Abstract

We present a model to predict the final depth of percussion-drilled holes that are produced with picosecond laser pulses in metals. It is based on the assumption that boreholes always have conical geometries when the drilling process terminates. We show that the model is valid for various process parameters when drilling in stainless steel. This was even confirmed by drilling with 3 mJ pulses, which resulted in a 10 mm deep borehole without thermal damage.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz

Johannes Finger and Martin Reininghaus
Opt. Express 22(15) 18790-18799 (2014)

Real time ablation rate measurement during high aspect-ratio hole drilling with a 120-ps fiber laser

Francesco P. Mezzapesa, Teresa Sibillano, Francesca Di Niso, Antonio Ancona, Pietro M. Lugarà, Maurizio Dabbicco, and Gaetano Scamarcio
Opt. Express 20(1) 663-671 (2012)

Evolution of hole shape and size during short and ultrashort pulse laser deep drilling

Sven Döring, John Szilagyi, Sören Richter, Felix Zimmermann, Martin Richardson, Andreas Tünnermann, and Stefan Nolte
Opt. Express 20(24) 27147-27154 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in Steel using Ultrashort Pulsed Laser Beams with Radial and Azimuthal Polarization,” Opt. Express 18(21), 22305–22313 (2010).
    [Crossref] [PubMed]
  2. A. Weck, T. Crawford, D. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
    [Crossref]
  3. M. Kraus, D. Walter, A. Michalowski, and J. König, “Processing Techniques and System Technology for Precise and Productive Microdrilling in Metals,” Ultrashort Pulse Laser Technology (Springer International Publishing, 2016), pp. 201–230.
  4. G. Umlauf, E. Zahedi, C. Wörz, J. Barz, M. Liewald, T. Graf, G. Tovar “Grundlagenuntersuchungen zur Herstellung von Lasermikrobohrungen in Stahl und dem Ausströmverhalten von CO2 als Trockenschmiermedium, ” Dry Met. Forming OAJ FMT 2 018–049 (2016).
  5. D. J. Förster, R. Weber, and T. Graf, “Residual heat during ultrashort laser drilling of metals,” Proceedings of LPM2017 - the 18th International Symposium on Laser Precision Microfabrication (2017)
  6. D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–64 (2004).
    [Crossref]
  7. S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010).
    [Crossref] [PubMed]
  8. S. Döring, “Analysis of the hole shape evolution in ultrashort pulse laser drilling,” (Cuvillier Verlag, 2014).
  9. A. Michalowski, „Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen, ” (Herbert Utz Verlag, 2014)
  10. G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
  11. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [Crossref] [PubMed]
  12. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
    [Crossref] [PubMed]
  13. F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22(10), 12200–12210 (2014).
    [Crossref] [PubMed]
  14. Y. Qin, A. Michalowski, R. Weber, S. Yang, T. Graf, and X. Ni, “Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries-the influence of diffraction and interference,” Opt. Express 20(24), 26606–26617 (2012).
    [Crossref] [PubMed]
  15. A. Gouffé, “Correction d’ouverture des corps-noirs artificiels compte tenu eds diffusions multiples internes,” Revue d’Optique 24, 1–10 (1945).
  16. A. Gouffé, “Aperture Corrections of Artificial Black Bodies with Consideration of Multiple Internal Diffusions,” General dynamics/Astronautics, San Diego, CA (1960)
  17. C. Banas, “High power laser welding,” The Industrial Laser Annual Handbook, 102 (104) (Pennwell Books Tulsa, 1986), p. 69.
  18. F. Fetzer, P. Stritt, P. Berger, R. Weber, and T. Graf, “Fast numerical method to predict the depth of laser welding,” J. Laser Appl. 29(2), 022012 (2017).
    [Crossref]
  19. H. Hügel and T. Graf, Laser in der Fertigung, 3rd ed. (Springer Vieweg, 2014)
  20. B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
  21. J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
    [Crossref] [PubMed]
  22. B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
    [Crossref]
  23. H. Pantsar, P. Laakso, and R. Penttilä, “Material removal rates of metals using UV and IR picosecond pulses,” Proceedings of the 4th International WLT-conference on Lasers in Manufacturing (2007).
  24. S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
    [Crossref]
  25. S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
    [Crossref]
  26. A. Feuer, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Laser Drilling of High-Quality Microhole Arrays for Super-Micro Fibre Production,” 7th International Conference & Exhibition on Photonic Technologies (2012)

2017 (1)

F. Fetzer, P. Stritt, P. Berger, R. Weber, and T. Graf, “Fast numerical method to predict the depth of laser welding,” J. Laser Appl. 29(2), 022012 (2017).
[Crossref]

2014 (2)

2013 (2)

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).

J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

2010 (2)

2008 (3)

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[Crossref] [PubMed]

A. Weck, T. Crawford, D. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[Crossref]

2007 (1)

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

2004 (1)

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–64 (2004).
[Crossref]

2001 (1)

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

1945 (1)

A. Gouffé, “Correction d’ouverture des corps-noirs artificiels compte tenu eds diffusions multiples internes,” Revue d’Optique 24, 1–10 (1945).

Ahmed, M. A.

Ancona, A.

Bandi, T.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).

Bauer, D.

Berger, P.

F. Fetzer, P. Stritt, P. Berger, R. Weber, and T. Graf, “Fast numerical method to predict the depth of laser welding,” J. Laser Appl. 29(2), 022012 (2017).
[Crossref]

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
[Crossref] [PubMed]

Breitling, D.

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–64 (2004).
[Crossref]

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

Brikas, M.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).

Crawford, T.

A. Weck, T. Crawford, D. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[Crossref]

Dausinger, F.

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–64 (2004).
[Crossref]

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

Di Niso, F.

Dommann, A.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).

Döring, S.

Fetzer, F.

F. Fetzer, P. Stritt, P. Berger, R. Weber, and T. Graf, “Fast numerical method to predict the depth of laser welding,” J. Laser Appl. 29(2), 022012 (2017).
[Crossref]

Feuer, A.

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
[Crossref] [PubMed]

A. Feuer, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Laser Drilling of High-Quality Microhole Arrays for Super-Micro Fibre Production,” 7th International Conference & Exhibition on Photonic Technologies (2012)

Freitag, C.

Garnov, S. V.

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

Gaudiuso, C.

Gecys, P.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).

Gedvilas, M.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).

Gouffé, A.

A. Gouffé, “Correction d’ouverture des corps-noirs artificiels compte tenu eds diffusions multiples internes,” Revue d’Optique 24, 1–10 (1945).

Graf, T.

Haugen, H. K.

A. Weck, T. Crawford, D. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[Crossref]

Hennig, G.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).

Hermanutz, F.

A. Feuer, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Laser Drilling of High-Quality Microhole Arrays for Super-Micro Fibre Production,” 7th International Conference & Exhibition on Photonic Technologies (2012)

Hunziker, U.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

Ingildeev, D.

A. Feuer, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Laser Drilling of High-Quality Microhole Arrays for Super-Micro Fibre Production,” 7th International Conference & Exhibition on Photonic Technologies (2012)

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

Killi, A.

Klimentov, S. M.

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

Kononenko, T. V.

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

Konov, V. I.

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

Kraus, M.

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in Steel using Ultrashort Pulsed Laser Beams with Radial and Azimuthal Polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

A. Feuer, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Laser Drilling of High-Quality Microhole Arrays for Super-Micro Fibre Production,” 7th International Conference & Exhibition on Photonic Technologies (2012)

Laakso, P.

H. Pantsar, P. Laakso, and R. Penttilä, “Material removal rates of metals using UV and IR picosecond pulses,” Proceedings of the 4th International WLT-conference on Lasers in Manufacturing (2007).

Limpert, J.

Lugarà, P. M.

Mezzapesa, F. P.

Michalowski, A.

Muralt, M.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

Neels, A.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).

Negel, J.-P.

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

Ni, X.

Nolte, S.

Onuseit, V.

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
[Crossref] [PubMed]

A. Feuer, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Laser Drilling of High-Quality Microhole Arrays for Super-Micro Fibre Production,” 7th International Conference & Exhibition on Photonic Technologies (2012)

Pantsar, H.

H. Pantsar, P. Laakso, and R. Penttilä, “Material removal rates of metals using UV and IR picosecond pulses,” Proceedings of the 4th International WLT-conference on Lasers in Manufacturing (2007).

Penttilä, R.

H. Pantsar, P. Laakso, and R. Penttilä, “Material removal rates of metals using UV and IR picosecond pulses,” Proceedings of the 4th International WLT-conference on Lasers in Manufacturing (2007).

Pivovarov, P. A.

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

Preston, J. S.

A. Weck, T. Crawford, D. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[Crossref]

Prokhorov, A. M.

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

Qin, Y.

Raciukaitis, G.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).

Rademaker, K.

Richter, S.

Röser, F.

Ruf, A.

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–64 (2004).
[Crossref]

Schmid, M.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

Sibillano, T.

Stritt, P.

F. Fetzer, P. Stritt, P. Berger, R. Weber, and T. Graf, “Fast numerical method to predict the depth of laser welding,” J. Laser Appl. 29(2), 022012 (2017).
[Crossref]

Sutter, D.

Tsarkova, O. G.

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

Tünnermann, A.

Voss, A.

Weber, R.

Weck, A.

A. Weck, T. Crawford, D. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[Crossref]

Wiedenmann, M.

Wilkinson, D.

A. Weck, T. Crawford, D. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[Crossref]

Yang, S.

Zuercher, J.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Weck, T. Crawford, D. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Appl. Phys., A Mater. Sci. Process. 90(3), 537–543 (2008).
[Crossref]

J. Laser Appl. (1)

F. Fetzer, P. Stritt, P. Berger, R. Weber, and T. Graf, “Fast numerical method to predict the depth of laser welding,” J. Laser Appl. 29(2), 022012 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Procedia (1)

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

Phys. Wave Phenom. (1)

S. M. Klimentov, S. V. Garnov, V. I. Konov, T. V. Kononenko, P. A. Pivovarov, O. G. Tsarkova, D. Breitling, and F. Dausinger, “Effect of low-threshold air breakdown on material ablation by short laser pulses,” Phys. Wave Phenom. 15(1), 1–11 (2007).
[Crossref]

Proc. SPIE (3)

D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in machining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–64 (2004).
[Crossref]

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).

Quantum Electron. (1)

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001).
[Crossref]

Revue d’Optique (1)

A. Gouffé, “Correction d’ouverture des corps-noirs artificiels compte tenu eds diffusions multiples internes,” Revue d’Optique 24, 1–10 (1945).

Other (10)

A. Gouffé, “Aperture Corrections of Artificial Black Bodies with Consideration of Multiple Internal Diffusions,” General dynamics/Astronautics, San Diego, CA (1960)

C. Banas, “High power laser welding,” The Industrial Laser Annual Handbook, 102 (104) (Pennwell Books Tulsa, 1986), p. 69.

H. Hügel and T. Graf, Laser in der Fertigung, 3rd ed. (Springer Vieweg, 2014)

S. Döring, “Analysis of the hole shape evolution in ultrashort pulse laser drilling,” (Cuvillier Verlag, 2014).

A. Michalowski, „Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen, ” (Herbert Utz Verlag, 2014)

M. Kraus, D. Walter, A. Michalowski, and J. König, “Processing Techniques and System Technology for Precise and Productive Microdrilling in Metals,” Ultrashort Pulse Laser Technology (Springer International Publishing, 2016), pp. 201–230.

G. Umlauf, E. Zahedi, C. Wörz, J. Barz, M. Liewald, T. Graf, G. Tovar “Grundlagenuntersuchungen zur Herstellung von Lasermikrobohrungen in Stahl und dem Ausströmverhalten von CO2 als Trockenschmiermedium, ” Dry Met. Forming OAJ FMT 2 018–049 (2016).

D. J. Förster, R. Weber, and T. Graf, “Residual heat during ultrashort laser drilling of metals,” Proceedings of LPM2017 - the 18th International Symposium on Laser Precision Microfabrication (2017)

A. Feuer, M. Kraus, V. Onuseit, R. Weber, T. Graf, D. Ingildeev, and F. Hermanutz, “Laser Drilling of High-Quality Microhole Arrays for Super-Micro Fibre Production,” 7th International Conference & Exhibition on Photonic Technologies (2012)

H. Pantsar, P. Laakso, and R. Penttilä, “Material removal rates of metals using UV and IR picosecond pulses,” Proceedings of the 4th International WLT-conference on Lasers in Manufacturing (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 a) Incident lateral fluence profile (idealized Gaussian, blue). b) Conical geometry at the time of termination of the drilling process with homogenous fluence distribution (red)
Fig. 2
Fig. 2 Experimental results (data points with error bars) and the ratio zdrill/w0 calculated from the simplified model (black line with surrounding hatch, standing for a model with an ablation threshold of 0.09 ± 0.02 J/cm2). Exemplary cross sections of one through hole and several blind holes are shown at the top. After recording the pictures, the contrast was artificially increased by image processing software. The spatial beam profile of the used ps laser is given in the inset on the right.
Fig. 3
Fig. 3 Through hole in 10 mm stainless steel (St 1.4301 / AISI 304), etched (Adler etchant); entrance diameter approx. 410 µm (left side), outlet diameter approx. 52 µm (right side); the beam profile of the used high-energy ps laser is displayed in the inset on the right. After recording the picture, the contrast was artificially increased by image processing software. The number of pulses required to create this hole amounted to 12.2 million, resulting in a drilling time of 6 minutes and 48 seconds and an average drilling rate of 8.2 Å per pulse.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕth=ϕ0exp( 2 r 2 w 0 2 )
ϕ0= 2 E P π w 0 2
rabl= w 0 1 2 ln( ϕ 0 ϕ th )
ϕ th = E P π r abl r abl 2 + z drill 2
z drill w 0 = ϕ 0 2 ϕ th 2 ln 2 ( ϕ 0 ϕ th ) 2 ϕ th 2 ln( ϕ 0 ϕ th )

Metrics