Abstract

A compact multi-bounce attenuated total reflection (ATR) probe combined with a Fabry-Pérot filter spectrometer (FPFS) has been developed for detection of hydrogen peroxide used for oxidative gas scrubbing operating in the mid-infrared (MIR) spectral region. A novel MIR supercontinuum light source is employed to enhance the quantification capabilities of the sensor and is compared to a classical thermal emitter. An improvement of a factor of 4 in noise and approximately a factor of 3 in limit of detection is shown in this study allowing fast inline detection of aqueous hydrogen peroxide solutions around 0.1%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser

Jakob Kilgus, Gregor Langer, Kristina Duswald, Robert Zimmerleiter, Ivan Zorin, Thomas Berer, and Markus Brandstetter
Opt. Express 26(23) 30644-30654 (2018)

High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator

Jari Peltola, Markku Vainio, Tuomas Hieta, Juho Uotila, Sauli Sinisalo, Markus Metsälä, Mikael Siltanen, and Lauri Halonen
Opt. Express 21(8) 10240-10250 (2013)

Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser

Anton Hasenkampf, Niels Kröger, Arthur Schönhals, Wolfgang Petrich, and Annemarie Pucci
Opt. Express 23(5) 5670-5680 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Miltner, A. Makaruk, J. Krischan, and M. Harasek, “Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: Potentials and economics,” Water Sci. Technol. 66(6), 1354–1360 (2012).
    [Crossref] [PubMed]
  2. J. Workman, B. Lavine, R. Chrisman, and M. Koch, “Process analytical chemistry,” Anal. Chem. 83(12), 4557–4578 (2011).
    [Crossref] [PubMed]
  3. N. J. Harrick, “Surface chemistry from spectral analysis of totally internally reflected radiation,” J. Phys. Chem. 64(9), 1110–1114 (1960).
    [Crossref]
  4. N. J. Harrick, “Electric Field Strengths at Totally Reflecting Interfaces,” J. Opt. Soc. Am. 55(7), 851 (1965).
    [Crossref]
  5. J. Fahrenfort, “Attenuated total reflection,” Spectrochim. Acta 17(7), 698–709 (1961).
    [Crossref]
  6. K. R. Kirov and H. E. Assender, “Quantitative ATR-IR Analysis of Anisotropic Polymer Films: Extraction of Optical Constants,” Macromolecules 37(3), 894–904 (2004).
    [Crossref]
  7. R. Linker, I. Shmulevich, A. Kenny, and A. Shaviv, “Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy,” Chemosphere 61(5), 652–658 (2005).
    [Crossref] [PubMed]
  8. S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of Mid-IR and Raman spectroscopy,” Adv. Drug Deliv. Rev. 57(8), 1144–1170 (2005).
    [Crossref] [PubMed]
  9. S. G. Kazarian and K. L. A. Chan, “ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems,” Analyst (Lond.) 138(7), 1940–1951 (2013).
    [Crossref] [PubMed]
  10. M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
    [Crossref]
  11. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid-State Mid-Infrared Laser Sources 516, 445–516 (2003).
  12. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [Crossref]
  13. R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [Crossref]
  14. M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase,” Analyst (Lond.) 135(12), 3260–3265 (2010).
    [Crossref] [PubMed]
  15. P. Figueiredo, M. Suttinger, R. Go, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Progress in high-power continuous-wave quantum cascade lasers [Invited],” Appl. Opt. 56(31), H15–H23 (2017).
    [Crossref] [PubMed]
  16. J. P. Waclawek, H. Moser, and B. Lendl, “Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide,” Opt. Express 24(6), 6559–6571 (2016).
    [Crossref] [PubMed]
  17. J. P. Waclawek, C. V. Bauer, H. Moser, and B. Lendl, “2 f-wavelength modulation Fabry-Perot photothermal interferometry,” Opt. Express 24, 28958–28967 (2016).
  18. H. Moser, W. Pölz, J. P. Waclawek, J. Ofner, and B. Lendl, “Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream,” Anal. Bioanal. Chem. 409(3), 729–739 (2017).
    [Crossref] [PubMed]
  19. J. M. Chalmers and P. R. Griffith, Handbook of Vibrational Spectroscopy (Wiley, 2016).
  20. M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: A new avenue to robust and versatile physical chemosensors,” Procedia Eng. 5, 1001–1004 (2010).
    [Crossref]
  21. A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
    [Crossref] [PubMed]
  22. M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
    [Crossref] [PubMed]
  23. A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
    [Crossref] [PubMed]
  24. R. R. Alfano, The Supercontinuum Laser Source (Springer, 2016).
  25. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
    [Crossref]
  26. N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 21004 (2008).
    [Crossref]
  27. A. Genner, C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl, “On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology,” Anal. Bioanal. Chem. 409(3), 753–761 (2017).
    [Crossref] [PubMed]
  28. C. Gasser, A. Genner, H. Moser, J. Ofner, and B. Lendl, “Application of a tunable Fabry-Pérot filtometer to mid-infrared gas sensing,” Sens. Actuators B Chem. 242, 9–14 (2017).
    [Crossref]
  29. J. Kilgus, P. Müller, P. M. Moselund, and M. Brandstetter, “Application of supercontinuum radiation for mid-infrared spectroscopy,” in F. Berghmans and A. G. Mignani, eds. (2016), Vol. 9899, p. 98990K.
  30. J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers,” Appl. Spectrosc. 72(4), 634–642 (2018).
    [Crossref] [PubMed]
  31. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51(15), 2794–2807 (2012).
    [Crossref] [PubMed]
  32. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
    [Crossref]
  33. O. Bain and P. A. Giguère, “Hydrogen peroxide and its analogues: VI. infrared spectra of H2O2, D2O2 and HDO2,” Can. J. Chem. 33(3), 527–545 (1955).
    [Crossref]
  34. N. J. Harrick and A. I. Carlson, “Internal Reflection Spectroscopy: Validity of Effective Thickness Equations,” Appl. Opt. 10(1), 19–23 (1971).
    [Crossref] [PubMed]
  35. G. L. Long and J. D. Winefordner, “Limit of detection. A closer look at the IUPAC definition,” Anal. Chem. 55, 712A–724A (1983).
  36. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B Photophysics Laser Chem. 57, 131–139 (1993).
    [Crossref]
  37. J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

2018 (1)

2017 (6)

P. Figueiredo, M. Suttinger, R. Go, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Progress in high-power continuous-wave quantum cascade lasers [Invited],” Appl. Opt. 56(31), H15–H23 (2017).
[Crossref] [PubMed]

A. Genner, C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl, “On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology,” Anal. Bioanal. Chem. 409(3), 753–761 (2017).
[Crossref] [PubMed]

C. Gasser, A. Genner, H. Moser, J. Ofner, and B. Lendl, “Application of a tunable Fabry-Pérot filtometer to mid-infrared gas sensing,” Sens. Actuators B Chem. 242, 9–14 (2017).
[Crossref]

H. Moser, W. Pölz, J. P. Waclawek, J. Ofner, and B. Lendl, “Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream,” Anal. Bioanal. Chem. 409(3), 729–739 (2017).
[Crossref] [PubMed]

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref] [PubMed]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

2016 (3)

2015 (1)

M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
[Crossref] [PubMed]

2013 (1)

S. G. Kazarian and K. L. A. Chan, “ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems,” Analyst (Lond.) 138(7), 1940–1951 (2013).
[Crossref] [PubMed]

2012 (3)

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51(15), 2794–2807 (2012).
[Crossref] [PubMed]

M. Miltner, A. Makaruk, J. Krischan, and M. Harasek, “Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: Potentials and economics,” Water Sci. Technol. 66(6), 1354–1360 (2012).
[Crossref] [PubMed]

2011 (1)

J. Workman, B. Lavine, R. Chrisman, and M. Koch, “Process analytical chemistry,” Anal. Chem. 83(12), 4557–4578 (2011).
[Crossref] [PubMed]

2010 (4)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
[Crossref]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: A new avenue to robust and versatile physical chemosensors,” Procedia Eng. 5, 1001–1004 (2010).
[Crossref]

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase,” Analyst (Lond.) 135(12), 3260–3265 (2010).
[Crossref] [PubMed]

2008 (1)

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 21004 (2008).
[Crossref]

2005 (2)

R. Linker, I. Shmulevich, A. Kenny, and A. Shaviv, “Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy,” Chemosphere 61(5), 652–658 (2005).
[Crossref] [PubMed]

S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of Mid-IR and Raman spectroscopy,” Adv. Drug Deliv. Rev. 57(8), 1144–1170 (2005).
[Crossref] [PubMed]

2004 (1)

K. R. Kirov and H. E. Assender, “Quantitative ATR-IR Analysis of Anisotropic Polymer Films: Extraction of Optical Constants,” Macromolecules 37(3), 894–904 (2004).
[Crossref]

2003 (2)

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid-State Mid-Infrared Laser Sources 516, 445–516 (2003).

J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

1993 (1)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B Photophysics Laser Chem. 57, 131–139 (1993).
[Crossref]

1983 (1)

G. L. Long and J. D. Winefordner, “Limit of detection. A closer look at the IUPAC definition,” Anal. Chem. 55, 712A–724A (1983).

1971 (1)

1965 (1)

1961 (1)

J. Fahrenfort, “Attenuated total reflection,” Spectrochim. Acta 17(7), 698–709 (1961).
[Crossref]

1960 (1)

N. J. Harrick, “Surface chemistry from spectral analysis of totally internally reflected radiation,” J. Phys. Chem. 64(9), 1110–1114 (1960).
[Crossref]

1955 (1)

O. Bain and P. A. Giguère, “Hydrogen peroxide and its analogues: VI. infrared spectra of H2O2, D2O2 and HDO2,” Can. J. Chem. 33(3), 527–545 (1955).
[Crossref]

Alcaráz, M. R.

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
[Crossref] [PubMed]

Anic, K.

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: A new avenue to robust and versatile physical chemosensors,” Procedia Eng. 5, 1001–1004 (2010).
[Crossref]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase,” Analyst (Lond.) 135(12), 3260–3265 (2010).
[Crossref] [PubMed]

Araman, C.

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

Assender, H. E.

K. R. Kirov and H. E. Assender, “Quantitative ATR-IR Analysis of Anisotropic Polymer Films: Extraction of Optical Constants,” Macromolecules 37(3), 894–904 (2004).
[Crossref]

Azizian, H.

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Bain, O.

O. Bain and P. A. Giguère, “Hydrogen peroxide and its analogues: VI. infrared spectra of H2O2, D2O2 and HDO2,” Can. J. Chem. 33(3), 527–545 (1955).
[Crossref]

Bauer, C. V.

Brandstetter, M.

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers,” Appl. Spectrosc. 72(4), 634–642 (2018).
[Crossref] [PubMed]

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref] [PubMed]

M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
[Crossref] [PubMed]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: A new avenue to robust and versatile physical chemosensors,” Procedia Eng. 5, 1001–1004 (2010).
[Crossref]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase,” Analyst (Lond.) 135(12), 3260–3265 (2010).
[Crossref] [PubMed]

Bueso, F. J.

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Carlson, A. I.

Chan, A.

Chan, K. L. A.

S. G. Kazarian and K. L. A. Chan, “ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems,” Analyst (Lond.) 138(7), 1940–1951 (2013).
[Crossref] [PubMed]

Chrisman, R.

J. Workman, B. Lavine, R. Chrisman, and M. Koch, “Process analytical chemistry,” Anal. Chem. 83(12), 4557–4578 (2011).
[Crossref] [PubMed]

Coen, S.

J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

Corwin, K. L.

J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Dai, S.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Delmonte, P.

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Diddams, S. A.

J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

Dudley, J. M.

J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

Duswald, K.

Ebermann, M.

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 21004 (2008).
[Crossref]

Fahrenfort, J.

J. Fahrenfort, “Attenuated total reflection,” Spectrochim. Acta 17(7), 698–709 (1961).
[Crossref]

Figueiredo, P.

Freeman, M. J.

Fried, A.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid-State Mid-Infrared Laser Sources 516, 445–516 (2003).

Gasser, C.

A. Genner, C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl, “On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology,” Anal. Bioanal. Chem. 409(3), 753–761 (2017).
[Crossref] [PubMed]

C. Gasser, A. Genner, H. Moser, J. Ofner, and B. Lendl, “Application of a tunable Fabry-Pérot filtometer to mid-infrared gas sensing,” Sens. Actuators B Chem. 242, 9–14 (2017).
[Crossref]

Genner, A.

C. Gasser, A. Genner, H. Moser, J. Ofner, and B. Lendl, “Application of a tunable Fabry-Pérot filtometer to mid-infrared gas sensing,” Sens. Actuators B Chem. 242, 9–14 (2017).
[Crossref]

A. Genner, C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl, “On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology,” Anal. Bioanal. Chem. 409(3), 753–761 (2017).
[Crossref] [PubMed]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: A new avenue to robust and versatile physical chemosensors,” Procedia Eng. 5, 1001–1004 (2010).
[Crossref]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase,” Analyst (Lond.) 135(12), 3260–3265 (2010).
[Crossref] [PubMed]

Giguère, P. A.

O. Bain and P. A. Giguère, “Hydrogen peroxide and its analogues: VI. infrared spectra of H2O2, D2O2 and HDO2,” Can. J. Chem. 33(3), 527–545 (1955).
[Crossref]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Go, R.

Goicoechea, H.

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
[Crossref] [PubMed]

Harasek, M.

M. Miltner, A. Makaruk, J. Krischan, and M. Harasek, “Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: Potentials and economics,” Water Sci. Technol. 66(6), 1354–1360 (2012).
[Crossref] [PubMed]

Harrick, N. J.

Hiller, K.

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 21004 (2008).
[Crossref]

Islam, M. N.

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Kazarian, S. G.

S. G. Kazarian and K. L. A. Chan, “ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems,” Analyst (Lond.) 138(7), 1940–1951 (2013).
[Crossref] [PubMed]

Kenny, A.

R. Linker, I. Shmulevich, A. Kenny, and A. Shaviv, “Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy,” Chemosphere 61(5), 652–658 (2005).
[Crossref] [PubMed]

Kia, A. R. F.

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Kilgus, J.

Kirov, K. R.

K. R. Kirov and H. E. Assender, “Quantitative ATR-IR Analysis of Anisotropic Polymer Films: Extraction of Optical Constants,” Macromolecules 37(3), 894–904 (2004).
[Crossref]

Koch, M.

J. Workman, B. Lavine, R. Chrisman, and M. Koch, “Process analytical chemistry,” Anal. Chem. 83(12), 4557–4578 (2011).
[Crossref] [PubMed]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Kosterev, A.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Kraft, J.

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Kramer, J. K. G.

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Krischan, J.

M. Miltner, A. Makaruk, J. Krischan, and M. Harasek, “Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: Potentials and economics,” Water Sci. Technol. 66(6), 1354–1360 (2012).
[Crossref] [PubMed]

Kristament, C.

M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
[Crossref] [PubMed]

Kumar, M.

Kurth, S.

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 21004 (2008).
[Crossref]

Langer, G.

Lavine, B.

J. Workman, B. Lavine, R. Chrisman, and M. Koch, “Process analytical chemistry,” Anal. Chem. 83(12), 4557–4578 (2011).
[Crossref] [PubMed]

Lee, J. K.

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Lendl, B.

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref] [PubMed]

H. Moser, W. Pölz, J. P. Waclawek, J. Ofner, and B. Lendl, “Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream,” Anal. Bioanal. Chem. 409(3), 729–739 (2017).
[Crossref] [PubMed]

A. Genner, C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl, “On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology,” Anal. Bioanal. Chem. 409(3), 753–761 (2017).
[Crossref] [PubMed]

C. Gasser, A. Genner, H. Moser, J. Ofner, and B. Lendl, “Application of a tunable Fabry-Pérot filtometer to mid-infrared gas sensing,” Sens. Actuators B Chem. 242, 9–14 (2017).
[Crossref]

J. P. Waclawek, H. Moser, and B. Lendl, “Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide,” Opt. Express 24(6), 6559–6571 (2016).
[Crossref] [PubMed]

J. P. Waclawek, C. V. Bauer, H. Moser, and B. Lendl, “2 f-wavelength modulation Fabry-Perot photothermal interferometry,” Opt. Express 24, 28958–28967 (2016).

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
[Crossref] [PubMed]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: A new avenue to robust and versatile physical chemosensors,” Procedia Eng. 5, 1001–1004 (2010).
[Crossref]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase,” Analyst (Lond.) 135(12), 3260–3265 (2010).
[Crossref] [PubMed]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Linker, R.

R. Linker, I. Shmulevich, A. Kenny, and A. Shaviv, “Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy,” Chemosphere 61(5), 652–658 (2005).
[Crossref] [PubMed]

Liu, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Long, G. L.

G. L. Long and J. D. Winefordner, “Limit of detection. A closer look at the IUPAC definition,” Anal. Chem. 55, 712A–724A (1983).

Lyakh, A.

Makaruk, A.

M. Miltner, A. Makaruk, J. Krischan, and M. Harasek, “Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: Potentials and economics,” Water Sci. Technol. 66(6), 1354–1360 (2012).
[Crossref] [PubMed]

Manzur, T.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Miltner, M.

M. Miltner, A. Makaruk, J. Krischan, and M. Harasek, “Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: Potentials and economics,” Water Sci. Technol. 66(6), 1354–1360 (2012).
[Crossref] [PubMed]

Moser, H.

H. Moser, W. Pölz, J. P. Waclawek, J. Ofner, and B. Lendl, “Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream,” Anal. Bioanal. Chem. 409(3), 729–739 (2017).
[Crossref] [PubMed]

A. Genner, C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl, “On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology,” Anal. Bioanal. Chem. 409(3), 753–761 (2017).
[Crossref] [PubMed]

C. Gasser, A. Genner, H. Moser, J. Ofner, and B. Lendl, “Application of a tunable Fabry-Pérot filtometer to mid-infrared gas sensing,” Sens. Actuators B Chem. 242, 9–14 (2017).
[Crossref]

J. P. Waclawek, C. V. Bauer, H. Moser, and B. Lendl, “2 f-wavelength modulation Fabry-Perot photothermal interferometry,” Opt. Express 24, 28958–28967 (2016).

J. P. Waclawek, H. Moser, and B. Lendl, “Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide,” Opt. Express 24(6), 6559–6571 (2016).
[Crossref] [PubMed]

Mossoba, M. M.

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B Photophysics Laser Chem. 57, 131–139 (1993).
[Crossref]

Neelakandan, M.

Neubert, R. H. H.

S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of Mid-IR and Raman spectroscopy,” Adv. Drug Deliv. Rev. 57(8), 1144–1170 (2005).
[Crossref] [PubMed]

Neumann, N.

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 21004 (2008).
[Crossref]

Newbury, N. R.

J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Ofner, J.

H. Moser, W. Pölz, J. P. Waclawek, J. Ofner, and B. Lendl, “Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream,” Anal. Bioanal. Chem. 409(3), 729–739 (2017).
[Crossref] [PubMed]

C. Gasser, A. Genner, H. Moser, J. Ofner, and B. Lendl, “Application of a tunable Fabry-Pérot filtometer to mid-infrared gas sensing,” Sens. Actuators B Chem. 242, 9–14 (2017).
[Crossref]

A. Genner, C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl, “On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology,” Anal. Bioanal. Chem. 409(3), 753–761 (2017).
[Crossref] [PubMed]

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Patel, C. K. N.

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
[Crossref]

Pölz, W.

H. Moser, W. Pölz, J. P. Waclawek, J. Ofner, and B. Lendl, “Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream,” Anal. Bioanal. Chem. 409(3), 729–739 (2017).
[Crossref] [PubMed]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Rader, J. I.

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Ramer, G.

M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
[Crossref] [PubMed]

Richter, D.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid-State Mid-Infrared Laser Sources 516, 445–516 (2003).

Schreiber, J.

A. Genner, C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl, “On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology,” Anal. Bioanal. Chem. 409(3), 753–761 (2017).
[Crossref] [PubMed]

Schwaighofer, A.

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref] [PubMed]

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
[Crossref] [PubMed]

Shaviv, A.

R. Linker, I. Shmulevich, A. Kenny, and A. Shaviv, “Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy,” Chemosphere 61(5), 652–658 (2005).
[Crossref] [PubMed]

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Shmulevich, I.

R. Linker, I. Shmulevich, A. Kenny, and A. Shaviv, “Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy,” Chemosphere 61(5), 652–658 (2005).
[Crossref] [PubMed]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B Photophysics Laser Chem. 57, 131–139 (1993).
[Crossref]

Suttinger, M.

Terry, F. L.

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid-State Mid-Infrared Laser Sources 516, 445–516 (2003).

Tsvid, E.

Waclawek, J. P.

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Wang, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Wartewig, S.

S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of Mid-IR and Raman spectroscopy,” Adv. Drug Deliv. Rev. 57(8), 1144–1170 (2005).
[Crossref] [PubMed]

Washburn, B. R.

J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B Photophysics Laser Chem. 57, 131–139 (1993).
[Crossref]

Windeier, R. S.

J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

Winefordner, J. D.

G. L. Long and J. D. Winefordner, “Limit of detection. A closer look at the IUPAC definition,” Anal. Chem. 55, 712A–724A (1983).

Workman, J.

J. Workman, B. Lavine, R. Chrisman, and M. Koch, “Process analytical chemistry,” Anal. Chem. 83(12), 4557–4578 (2011).
[Crossref] [PubMed]

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Zhang, P.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
[Crossref]

2003 Eur. Quantum Electron. Conf. EQEC (1)

J. M. Dudley, S. Coen, K. L. Corwin, N. R. Newbury, B. R. Washburn, S. A. Diddams, and R. S. Windeier, “Fundamental noise limitations on supercontinuum generation in microstructure fiber,” 2003 Eur. Quantum Electron. Conf. EQEC 2003, 203 (2003).

Adv. Drug Deliv. Rev. (1)

S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of Mid-IR and Raman spectroscopy,” Adv. Drug Deliv. Rev. 57(8), 1144–1170 (2005).
[Crossref] [PubMed]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron. 2010, 1–23 (2010).
[Crossref]

Anal. Bioanal. Chem. (2)

A. Genner, C. Gasser, H. Moser, J. Ofner, J. Schreiber, and B. Lendl, “On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology,” Anal. Bioanal. Chem. 409(3), 753–761 (2017).
[Crossref] [PubMed]

H. Moser, W. Pölz, J. P. Waclawek, J. Ofner, and B. Lendl, “Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream,” Anal. Bioanal. Chem. 409(3), 729–739 (2017).
[Crossref] [PubMed]

Anal. Chem. (3)

M. R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, and B. Lendl, “External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution,” Anal. Chem. 87(13), 6980–6987 (2015).
[Crossref] [PubMed]

J. Workman, B. Lavine, R. Chrisman, and M. Koch, “Process analytical chemistry,” Anal. Chem. 83(12), 4557–4578 (2011).
[Crossref] [PubMed]

G. L. Long and J. D. Winefordner, “Limit of detection. A closer look at the IUPAC definition,” Anal. Chem. 55, 712A–724A (1983).

Analyst (Lond.) (2)

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase,” Analyst (Lond.) 135(12), 3260–3265 (2010).
[Crossref] [PubMed]

S. G. Kazarian and K. L. A. Chan, “ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems,” Analyst (Lond.) 138(7), 1940–1951 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B Photophysics Laser Chem. (1)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B Photophysics Laser Chem. 57, 131–139 (1993).
[Crossref]

Appl. Spectrosc. (1)

Can. J. Chem. (1)

O. Bain and P. A. Giguère, “Hydrogen peroxide and its analogues: VI. infrared spectra of H2O2, D2O2 and HDO2,” Can. J. Chem. 33(3), 527–545 (1955).
[Crossref]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Chem. Soc. Rev. (1)

A. Schwaighofer, M. Brandstetter, and B. Lendl, “Quantum cascade lasers (QCLs) in biomedical spectroscopy,” Chem. Soc. Rev. 46(19), 5903–5924 (2017).
[Crossref] [PubMed]

Chemosphere (1)

R. Linker, I. Shmulevich, A. Kenny, and A. Shaviv, “Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy,” Chemosphere 61(5), 652–658 (2005).
[Crossref] [PubMed]

J. Micro/Nanolithography. MEMS MOEMS (1)

N. Neumann, M. Ebermann, S. Kurth, and K. Hiller, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 21004 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

N. J. Harrick, “Surface chemistry from spectral analysis of totally internally reflected radiation,” J. Phys. Chem. 64(9), 1110–1114 (1960).
[Crossref]

JAOCS. J. Am. Oil Chem. Soc. (1)

M. M. Mossoba, J. K. G. Kramer, H. Azizian, J. Kraft, P. Delmonte, A. R. F. Kia, F. J. Bueso, J. I. Rader, and J. K. Lee, “Application of a novel, heated, nine-reflection ATR crystal and a portable FTIR spectrometer to the rapid determination of total Trans fat,” JAOCS. J. Am. Oil Chem. Soc. 89(3), 419–429 (2012).
[Crossref]

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Macromolecules (1)

K. R. Kirov and H. E. Assender, “Quantitative ATR-IR Analysis of Anisotropic Polymer Films: Extraction of Optical Constants,” Macromolecules 37(3), 894–904 (2004).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Procedia Eng. (1)

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: A new avenue to robust and versatile physical chemosensors,” Procedia Eng. 5, 1001–1004 (2010).
[Crossref]

Sci. Rep. (1)

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

C. Gasser, A. Genner, H. Moser, J. Ofner, and B. Lendl, “Application of a tunable Fabry-Pérot filtometer to mid-infrared gas sensing,” Sens. Actuators B Chem. 242, 9–14 (2017).
[Crossref]

Solid-State Mid-Infrared Laser Sources (1)

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Solid-State Mid-Infrared Laser Sources 516, 445–516 (2003).

Spectrochim. Acta (1)

J. Fahrenfort, “Attenuated total reflection,” Spectrochim. Acta 17(7), 698–709 (1961).
[Crossref]

Water Sci. Technol. (1)

M. Miltner, A. Makaruk, J. Krischan, and M. Harasek, “Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: Potentials and economics,” Water Sci. Technol. 66(6), 1354–1360 (2012).
[Crossref] [PubMed]

Other (3)

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2016).

J. M. Chalmers and P. R. Griffith, Handbook of Vibrational Spectroscopy (Wiley, 2016).

J. Kilgus, P. Müller, P. M. Moselund, and M. Brandstetter, “Application of supercontinuum radiation for mid-infrared spectroscopy,” in F. Berghmans and A. G. Mignani, eds. (2016), Vol. 9899, p. 98990K.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) Simplified sketch of the instrumental setup b) Transmission characteristic of the FPFS at different control voltages and tuning behavior.
Fig. 2
Fig. 2 Single channel spectrum (intensity) of the a) PTE-FPFS setup (magenta filled curve) and the b) SCL-FPFS setup (blue filled curve), showing also the PTE and SCL emission spectrum, the diamond and water transmission spectrum. c) and d) show the 100% lines of the aforementioned setups.
Fig. 3
Fig. 3 9% hydrogen peroxide solution spectra measured with the PTE-FPFS, SCL-FPFS and a Bruker Tensor 27 equipped with a Platinum ATR (single bounce).
Fig. 4
Fig. 4 a) Effective path length (solid lines) over the angle of incidence calculated for perpendicular (s, black) and parallel (p, red) polarization. The ratio of both is depicted as the dotted blue line. b) Reflectance over the angle of incidence for p-polarization and s-polarization for the case of no absorbance in the sample (solid lines) and for a sample absorbance of κ = 0.01 (dashed lines).
Fig. 5
Fig. 5 a) Raw absorbance spectra and effective depth of penetration (blue) calculated for perpendicular (s) and parallel (p) polarization. b) Ratio between the absorbance in the case of p-polarization to s-polarization for measured values (black squares) and theoretical calculation (red dashed line).
Fig. 6
Fig. 6 Integrated areas against the concentration of the standards prepared for hydrogen peroxide for the two different configurations.
Fig. 7
Fig. 7 Allan variances for the different instrument configurations.

Tables (2)

Tables Icon

Table 1 Overview over the different instrumentation featured in this study.

Tables Icon

Table 2 Analytical figures of merit for the quantification of hydrogen peroxide in aqueous solution by the two configurations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d s = λ n 1 n 21 cos( θ ) π( 1 n 21 2 ) sin 2 ( θ ) n 21 2
d p = λ n 1 n 21 cos( θ )[ 2 sin 2 ( θ ) n 21 2 ] π( 1 n 21 2 )[ ( 1+ n 21 2 ) sin 2 ( θ ) n 21 2 ] sin 2 ( θ ) n 21 2

Metrics