Abstract

Controlling of electromagnetic wave radiation is of great importance in many fields. In this work, a hybrid metasurface (HMS) is designed to simultaneously reduce the microwave reflection and the infrared emission. The HMS is composed of the metal/dielectric/metal/dielectric/metal configuration. The reflection reduction at microwave frequencies mainly results from the phase cancellation technique, while the infrared emission reduction is due to the reflection of the metal with a high filling ration in the top layer. It has been analytically indicated that reflection reduction with an efficiency larger than 10 dB can be achieved in the frequency band of 8.2-18 GHz, and this has been well verified by the simulated and experimental results. Meanwhile, the designed HMS displays a low emission performance in the infrared band, with the emissivity less than 0.27 from 3 to 14 μm. It is believed that our proposal may find the application of multispectral stealth technology.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transparent transmission-selective radar-infrared bi-stealth structure

Shuomin Zhong, Lijie Wu, Taijun Liu, Jifu Huang, Wei Jiang, and Yungui Ma
Opt. Express 26(13) 16466-16476 (2018)

Coding metasurface for broadband microwave scattering reduction with optical transparency

Ke Chen, Li Cui, Yijun Feng, Junming Zhao, Tian Jiang, and Bo Zhu
Opt. Express 25(5) 5571-5579 (2017)

Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces

Xin Xie, Mingbo Pu, Xiong Li, Kaipeng Liu, Jinjin Jin, Xiaoliang Ma, and Xiangang Luo
Photon. Res. 7(5) 586-593 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd ed. (SciTech Publishing, Inc., 2004).
  2. S. E. Lee, J. H. Kang, and C. G. Kim, “Fabrication and design of multilayered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites,” Compos. Struct. 76(4), 397–405 (2006).
    [Crossref]
  3. Z. Fang, X. Cao, C. Li, H. Zhang, J. Zhang, and H. Zhang, “Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation,” Carbon 44(15), 3368–3370 (2006).
    [Crossref]
  4. D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
    [Crossref]
  5. F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
    [Crossref]
  6. P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
    [Crossref]
  7. Y. W. Yin, L. F. Cheng, L. T. Zhang, N. Travitzky, and P. Greil, “Fiber-reinforced multifunctional SiC matrix composite materials,” Int. Mater. Rev. 62(3), 117–172 (2017).
    [Crossref]
  8. S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
    [Crossref]
  9. A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
    [Crossref]
  10. L. Zhang, H. Lu, P. Zhou, J. Xie, and L. Deng, “Oblique incidence performance of microwave absorbers based on magnetic polymer composites,” IEEE Trans. Magn. 51(11), 1–4 (2015).
    [PubMed]
  11. Z. W. Li, L. Chen, and C. K. Ong, “High-frequency magnetic properties of W-type barium-ferrite BaZn2-xCoxFe16O27 composites,” J. Appl. Phys. 94(9), 5918–5924 (2003).
    [Crossref]
  12. B. Chambers, “Optimum design of a Salibury screen radar absorber,” Electron. Lett. 30(16), 1353–1354 (1994).
    [Crossref]
  13. J. B. Kim and J. H. Byun, “Salisbury screen absorbers of dielectric lossy sheets of carbon nanocomposite laminates,” IEEE Trans. Electromagn. Compat. 54(1), 37–42 (2012).
    [Crossref]
  14. I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens,” IEEE Trans. Electromagn. Compat. 51(3), 700–707 (2009).
    [Crossref]
  15. B. A. Munk, Frequency Selective Surfaces-Theory and Design (Wiley, 2000).
  16. L. Sun, H. Cheng, Y. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20(4), 4675–4680 (2012).
    [Crossref] [PubMed]
  17. W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).
  18. C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
    [Crossref]
  19. L. Liu, R. Gong, Y. Cheng, F. Zhang, H. He, and D. Huang, “Emittance of a radar absorber coated with an infrared layer in the 3-5microm window,” Opt. Express 13(25), 10382–10391 (2005).
    [Crossref] [PubMed]
  20. Z. Wang, Y. Cheng, Y. Nie, X. Wang, and R. Gong, “Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications,” J. Appl. Phys. 116(5), 054905 (2014).
    [Crossref]
  21. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  22. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref] [PubMed]
  23. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref] [PubMed]
  24. A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
    [Crossref] [PubMed]
  25. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [Crossref] [PubMed]
  26. H. Tian, H.-T. Liu, and H.-F. Cheng, “A thin radar-infrared stealth-compatible structure: Design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
    [Crossref]
  27. S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
    [Crossref]
  28. C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
    [Crossref]
  29. M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
    [Crossref]
  30. Y. Zhang, R. Mittra, B. Z. Wang, and N. T. Huang, “AMCs for ultrathin and broadband RAM design,” Electron. Lett. 45(10), 484–485 (2009).
    [Crossref]
  31. Y. Fu, T. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
    [Crossref]
  32. A. Edalati and K. Sarabandi, “Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
    [Crossref]
  33. W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
    [Crossref]
  34. https://www.cst.com .
  35. Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113(11), 114902 (2013).
    [Crossref]
  36. S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
    [Crossref]
  37. T. J. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  38. T. J. Cui, S. Liu, and L. Zhang, “Information metamaterials and metasurfaces,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(15), 3644–3668 (2017).
    [Crossref]
  39. Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
    [Crossref]
  40. S. Sui, H. Ma, Y. Lv, J. Wang, Z. Li, J. Zhang, Z. Xu, and S. Qu, “Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase,” Opt. Express 26(2), 1443–1451 (2018).
    [Crossref] [PubMed]
  41. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  42. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  43. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  44. J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
    [Crossref] [PubMed]
  45. J. A. Bossard and D. H. Werner, “Metamaterials with angle selective emissivity in the near-infrared,” Opt. Express 21(5), 5215–5225 (2013).
    [Crossref] [PubMed]
  46. C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
    [Crossref]
  47. J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
    [Crossref] [PubMed]
  48. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  49. A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 15079 (2017).
    [Crossref] [PubMed]

2018 (3)

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
[Crossref]

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

S. Sui, H. Ma, Y. Lv, J. Wang, Z. Li, J. Zhang, Z. Xu, and S. Qu, “Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase,” Opt. Express 26(2), 1443–1451 (2018).
[Crossref] [PubMed]

2017 (9)

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 15079 (2017).
[Crossref] [PubMed]

C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
[Crossref]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

T. J. Cui, S. Liu, and L. Zhang, “Information metamaterials and metasurfaces,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(15), 3644–3668 (2017).
[Crossref]

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Y. W. Yin, L. F. Cheng, L. T. Zhang, N. Travitzky, and P. Greil, “Fiber-reinforced multifunctional SiC matrix composite materials,” Int. Mater. Rev. 62(3), 117–172 (2017).
[Crossref]

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

2016 (1)

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

2015 (2)

L. Zhang, H. Lu, P. Zhou, J. Xie, and L. Deng, “Oblique incidence performance of microwave absorbers based on magnetic polymer composites,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

2014 (6)

Z. Wang, Y. Cheng, Y. Nie, X. Wang, and R. Gong, “Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications,” J. Appl. Phys. 116(5), 054905 (2014).
[Crossref]

T. J. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

A. Edalati and K. Sarabandi, “Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
[Crossref]

H. Tian, H.-T. Liu, and H.-F. Cheng, “A thin radar-infrared stealth-compatible structure: Design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

2013 (4)

J. A. Bossard and D. H. Werner, “Metamaterials with angle selective emissivity in the near-infrared,” Opt. Express 21(5), 5215–5225 (2013).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113(11), 114902 (2013).
[Crossref]

2012 (6)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

J. B. Kim and J. H. Byun, “Salisbury screen absorbers of dielectric lossy sheets of carbon nanocomposite laminates,” IEEE Trans. Electromagn. Compat. 54(1), 37–42 (2012).
[Crossref]

F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
[Crossref]

L. Sun, H. Cheng, Y. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20(4), 4675–4680 (2012).
[Crossref] [PubMed]

2011 (5)

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Y. Fu, T. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2009 (2)

Y. Zhang, R. Mittra, B. Z. Wang, and N. T. Huang, “AMCs for ultrathin and broadband RAM design,” Electron. Lett. 45(10), 484–485 (2009).
[Crossref]

I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens,” IEEE Trans. Electromagn. Compat. 51(3), 700–707 (2009).
[Crossref]

2007 (1)

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

2006 (2)

S. E. Lee, J. H. Kang, and C. G. Kim, “Fabrication and design of multilayered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites,” Compos. Struct. 76(4), 397–405 (2006).
[Crossref]

Z. Fang, X. Cao, C. Li, H. Zhang, J. Zhang, and H. Zhang, “Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation,” Carbon 44(15), 3368–3370 (2006).
[Crossref]

2005 (1)

2003 (1)

Z. W. Li, L. Chen, and C. K. Ong, “High-frequency magnetic properties of W-type barium-ferrite BaZn2-xCoxFe16O27 composites,” J. Appl. Phys. 94(9), 5918–5924 (2003).
[Crossref]

2002 (1)

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

1999 (1)

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

1994 (1)

B. Chambers, “Optimum design of a Salibury screen radar absorber,” Electron. Lett. 30(16), 1353–1354 (1994).
[Crossref]

Abdullah, M. H.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Ahmad, S. H.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Apollo, C.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Bailly, C.

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

Balanis, C. A.

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Birtcher, C. R.

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Bollen, P.

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

Book, D.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Bossard, J. A.

Bozhevolnyi, S. I.

Bozok, B.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 15079 (2017).
[Crossref] [PubMed]

Brosseau, C.

F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
[Crossref]

Butun, B.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 15079 (2017).
[Crossref] [PubMed]

Byun, J. H.

J. B. Kim and J. H. Byun, “Salisbury screen absorbers of dielectric lossy sheets of carbon nanocomposite laminates,” IEEE Trans. Electromagn. Compat. 54(1), 37–42 (2012).
[Crossref]

Cao, X.

Z. Fang, X. Cao, C. Li, H. Zhang, J. Zhang, and H. Zhang, “Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation,” Carbon 44(15), 3368–3370 (2006).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chambers, B.

B. Chambers, “Optimum design of a Salibury screen radar absorber,” Electron. Lett. 30(16), 1353–1354 (1994).
[Crossref]

Chen, H.

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Chen, L.

Z. W. Li, L. Chen, and C. K. Ong, “High-frequency magnetic properties of W-type barium-ferrite BaZn2-xCoxFe16O27 composites,” J. Appl. Phys. 94(9), 5918–5924 (2003).
[Crossref]

Chen, M.

C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
[Crossref]

Chen, W.

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Cheng, H.

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113(11), 114902 (2013).
[Crossref]

L. Sun, H. Cheng, Y. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20(4), 4675–4680 (2012).
[Crossref] [PubMed]

Cheng, H.-F.

H. Tian, H.-T. Liu, and H.-F. Cheng, “A thin radar-infrared stealth-compatible structure: Design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

Cheng, L. F.

Y. W. Yin, L. F. Cheng, L. T. Zhang, N. Travitzky, and P. Greil, “Fiber-reinforced multifunctional SiC matrix composite materials,” Int. Mater. Rev. 62(3), 117–172 (2017).
[Crossref]

Cheng, Q.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

T. J. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cheng, Y.

Z. Wang, Y. Cheng, Y. Nie, X. Wang, and R. Gong, “Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications,” J. Appl. Phys. 116(5), 054905 (2014).
[Crossref]

L. Liu, R. Gong, Y. Cheng, F. Zhang, H. He, and D. Huang, “Emittance of a radar absorber coated with an infrared layer in the 3-5microm window,” Opt. Express 13(25), 10382–10391 (2005).
[Crossref] [PubMed]

Choi, W. H.

W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).

Cui, T. J.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

T. J. Cui, S. Liu, and L. Zhang, “Information metamaterials and metasurfaces,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(15), 3644–3668 (2017).
[Crossref]

T. J. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Dai, J. Y.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

de Maagt, P.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

De Rosa, I. M.

I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens,” IEEE Trans. Electromagn. Compat. 51(3), 700–707 (2009).
[Crossref]

Deng, L.

L. Zhang, H. Lu, P. Zhou, J. Xie, and L. Deng, “Oblique incidence performance of microwave absorbers based on magnetic polymer composites,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

Dereshgi, S. A.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 15079 (2017).
[Crossref] [PubMed]

Detrembleur, C.

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

Edalati, A.

A. Edalati and K. Sarabandi, “Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
[Crossref]

Ederra, I.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Fainman, Y.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Fang, D.

C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, X. Cao, C. Li, H. Zhang, J. Zhang, and H. Zhang, “Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation,” Carbon 44(15), 3368–3370 (2006).
[Crossref]

Feng, M.

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
[Crossref]

Ferrari, L.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Fu, Y.

Y. Fu, T. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

Fullerton, E. E.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Ghobadi, A.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 15079 (2017).
[Crossref] [PubMed]

Gong, R.

Z. Wang, Y. Cheng, Y. Nie, X. Wang, and R. Gong, “Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications,” J. Appl. Phys. 116(5), 054905 (2014).
[Crossref]

L. Liu, R. Gong, Y. Cheng, F. Zhang, H. He, and D. Huang, “Emittance of a radar absorber coated with an infrared layer in the 3-5microm window,” Opt. Express 13(25), 10382–10391 (2005).
[Crossref] [PubMed]

Gonzalo, R.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Gradoni, G.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Greil, P.

Y. W. Yin, L. F. Cheng, L. T. Zhang, N. Travitzky, and P. Greil, “Fiber-reinforced multifunctional SiC matrix composite materials,” Int. Mater. Rev. 62(3), 117–172 (2017).
[Crossref]

Guo, T. C.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Hahn, J. W.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Hajian, H.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 15079 (2017).
[Crossref] [PubMed]

Hamid, S. A. A.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Han, K.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Han, Y.

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

He, H.

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Homma, M.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Huang, D.

Huang, J.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Huang, N. T.

Y. Zhang, R. Mittra, B. Z. Wang, and N. T. Huang, “AMCs for ultrathin and broadband RAM design,” Electron. Lett. 45(10), 484–485 (2009).
[Crossref]

Huynen, I.

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

Iriarte, J. C.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Jiang, W.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Joo, Y. S.

W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).

Jusoh, S. F.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Kagotani, T.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Kang, J. H.

S. E. Lee, J. H. Kang, and C. G. Kim, “Fabrication and design of multilayered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites,” Compos. Struct. 76(4), 397–405 (2006).
[Crossref]

Kanté, B.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kim, C. G.

W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).

S. E. Lee, J. H. Kang, and C. G. Kim, “Fabrication and design of multilayered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites,” Compos. Struct. 76(4), 397–405 (2006).
[Crossref]

Kim, J.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Kim, J. B.

W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).

J. B. Kim and J. H. Byun, “Salisbury screen absorbers of dielectric lossy sheets of carbon nanocomposite laminates,” IEEE Trans. Electromagn. Compat. 54(1), 37–42 (2012).
[Crossref]

Kimura, M.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Kondo, S.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Lee, S. E.

S. E. Lee, J. H. Kang, and C. G. Kim, “Fabrication and design of multilayered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites,” Compos. Struct. 76(4), 397–405 (2006).
[Crossref]

Lee, W. J.

W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).

Lei, H.

C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
[Crossref]

Li, C.

Z. Fang, X. Cao, C. Li, H. Zhang, J. Zhang, and H. Zhang, “Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation,” Carbon 44(15), 3368–3370 (2006).
[Crossref]

Li, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Li, H.

C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
[Crossref]

Li, T.

Y. Fu, T. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Li, Y.

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Li, Z.

Li, Z. W.

Z. W. Li, L. Chen, and C. K. Ong, “High-frequency magnetic properties of W-type barium-ferrite BaZn2-xCoxFe16O27 composites,” J. Appl. Phys. 94(9), 5918–5924 (2003).
[Crossref]

Liang, J.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Liu, H.-T.

H. Tian, H.-T. Liu, and H.-F. Cheng, “A thin radar-infrared stealth-compatible structure: Design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

Liu, L.

Liu, S.

T. J. Cui, S. Liu, and L. Zhang, “Information metamaterials and metasurfaces,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(15), 3644–3668 (2017).
[Crossref]

Liu, T.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Liu, Z.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Lu, H.

L. Zhang, H. Lu, P. Zhou, J. Xie, and L. Deng, “Oblique incidence performance of microwave absorbers based on magnetic polymer composites,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

Lv, Y.

Ma, H.

S. Sui, H. Ma, Y. Lv, J. Wang, Z. Li, J. Zhang, Z. Xu, and S. Qu, “Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase,” Opt. Express 26(2), 1443–1451 (2018).
[Crossref] [PubMed]

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
[Crossref]

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, Y.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Mancinelli, R.

I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens,” IEEE Trans. Electromagn. Compat. 51(3), 700–707 (2009).
[Crossref]

Mansor, A. A.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Marchetti, M.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Micheli, D.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Mittra, R.

Y. Zhang, R. Mittra, B. Z. Wang, and N. T. Huang, “AMCs for ultrathin and broadband RAM design,” Electron. Lett. 45(10), 484–485 (2009).
[Crossref]

Moglie, F.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Monnereau, L.

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

Montoya, S. A.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Nakamura, H.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Nie, Y.

Z. Wang, Y. Cheng, Y. Nie, X. Wang, and R. Gong, “Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications,” J. Appl. Phys. 116(5), 054905 (2014).
[Crossref]

Okayama, K.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Ong, C. K.

Z. W. Li, L. Chen, and C. K. Ong, “High-frequency magnetic properties of W-type barium-ferrite BaZn2-xCoxFe16O27 composites,” J. Appl. Phys. 94(9), 5918–5924 (2003).
[Crossref]

Ota, H.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Ozbay, E.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 15079 (2017).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Pang, Y.

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
[Crossref]

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113(11), 114902 (2013).
[Crossref]

Paquay, M.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Pardoen, T.

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

Pastore, R.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Pors, A.

Primiani, V. M.

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Qi, M.

T. J. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qin, F.

F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
[Crossref]

Qu, S.

S. Sui, H. Ma, Y. Lv, J. Wang, Z. Li, J. Zhang, Z. Xu, and S. Qu, “Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase,” Opt. Express 26(2), 1443–1451 (2018).
[Crossref] [PubMed]

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
[Crossref]

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Quievy, N.

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Riley, C. T.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Sarabandi, K.

A. Edalati and K. Sarabandi, “Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
[Crossref]

Sarasini, F.

I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens,” IEEE Trans. Electromagn. Compat. 51(3), 700–707 (2009).
[Crossref]

Sarto, M. S.

I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens,” IEEE Trans. Electromagn. Compat. 51(3), 700–707 (2009).
[Crossref]

Sato, R.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Shahin, S.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Shen, Y.

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Shin, J. H.

W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).

Smalley, J. S. T.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Song, T. H.

W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sugimoto, S.

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

Sui, S.

S. Sui, H. Ma, Y. Lv, J. Wang, Z. Li, J. Zhang, Z. Xu, and S. Qu, “Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase,” Opt. Express 26(2), 1443–1451 (2018).
[Crossref] [PubMed]

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
[Crossref]

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Sun, L.

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Tamburrano, A.

I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens,” IEEE Trans. Electromagn. Compat. 51(3), 700–707 (2009).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thomassin, J. M.

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

Tian, H.

H. Tian, H.-T. Liu, and H.-F. Cheng, “A thin radar-infrared stealth-compatible structure: Design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

Travitzky, N.

Y. W. Yin, L. F. Cheng, L. T. Zhang, N. Travitzky, and P. Greil, “Fiber-reinforced multifunctional SiC matrix composite materials,” Int. Mater. Rev. 62(3), 117–172 (2017).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Vallini, F.

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Wan, X.

T. J. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, B. Z.

Y. Zhang, R. Mittra, B. Z. Wang, and N. T. Huang, “AMCs for ultrathin and broadband RAM design,” Electron. Lett. 45(10), 484–485 (2009).
[Crossref]

Wang, C.

C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
[Crossref]

Wang, J.

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
[Crossref]

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

S. Sui, H. Ma, Y. Lv, J. Wang, Z. Li, J. Zhang, Z. Xu, and S. Qu, “Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase,” Opt. Express 26(2), 1443–1451 (2018).
[Crossref] [PubMed]

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113(11), 114902 (2013).
[Crossref]

L. Sun, H. Cheng, Y. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20(4), 4675–4680 (2012).
[Crossref] [PubMed]

Wang, W.

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

Wang, X.

Z. Wang, Y. Cheng, Y. Nie, X. Wang, and R. Gong, “Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications,” J. Appl. Phys. 116(5), 054905 (2014).
[Crossref]

Wang, Z.

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

Z. Wang, Y. Cheng, Y. Nie, X. Wang, and R. Gong, “Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications,” J. Appl. Phys. 116(5), 054905 (2014).
[Crossref]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Wen, W.

C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
[Crossref]

Werner, D. H.

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xie, J.

L. Zhang, H. Lu, P. Zhou, J. Xie, and L. Deng, “Oblique incidence performance of microwave absorbers based on magnetic polymer composites,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

Xu, C.

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

Xu, G. Y.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, P.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, Z.

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
[Crossref]

S. Sui, H. Ma, Y. Lv, J. Wang, Z. Li, J. Zhang, Z. Xu, and S. Qu, “Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase,” Opt. Express 26(2), 1443–1451 (2018).
[Crossref] [PubMed]

Yan, M.

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

Yang, J.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Yao, K.

C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
[Crossref]

Yin, Y. W.

Y. W. Yin, L. F. Cheng, L. T. Zhang, N. Travitzky, and P. Greil, “Fiber-reinforced multifunctional SiC matrix composite materials,” Int. Mater. Rev. 62(3), 117–172 (2017).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, N.

Y. Fu, T. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

Yuan, W.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Yusoff, A. N.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Zhang, F.

Zhang, H.

Z. Fang, X. Cao, C. Li, H. Zhang, J. Zhang, and H. Zhang, “Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation,” Carbon 44(15), 3368–3370 (2006).
[Crossref]

Z. Fang, X. Cao, C. Li, H. Zhang, J. Zhang, and H. Zhang, “Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation,” Carbon 44(15), 3368–3370 (2006).
[Crossref]

Zhang, J.

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

S. Sui, H. Ma, Y. Lv, J. Wang, Z. Li, J. Zhang, Z. Xu, and S. Qu, “Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase,” Opt. Express 26(2), 1443–1451 (2018).
[Crossref] [PubMed]

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Z. Fang, X. Cao, C. Li, H. Zhang, J. Zhang, and H. Zhang, “Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation,” Carbon 44(15), 3368–3370 (2006).
[Crossref]

Zhang, L.

T. J. Cui, S. Liu, and L. Zhang, “Information metamaterials and metasurfaces,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(15), 3644–3668 (2017).
[Crossref]

L. Zhang, H. Lu, P. Zhou, J. Xie, and L. Deng, “Oblique incidence performance of microwave absorbers based on magnetic polymer composites,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

Zhang, L. T.

Y. W. Yin, L. F. Cheng, L. T. Zhang, N. Travitzky, and P. Greil, “Fiber-reinforced multifunctional SiC matrix composite materials,” Int. Mater. Rev. 62(3), 117–172 (2017).
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, R. Mittra, B. Z. Wang, and N. T. Huang, “AMCs for ultrathin and broadband RAM design,” Electron. Lett. 45(10), 484–485 (2009).
[Crossref]

Zhao, J.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

T. J. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zheng, Q.

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

Zhong, S.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Zhou, P.

L. Zhang, H. Lu, P. Zhou, J. Xie, and L. Deng, “Oblique incidence performance of microwave absorbers based on magnetic polymer composites,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

Zhou, Y.

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113(11), 114902 (2013).
[Crossref]

L. Sun, H. Cheng, Y. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20(4), 4675–4680 (2012).
[Crossref] [PubMed]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Carbon (1)

Z. Fang, X. Cao, C. Li, H. Zhang, J. Zhang, and H. Zhang, “Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation,” Carbon 44(15), 3368–3370 (2006).
[Crossref]

Chin. Phys. B (1)

H. Tian, H.-T. Liu, and H.-F. Cheng, “A thin radar-infrared stealth-compatible structure: Design, fabrication, and characterization,” Chin. Phys. B 23(2), 025201 (2014).
[Crossref]

Compos Sci. Technol. (1)

W. H. Choi, J. B. Kim, J. H. Shin, T. H. Song, W. J. Lee, Y. S. Joo, and C. G. Kim, “Circuit analog type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication,” Compos Sci. Technol. 105, 96e101 (2014).

Compos. Part B (1)

C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, and D. Fang, “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Compos. Part B 123, 19–27 (2017).
[Crossref]

Compos. Struct. (1)

S. E. Lee, J. H. Kang, and C. G. Kim, “Fabrication and design of multilayered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites,” Compos. Struct. 76(4), 397–405 (2006).
[Crossref]

Electron. Lett. (2)

B. Chambers, “Optimum design of a Salibury screen radar absorber,” Electron. Lett. 30(16), 1353–1354 (1994).
[Crossref]

Y. Zhang, R. Mittra, B. Z. Wang, and N. T. Huang, “AMCs for ultrathin and broadband RAM design,” Electron. Lett. 45(10), 484–485 (2009).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

A. Edalati and K. Sarabandi, “Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
[Crossref]

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

IEEE Trans. Electromagn. Compat. (2)

J. B. Kim and J. H. Byun, “Salisbury screen absorbers of dielectric lossy sheets of carbon nanocomposite laminates,” IEEE Trans. Electromagn. Compat. 54(1), 37–42 (2012).
[Crossref]

I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens,” IEEE Trans. Electromagn. Compat. 51(3), 700–707 (2009).
[Crossref]

IEEE Trans. Magn. (2)

L. Zhang, H. Lu, P. Zhou, J. Xie, and L. Deng, “Oblique incidence performance of microwave absorbers based on magnetic polymer composites,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura, and R. Sato, “M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range,” IEEE Trans. Magn. 35(5), 3154–3156 (1999).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Trans. Microw. Theory Tech. 59(10), 2633–2646 (2011).
[Crossref]

Infrared Phys. Technol. (1)

C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, and W. Wang, “Metamaterial absorber for frequency selective thermal radiation,” Infrared Phys. Technol. 88, 133–138 (2018).
[Crossref]

Int. Mater. Rev. (1)

Y. W. Yin, L. F. Cheng, L. T. Zhang, N. Travitzky, and P. Greil, “Fiber-reinforced multifunctional SiC matrix composite materials,” Int. Mater. Rev. 62(3), 117–172 (2017).
[Crossref]

J. Appl. Phys. (5)

Z. W. Li, L. Chen, and C. K. Ong, “High-frequency magnetic properties of W-type barium-ferrite BaZn2-xCoxFe16O27 composites,” J. Appl. Phys. 94(9), 5918–5924 (2003).
[Crossref]

F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
[Crossref]

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach,” J. Appl. Phys. 113(11), 114902 (2013).
[Crossref]

Z. Wang, Y. Cheng, Y. Nie, X. Wang, and R. Gong, “Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications,” J. Appl. Phys. 116(5), 054905 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

T. J. Cui, S. Liu, and L. Zhang, “Information metamaterials and metasurfaces,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(15), 3644–3668 (2017).
[Crossref]

J. Phys. D Appl. Phys. (2)

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive coding metasurface for further radar cross section reduction,” J. Phys. D Appl. Phys. 51(6), 065603 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, and T. J. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Light Sci. Appl. (1)

T. J. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Mater. Des. (1)

P. Bollen, N. Quievy, C. Detrembleur, J. M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, and T. Pardoen, “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Mater. Des. 89, 323–334 (2016).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Y. Fu, T. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

Nano Lett. (2)

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

J. S. T. Smalley, F. Vallini, S. A. Montoya, L. Ferrari, S. Shahin, C. T. Riley, B. Kanté, E. E. Fullerton, Z. Liu, and Y. Fainman, “Luminescent hyperbolic metasurfaces,” Nat. Commun. 8, 13793 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Sci. Rep. (3)

Q. Zheng, Y. Li, J. Zhang, H. Ma, J. Wang, Y. Pang, Y. Han, S. Sui, Y. Shen, H. Chen, and S. Qu, “Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase,” Sci. Rep. 7, 43543 (2017).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7(1), 15079 (2017).
[Crossref] [PubMed]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (3)

https://www.cst.com .

B. A. Munk, Frequency Selective Surfaces-Theory and Design (Wiley, 2000).

E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd ed. (SciTech Publishing, Inc., 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the anisotropic unit cell. (a) Cut wires spaced from the backed metal by a dielectric layer. (b) Square patches etched on a dielectric layer. (c) Unit cell created by combining the cut wires and square patches.
Fig. 2
Fig. 2 (a) Reflection amplitude and (b) phase of the anisotropic unit cell under x- and y-polarized wave incidences.
Fig. 3
Fig. 3 (a) Phase difference between the two kinds of unit cells. The values were calculated from the reflection phases shown in Fig. 2 (b) and the gray filling area defines the range of 180° ± 37°. (b) Pattern of the cut wires in the designed HMS. The top square patch array is not shown for conciseness and the axis defines polarization of the incident wave.
Fig. 4
Fig. 4 Simulated reflection reduction spectra of the HMS under (a) normal incidence with the polarization angles of 0°, 20°, 45°, 70° and 90°, and (b) TE and (c) TM waves with the incident angles of 0°, 15°, 30° and 45° in the x-z plane.
Fig. 5
Fig. 5 Three-dimensional scattering patterns (a, b, c) and RCS in the x-z plane (d, e, f) at 9, 13 and 16 GHz.
Fig. 6
Fig. 6 Photographs of the fabricated (a) cut-wire and (b) square patch array layers. Inset is a larger version of the square patch array.
Fig. 7
Fig. 7 Measured reflection reduction spectra of the HMS under normal incidence with the polarization angles of (a) 0° and (b) 90°. The simulated results are also plotted to provide a comparison.
Fig. 8
Fig. 8 Emissivity spectra in the infrared band for the fabricated HMS.

Metrics