without 687.8 nm, 1 nm bandpass (BP) filter, respectively.
Fig. 3
Fig. 3 Nanocrystal bleaching/erasure demonstration. (a) SCM image of BaFCl:Sm3+ nanoaggregates of 2-3 crystals C1, C2 and C3 after exposure to UV-C (λ ~185 nm, t >10 mins, P~200 µW/cm2) and corresponding SEM (ETD) image. (b) Subsequent On-Off state erasure (λ = 405 nm, P = 220 µW) of C3 (with read-out λex = 405 nm, P = 50 µW, λem = 687.8 nm, 5D07F0). (c). Schematic of write-read-erase mechanism for BaFCl:Sm.
Fig. 4
Fig. 4 Multilevel optical data storage. (a) Shown are the coarse scan SCM images (λex = 405 nm, λem = 687.8 nm, 5D07F0) of three nanoaggregates C1, C2 and C3 upon UV-C exposure for 0, 1 and 5 minutes (P ~200 µW/cm2, λ ~185 nm) with (b) fine-scan SCM images demonstrating the multilevel Sm3+→Sm2+ conversion. (c). SEM (BSED) images of the three small aggregates of ~2-3 nanocrystals. (d). The measured log-normal size distribution of aggregates, and the integrated photoluminescence intensity as a function of aggregate size for a collection of > 60 particles on the wafers. The size parameter is taken as the average length of the major and minor axes. (e). Experiment demonstrating that the write time can be reduced dramatically by at least 10 orders of magnitude, as demonstrated for the case of a bulk sample, by using an ArF excimer laser (30 ns pulse, ~30 mJ/cm2 at 193 nm; blue trace) instead of the mercury UV lamp (red trace).
Fig. 5
Fig. 5 (a). Rewritable data storage demonstration. The write-read-erase cycle is demonstrated three consecutive times on the nanoaggregate C1. Shown are the 405 nm excited photoluminescence emission spectra (5s integration) and the SCM images after 1 mJ/cm2 radiant exposure and with subsequent bleaching. (b). Typical Sm2+ to Sm3+ bleaching/erasure kinetics (P = 360 µW, t ~½ hr).
Fig. 6
Fig. 6 Single nanocrystal switching. (a). The SCM image (λex = 405 nm, λem = 687.8 nm, 5D07F0) of the UV-C exposed single crystal with its SEM image shown in the inset. (b) The fine-scan SCM image upon UV-C exposure and after partial bleaching and (c) the corresponding spectra.

Metrics