Abstract

This work presents a novel nondestructive cavity pressure characterization approach in microinjection molding (μIM) through measuring 3D part thickness distributions. For this purpose, a plano lens was designed and experiments based on Taguchi method were conducted. Both overall and local lens thickness distributions under various process conditions were analyzed in terms of their relevance with the cavity pressure during molding. Unexpectedly, a reliable linear regression model was developed fulfilling nondestructive multi-point or even continuous cavity pressure characterization with the overall lens thickness distribution. Furthermore, the topography of the constructed 3D thickness surface was found to depend on both process condition and measuring position. Finally, the process conditions were optimized for obtaining uniform distributions of both 3D thickness and cavity pressure.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of microinjection-molded miniature freeform Alvarez lenses

Likai Li, Thomas W. Raasch, Ingo Sieber, Erik Beckert, Ralf Steinkopf, Ulrich Gengenbach, and Allen Y. Yi
Appl. Opt. 53(19) 4248-4255 (2014)

Brightness field distributions of microlens arrays using micro molding

Hsin-Chung Cheng, Chiung-Fang Huang, Yi Lin, and Yung-Kang Shen
Opt. Express 18(26) 26887-26904 (2010)

Analysis of optical properties in injection-molded and compression-molded optical lenses

Chung Yen Wang and Pei Jen Wang
Appl. Opt. 53(11) 2523-2531 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Sun, L. Chang, and L. Li, “Manufacturing polymeric micro lenses and self-organised micro lens arrays by using microfluidic dispensers,” J. Micromech. Microeng. 25(11), 115012 (2015).
    [Crossref]
  2. Y. Wang, L. Qiu, Y. Song, and W. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol. 23(5), 055204 (2012).
    [Crossref]
  3. H. Zhang, L. Li, D. L. McCray, S. Scheiding, N. J. Naples, A. Gebhardt, S. Risse, R. Eberhardt, A. Tünnermann, and A. Y. Yi, “Development of a low cost high precision three-layer 3D artificial compound eye,” Opt. Express 21(19), 22232–22245 (2013).
    [Crossref] [PubMed]
  4. K. Park, B. Kim, and D. Yao, “Numerical simulation for injection molding with a rapidly heated mold, Part II: Birefringence prediction,” Polym.- Plast. Technol. 45(8), 903–909 (2006).
    [Crossref]
  5. K. Yin, S. Ji, H. Fein, M. Ponting, A. Olah, and E. Baer, “Evaluation of high temperature polymers in nanolayered films and gradient refractive index (GRIN) lenses,” J. Appl. Polym. Sci. 132(44), 42741 (2015).
    [Crossref]
  6. J. Park, J. Jin, J. W. Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305, 170–174 (2013).
    [Crossref]
  7. Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Measurement of optical thickness variation of BK7 plate by wavelength tuning interferometry,” Opt. Express 23(17), 22928–22938 (2015).
    [Crossref] [PubMed]
  8. M. Jin, R. X. La, Y. Zhang, K. J. Liu, X. P. Li, and J. Zhang, “Stratiform β crystals in ultrahigh molecular weight polyethylene and β-nucleating agent-nucleated isotactic polypropylene at micro-injection molding condition,” Polym. Test. 42, 135–143 (2015).
    [Crossref]
  9. C. Yang, X.-H. Yin, and G.-M. Cheng, “Microinjection molding of microsystem components: new aspects in improving performance,” J. Micromech. Microeng. 23(9), 093001 (2013).
    [Crossref]
  10. V. Speranza, U. Vietri, and R. Pantani, “Monitoring of injection molding of thermoplastics: average solidification pressure as a key parameter for quality control,” Macromol. Res. 19(6), 542–554 (2011).
    [Crossref]
  11. H. Hassan, “An experimental work on the effect of injection molding parameters on the cavity pressure and product weight,” Int. J. Adv. Manuf. Technol. 67(1–4), 675–686 (2013).
    [Crossref]
  12. M. Kurt, O. S. Kamber, Y. Kaynak, G. Atakok, and O. Girit, “Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products,” Mater. Des. 30(8), 3217–3224 (2009).
    [Crossref]
  13. J. S. Nam, D. S. Baek, H. H. Jo, J. Y. Song, T. H. Ha, and S. W. Lee, “Lens injection moulding condition diagnosis and form error analysis using cavity pressure signals based on response surface methodology,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(7), 1343–1350 (2016).
    [Crossref]
  14. T. Yamada, Y. Murata, and H. Yokoi, “Visualization analysis of a multilayer foam development process in microcellular injection molding,” Int. Polym. Process. 27(3), 299–309 (2012).
    [Crossref]
  15. K.-M. Tsai and J.-K. Lan, “Correlation between runner pressure and cavity pressure within injection mold,” Int. J. Adv. Manuf. Technol. 79(1–4), 273–284 (2015).
    [Crossref]
  16. W.-S. Guan and H.-X. Huang, “A proposed technique to acquire cavity pressure using a surface strain sensor during injection-compression molding,” J. Manuf. Sci. Eng. 135(2), 021003 (2013).
    [Crossref]
  17. P. Zhao, S. Wang, J. Ying, and J. Z. Fu, “Non-destructive measurement of cavity pressure during injection molding process based on ultrasonic technology and Gaussian process,” Polym. Test. 32(8), 1436–1444 (2013).
    [Crossref]
  18. T. Nguyen-Chung, G. Juttner, C. Loser, T. Pham, and M. Gehde, “Determination of the heat transfer coefficient from short-shots studies and precise simulation of microinjection molding,” Polym. Eng. Sci. 50(1), 165–173 (2010).
    [Crossref]
  19. J. H. Choi, B. G. Pyo, J. S. Tae, H. P. Park, and B. O. Rhee, “Structural analysis examining the mold deformation behavior for the detection of the flash in the injection mold,” Int. Polym. Process. 29(4), 489–494 (2014).
    [Crossref]
  20. J. Z. Zhang, “Development of an in-process Pokayoke system utilizing accelerometer and logistic regression modeling for monitoring injection molding flash,” Int. J. Adv. Manuf. Technol. 71(9–12), 1793–1800 (2014).
    [Crossref]
  21. S. Bäumer, Handbook of plastic optics (Wiley-VCH, 2005).
  22. J.-Y. Shieh, L. K. Wang, and S.-Y. Ke, “A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses,” Opt. Rev. 17(4), 399–403 (2010).
    [Crossref]
  23. R. Spina, P. Walach, J. Schild, and C. Hopmann, “Analysis of lens manufacturing with injection molding,” Int. J. Precis. Eng. Manuf. 13(11), 2087–2095 (2012).
    [Crossref]
  24. L. Li, T. W. Raasch, and A. Y. Yi, “Simulation and measurement of optical aberrations of injection molded progressive addition lenses,” Appl. Opt. 52(24), 6022–6029 (2013).
    [Crossref] [PubMed]
  25. X.-H. Yin, C. Yang, and X.-P. Li, “Simultaneous control of birefringence and warpage for thermoplastic optical lenses fabricated using microinjection molding,” Polym.-Plast. Technol. 54(17), 1772–1779 (2015).
    [Crossref]
  26. N. R. Draper and H. Smith, Applied regression analysis (Wiley, 1998).
  27. M. Rides, C. Allen, D. Fleming, B. Haworth, and A. Kelly, “Intercomparison of slip flow velocity measurements of filled polymers by capillary extrusion rheometry,” Polym. Test. 27(3), 308–320 (2008).
    [Crossref]
  28. S.-Q. Wang and P. A. Drda, “Stick-slip transition in capillary flow of linear polyethylene: 3. Surface conditions,” Rheol. Acta 36(2), 128–134 (1997).
    [Crossref]

2016 (1)

J. S. Nam, D. S. Baek, H. H. Jo, J. Y. Song, T. H. Ha, and S. W. Lee, “Lens injection moulding condition diagnosis and form error analysis using cavity pressure signals based on response surface methodology,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(7), 1343–1350 (2016).
[Crossref]

2015 (6)

X.-H. Yin, C. Yang, and X.-P. Li, “Simultaneous control of birefringence and warpage for thermoplastic optical lenses fabricated using microinjection molding,” Polym.-Plast. Technol. 54(17), 1772–1779 (2015).
[Crossref]

R. Sun, L. Chang, and L. Li, “Manufacturing polymeric micro lenses and self-organised micro lens arrays by using microfluidic dispensers,” J. Micromech. Microeng. 25(11), 115012 (2015).
[Crossref]

Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Measurement of optical thickness variation of BK7 plate by wavelength tuning interferometry,” Opt. Express 23(17), 22928–22938 (2015).
[Crossref] [PubMed]

M. Jin, R. X. La, Y. Zhang, K. J. Liu, X. P. Li, and J. Zhang, “Stratiform β crystals in ultrahigh molecular weight polyethylene and β-nucleating agent-nucleated isotactic polypropylene at micro-injection molding condition,” Polym. Test. 42, 135–143 (2015).
[Crossref]

K. Yin, S. Ji, H. Fein, M. Ponting, A. Olah, and E. Baer, “Evaluation of high temperature polymers in nanolayered films and gradient refractive index (GRIN) lenses,” J. Appl. Polym. Sci. 132(44), 42741 (2015).
[Crossref]

K.-M. Tsai and J.-K. Lan, “Correlation between runner pressure and cavity pressure within injection mold,” Int. J. Adv. Manuf. Technol. 79(1–4), 273–284 (2015).
[Crossref]

2014 (2)

J. H. Choi, B. G. Pyo, J. S. Tae, H. P. Park, and B. O. Rhee, “Structural analysis examining the mold deformation behavior for the detection of the flash in the injection mold,” Int. Polym. Process. 29(4), 489–494 (2014).
[Crossref]

J. Z. Zhang, “Development of an in-process Pokayoke system utilizing accelerometer and logistic regression modeling for monitoring injection molding flash,” Int. J. Adv. Manuf. Technol. 71(9–12), 1793–1800 (2014).
[Crossref]

2013 (7)

L. Li, T. W. Raasch, and A. Y. Yi, “Simulation and measurement of optical aberrations of injection molded progressive addition lenses,” Appl. Opt. 52(24), 6022–6029 (2013).
[Crossref] [PubMed]

W.-S. Guan and H.-X. Huang, “A proposed technique to acquire cavity pressure using a surface strain sensor during injection-compression molding,” J. Manuf. Sci. Eng. 135(2), 021003 (2013).
[Crossref]

P. Zhao, S. Wang, J. Ying, and J. Z. Fu, “Non-destructive measurement of cavity pressure during injection molding process based on ultrasonic technology and Gaussian process,” Polym. Test. 32(8), 1436–1444 (2013).
[Crossref]

J. Park, J. Jin, J. W. Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305, 170–174 (2013).
[Crossref]

H. Hassan, “An experimental work on the effect of injection molding parameters on the cavity pressure and product weight,” Int. J. Adv. Manuf. Technol. 67(1–4), 675–686 (2013).
[Crossref]

C. Yang, X.-H. Yin, and G.-M. Cheng, “Microinjection molding of microsystem components: new aspects in improving performance,” J. Micromech. Microeng. 23(9), 093001 (2013).
[Crossref]

H. Zhang, L. Li, D. L. McCray, S. Scheiding, N. J. Naples, A. Gebhardt, S. Risse, R. Eberhardt, A. Tünnermann, and A. Y. Yi, “Development of a low cost high precision three-layer 3D artificial compound eye,” Opt. Express 21(19), 22232–22245 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Wang, L. Qiu, Y. Song, and W. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol. 23(5), 055204 (2012).
[Crossref]

R. Spina, P. Walach, J. Schild, and C. Hopmann, “Analysis of lens manufacturing with injection molding,” Int. J. Precis. Eng. Manuf. 13(11), 2087–2095 (2012).
[Crossref]

T. Yamada, Y. Murata, and H. Yokoi, “Visualization analysis of a multilayer foam development process in microcellular injection molding,” Int. Polym. Process. 27(3), 299–309 (2012).
[Crossref]

2011 (1)

V. Speranza, U. Vietri, and R. Pantani, “Monitoring of injection molding of thermoplastics: average solidification pressure as a key parameter for quality control,” Macromol. Res. 19(6), 542–554 (2011).
[Crossref]

2010 (2)

T. Nguyen-Chung, G. Juttner, C. Loser, T. Pham, and M. Gehde, “Determination of the heat transfer coefficient from short-shots studies and precise simulation of microinjection molding,” Polym. Eng. Sci. 50(1), 165–173 (2010).
[Crossref]

J.-Y. Shieh, L. K. Wang, and S.-Y. Ke, “A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses,” Opt. Rev. 17(4), 399–403 (2010).
[Crossref]

2009 (1)

M. Kurt, O. S. Kamber, Y. Kaynak, G. Atakok, and O. Girit, “Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products,” Mater. Des. 30(8), 3217–3224 (2009).
[Crossref]

2008 (1)

M. Rides, C. Allen, D. Fleming, B. Haworth, and A. Kelly, “Intercomparison of slip flow velocity measurements of filled polymers by capillary extrusion rheometry,” Polym. Test. 27(3), 308–320 (2008).
[Crossref]

2006 (1)

K. Park, B. Kim, and D. Yao, “Numerical simulation for injection molding with a rapidly heated mold, Part II: Birefringence prediction,” Polym.- Plast. Technol. 45(8), 903–909 (2006).
[Crossref]

1997 (1)

S.-Q. Wang and P. A. Drda, “Stick-slip transition in capillary flow of linear polyethylene: 3. Surface conditions,” Rheol. Acta 36(2), 128–134 (1997).
[Crossref]

Allen, C.

M. Rides, C. Allen, D. Fleming, B. Haworth, and A. Kelly, “Intercomparison of slip flow velocity measurements of filled polymers by capillary extrusion rheometry,” Polym. Test. 27(3), 308–320 (2008).
[Crossref]

Atakok, G.

M. Kurt, O. S. Kamber, Y. Kaynak, G. Atakok, and O. Girit, “Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products,” Mater. Des. 30(8), 3217–3224 (2009).
[Crossref]

Baek, D. S.

J. S. Nam, D. S. Baek, H. H. Jo, J. Y. Song, T. H. Ha, and S. W. Lee, “Lens injection moulding condition diagnosis and form error analysis using cavity pressure signals based on response surface methodology,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(7), 1343–1350 (2016).
[Crossref]

Baer, E.

K. Yin, S. Ji, H. Fein, M. Ponting, A. Olah, and E. Baer, “Evaluation of high temperature polymers in nanolayered films and gradient refractive index (GRIN) lenses,” J. Appl. Polym. Sci. 132(44), 42741 (2015).
[Crossref]

Chang, L.

R. Sun, L. Chang, and L. Li, “Manufacturing polymeric micro lenses and self-organised micro lens arrays by using microfluidic dispensers,” J. Micromech. Microeng. 25(11), 115012 (2015).
[Crossref]

Cheng, G.-M.

C. Yang, X.-H. Yin, and G.-M. Cheng, “Microinjection molding of microsystem components: new aspects in improving performance,” J. Micromech. Microeng. 23(9), 093001 (2013).
[Crossref]

Choi, J. H.

J. H. Choi, B. G. Pyo, J. S. Tae, H. P. Park, and B. O. Rhee, “Structural analysis examining the mold deformation behavior for the detection of the flash in the injection mold,” Int. Polym. Process. 29(4), 489–494 (2014).
[Crossref]

Drda, P. A.

S.-Q. Wang and P. A. Drda, “Stick-slip transition in capillary flow of linear polyethylene: 3. Surface conditions,” Rheol. Acta 36(2), 128–134 (1997).
[Crossref]

Eberhardt, R.

Fein, H.

K. Yin, S. Ji, H. Fein, M. Ponting, A. Olah, and E. Baer, “Evaluation of high temperature polymers in nanolayered films and gradient refractive index (GRIN) lenses,” J. Appl. Polym. Sci. 132(44), 42741 (2015).
[Crossref]

Fleming, D.

M. Rides, C. Allen, D. Fleming, B. Haworth, and A. Kelly, “Intercomparison of slip flow velocity measurements of filled polymers by capillary extrusion rheometry,” Polym. Test. 27(3), 308–320 (2008).
[Crossref]

Fu, J. Z.

P. Zhao, S. Wang, J. Ying, and J. Z. Fu, “Non-destructive measurement of cavity pressure during injection molding process based on ultrasonic technology and Gaussian process,” Polym. Test. 32(8), 1436–1444 (2013).
[Crossref]

Gebhardt, A.

Gehde, M.

T. Nguyen-Chung, G. Juttner, C. Loser, T. Pham, and M. Gehde, “Determination of the heat transfer coefficient from short-shots studies and precise simulation of microinjection molding,” Polym. Eng. Sci. 50(1), 165–173 (2010).
[Crossref]

Girit, O.

M. Kurt, O. S. Kamber, Y. Kaynak, G. Atakok, and O. Girit, “Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products,” Mater. Des. 30(8), 3217–3224 (2009).
[Crossref]

Guan, W.-S.

W.-S. Guan and H.-X. Huang, “A proposed technique to acquire cavity pressure using a surface strain sensor during injection-compression molding,” J. Manuf. Sci. Eng. 135(2), 021003 (2013).
[Crossref]

Ha, T. H.

J. S. Nam, D. S. Baek, H. H. Jo, J. Y. Song, T. H. Ha, and S. W. Lee, “Lens injection moulding condition diagnosis and form error analysis using cavity pressure signals based on response surface methodology,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(7), 1343–1350 (2016).
[Crossref]

Hassan, H.

H. Hassan, “An experimental work on the effect of injection molding parameters on the cavity pressure and product weight,” Int. J. Adv. Manuf. Technol. 67(1–4), 675–686 (2013).
[Crossref]

Haworth, B.

M. Rides, C. Allen, D. Fleming, B. Haworth, and A. Kelly, “Intercomparison of slip flow velocity measurements of filled polymers by capillary extrusion rheometry,” Polym. Test. 27(3), 308–320 (2008).
[Crossref]

Hibino, K.

Hopmann, C.

R. Spina, P. Walach, J. Schild, and C. Hopmann, “Analysis of lens manufacturing with injection molding,” Int. J. Precis. Eng. Manuf. 13(11), 2087–2095 (2012).
[Crossref]

Huang, H.-X.

W.-S. Guan and H.-X. Huang, “A proposed technique to acquire cavity pressure using a surface strain sensor during injection-compression molding,” J. Manuf. Sci. Eng. 135(2), 021003 (2013).
[Crossref]

Ji, S.

K. Yin, S. Ji, H. Fein, M. Ponting, A. Olah, and E. Baer, “Evaluation of high temperature polymers in nanolayered films and gradient refractive index (GRIN) lenses,” J. Appl. Polym. Sci. 132(44), 42741 (2015).
[Crossref]

Jin, J.

J. Park, J. Jin, J. W. Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305, 170–174 (2013).
[Crossref]

Jin, M.

M. Jin, R. X. La, Y. Zhang, K. J. Liu, X. P. Li, and J. Zhang, “Stratiform β crystals in ultrahigh molecular weight polyethylene and β-nucleating agent-nucleated isotactic polypropylene at micro-injection molding condition,” Polym. Test. 42, 135–143 (2015).
[Crossref]

Jo, H. H.

J. S. Nam, D. S. Baek, H. H. Jo, J. Y. Song, T. H. Ha, and S. W. Lee, “Lens injection moulding condition diagnosis and form error analysis using cavity pressure signals based on response surface methodology,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(7), 1343–1350 (2016).
[Crossref]

Juttner, G.

T. Nguyen-Chung, G. Juttner, C. Loser, T. Pham, and M. Gehde, “Determination of the heat transfer coefficient from short-shots studies and precise simulation of microinjection molding,” Polym. Eng. Sci. 50(1), 165–173 (2010).
[Crossref]

Kamber, O. S.

M. Kurt, O. S. Kamber, Y. Kaynak, G. Atakok, and O. Girit, “Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products,” Mater. Des. 30(8), 3217–3224 (2009).
[Crossref]

Kaynak, Y.

M. Kurt, O. S. Kamber, Y. Kaynak, G. Atakok, and O. Girit, “Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products,” Mater. Des. 30(8), 3217–3224 (2009).
[Crossref]

Ke, S.-Y.

J.-Y. Shieh, L. K. Wang, and S.-Y. Ke, “A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses,” Opt. Rev. 17(4), 399–403 (2010).
[Crossref]

Kelly, A.

M. Rides, C. Allen, D. Fleming, B. Haworth, and A. Kelly, “Intercomparison of slip flow velocity measurements of filled polymers by capillary extrusion rheometry,” Polym. Test. 27(3), 308–320 (2008).
[Crossref]

Kim, B.

K. Park, B. Kim, and D. Yao, “Numerical simulation for injection molding with a rapidly heated mold, Part II: Birefringence prediction,” Polym.- Plast. Technol. 45(8), 903–909 (2006).
[Crossref]

Kim, J. W.

J. Park, J. Jin, J. W. Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305, 170–174 (2013).
[Crossref]

Kim, J.-A.

J. Park, J. Jin, J. W. Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305, 170–174 (2013).
[Crossref]

Kim, Y.

Kurt, M.

M. Kurt, O. S. Kamber, Y. Kaynak, G. Atakok, and O. Girit, “Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products,” Mater. Des. 30(8), 3217–3224 (2009).
[Crossref]

La, R. X.

M. Jin, R. X. La, Y. Zhang, K. J. Liu, X. P. Li, and J. Zhang, “Stratiform β crystals in ultrahigh molecular weight polyethylene and β-nucleating agent-nucleated isotactic polypropylene at micro-injection molding condition,” Polym. Test. 42, 135–143 (2015).
[Crossref]

Lan, J.-K.

K.-M. Tsai and J.-K. Lan, “Correlation between runner pressure and cavity pressure within injection mold,” Int. J. Adv. Manuf. Technol. 79(1–4), 273–284 (2015).
[Crossref]

Lee, S. W.

J. S. Nam, D. S. Baek, H. H. Jo, J. Y. Song, T. H. Ha, and S. W. Lee, “Lens injection moulding condition diagnosis and form error analysis using cavity pressure signals based on response surface methodology,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(7), 1343–1350 (2016).
[Crossref]

Li, L.

Li, X. P.

M. Jin, R. X. La, Y. Zhang, K. J. Liu, X. P. Li, and J. Zhang, “Stratiform β crystals in ultrahigh molecular weight polyethylene and β-nucleating agent-nucleated isotactic polypropylene at micro-injection molding condition,” Polym. Test. 42, 135–143 (2015).
[Crossref]

Li, X.-P.

X.-H. Yin, C. Yang, and X.-P. Li, “Simultaneous control of birefringence and warpage for thermoplastic optical lenses fabricated using microinjection molding,” Polym.-Plast. Technol. 54(17), 1772–1779 (2015).
[Crossref]

Liu, K. J.

M. Jin, R. X. La, Y. Zhang, K. J. Liu, X. P. Li, and J. Zhang, “Stratiform β crystals in ultrahigh molecular weight polyethylene and β-nucleating agent-nucleated isotactic polypropylene at micro-injection molding condition,” Polym. Test. 42, 135–143 (2015).
[Crossref]

Loser, C.

T. Nguyen-Chung, G. Juttner, C. Loser, T. Pham, and M. Gehde, “Determination of the heat transfer coefficient from short-shots studies and precise simulation of microinjection molding,” Polym. Eng. Sci. 50(1), 165–173 (2010).
[Crossref]

McCray, D. L.

Mitsuishi, M.

Murata, Y.

T. Yamada, Y. Murata, and H. Yokoi, “Visualization analysis of a multilayer foam development process in microcellular injection molding,” Int. Polym. Process. 27(3), 299–309 (2012).
[Crossref]

Nam, J. S.

J. S. Nam, D. S. Baek, H. H. Jo, J. Y. Song, T. H. Ha, and S. W. Lee, “Lens injection moulding condition diagnosis and form error analysis using cavity pressure signals based on response surface methodology,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(7), 1343–1350 (2016).
[Crossref]

Naples, N. J.

Nguyen-Chung, T.

T. Nguyen-Chung, G. Juttner, C. Loser, T. Pham, and M. Gehde, “Determination of the heat transfer coefficient from short-shots studies and precise simulation of microinjection molding,” Polym. Eng. Sci. 50(1), 165–173 (2010).
[Crossref]

Olah, A.

K. Yin, S. Ji, H. Fein, M. Ponting, A. Olah, and E. Baer, “Evaluation of high temperature polymers in nanolayered films and gradient refractive index (GRIN) lenses,” J. Appl. Polym. Sci. 132(44), 42741 (2015).
[Crossref]

Pantani, R.

V. Speranza, U. Vietri, and R. Pantani, “Monitoring of injection molding of thermoplastics: average solidification pressure as a key parameter for quality control,” Macromol. Res. 19(6), 542–554 (2011).
[Crossref]

Park, H. P.

J. H. Choi, B. G. Pyo, J. S. Tae, H. P. Park, and B. O. Rhee, “Structural analysis examining the mold deformation behavior for the detection of the flash in the injection mold,” Int. Polym. Process. 29(4), 489–494 (2014).
[Crossref]

Park, J.

J. Park, J. Jin, J. W. Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305, 170–174 (2013).
[Crossref]

Park, K.

K. Park, B. Kim, and D. Yao, “Numerical simulation for injection molding with a rapidly heated mold, Part II: Birefringence prediction,” Polym.- Plast. Technol. 45(8), 903–909 (2006).
[Crossref]

Pham, T.

T. Nguyen-Chung, G. Juttner, C. Loser, T. Pham, and M. Gehde, “Determination of the heat transfer coefficient from short-shots studies and precise simulation of microinjection molding,” Polym. Eng. Sci. 50(1), 165–173 (2010).
[Crossref]

Ponting, M.

K. Yin, S. Ji, H. Fein, M. Ponting, A. Olah, and E. Baer, “Evaluation of high temperature polymers in nanolayered films and gradient refractive index (GRIN) lenses,” J. Appl. Polym. Sci. 132(44), 42741 (2015).
[Crossref]

Pyo, B. G.

J. H. Choi, B. G. Pyo, J. S. Tae, H. P. Park, and B. O. Rhee, “Structural analysis examining the mold deformation behavior for the detection of the flash in the injection mold,” Int. Polym. Process. 29(4), 489–494 (2014).
[Crossref]

Qiu, L.

Y. Wang, L. Qiu, Y. Song, and W. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol. 23(5), 055204 (2012).
[Crossref]

Raasch, T. W.

Rhee, B. O.

J. H. Choi, B. G. Pyo, J. S. Tae, H. P. Park, and B. O. Rhee, “Structural analysis examining the mold deformation behavior for the detection of the flash in the injection mold,” Int. Polym. Process. 29(4), 489–494 (2014).
[Crossref]

Rides, M.

M. Rides, C. Allen, D. Fleming, B. Haworth, and A. Kelly, “Intercomparison of slip flow velocity measurements of filled polymers by capillary extrusion rheometry,” Polym. Test. 27(3), 308–320 (2008).
[Crossref]

Risse, S.

Scheiding, S.

Schild, J.

R. Spina, P. Walach, J. Schild, and C. Hopmann, “Analysis of lens manufacturing with injection molding,” Int. J. Precis. Eng. Manuf. 13(11), 2087–2095 (2012).
[Crossref]

Shieh, J.-Y.

J.-Y. Shieh, L. K. Wang, and S.-Y. Ke, “A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses,” Opt. Rev. 17(4), 399–403 (2010).
[Crossref]

Song, J. Y.

J. S. Nam, D. S. Baek, H. H. Jo, J. Y. Song, T. H. Ha, and S. W. Lee, “Lens injection moulding condition diagnosis and form error analysis using cavity pressure signals based on response surface methodology,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(7), 1343–1350 (2016).
[Crossref]

Song, Y.

Y. Wang, L. Qiu, Y. Song, and W. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol. 23(5), 055204 (2012).
[Crossref]

Speranza, V.

V. Speranza, U. Vietri, and R. Pantani, “Monitoring of injection molding of thermoplastics: average solidification pressure as a key parameter for quality control,” Macromol. Res. 19(6), 542–554 (2011).
[Crossref]

Spina, R.

R. Spina, P. Walach, J. Schild, and C. Hopmann, “Analysis of lens manufacturing with injection molding,” Int. J. Precis. Eng. Manuf. 13(11), 2087–2095 (2012).
[Crossref]

Sugita, N.

Sun, R.

R. Sun, L. Chang, and L. Li, “Manufacturing polymeric micro lenses and self-organised micro lens arrays by using microfluidic dispensers,” J. Micromech. Microeng. 25(11), 115012 (2015).
[Crossref]

Tae, J. S.

J. H. Choi, B. G. Pyo, J. S. Tae, H. P. Park, and B. O. Rhee, “Structural analysis examining the mold deformation behavior for the detection of the flash in the injection mold,” Int. Polym. Process. 29(4), 489–494 (2014).
[Crossref]

Tsai, K.-M.

K.-M. Tsai and J.-K. Lan, “Correlation between runner pressure and cavity pressure within injection mold,” Int. J. Adv. Manuf. Technol. 79(1–4), 273–284 (2015).
[Crossref]

Tünnermann, A.

Vietri, U.

V. Speranza, U. Vietri, and R. Pantani, “Monitoring of injection molding of thermoplastics: average solidification pressure as a key parameter for quality control,” Macromol. Res. 19(6), 542–554 (2011).
[Crossref]

Walach, P.

R. Spina, P. Walach, J. Schild, and C. Hopmann, “Analysis of lens manufacturing with injection molding,” Int. J. Precis. Eng. Manuf. 13(11), 2087–2095 (2012).
[Crossref]

Wang, L. K.

J.-Y. Shieh, L. K. Wang, and S.-Y. Ke, “A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses,” Opt. Rev. 17(4), 399–403 (2010).
[Crossref]

Wang, S.

P. Zhao, S. Wang, J. Ying, and J. Z. Fu, “Non-destructive measurement of cavity pressure during injection molding process based on ultrasonic technology and Gaussian process,” Polym. Test. 32(8), 1436–1444 (2013).
[Crossref]

Wang, S.-Q.

S.-Q. Wang and P. A. Drda, “Stick-slip transition in capillary flow of linear polyethylene: 3. Surface conditions,” Rheol. Acta 36(2), 128–134 (1997).
[Crossref]

Wang, Y.

Y. Wang, L. Qiu, Y. Song, and W. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol. 23(5), 055204 (2012).
[Crossref]

Yamada, T.

T. Yamada, Y. Murata, and H. Yokoi, “Visualization analysis of a multilayer foam development process in microcellular injection molding,” Int. Polym. Process. 27(3), 299–309 (2012).
[Crossref]

Yang, C.

X.-H. Yin, C. Yang, and X.-P. Li, “Simultaneous control of birefringence and warpage for thermoplastic optical lenses fabricated using microinjection molding,” Polym.-Plast. Technol. 54(17), 1772–1779 (2015).
[Crossref]

C. Yang, X.-H. Yin, and G.-M. Cheng, “Microinjection molding of microsystem components: new aspects in improving performance,” J. Micromech. Microeng. 23(9), 093001 (2013).
[Crossref]

Yao, D.

K. Park, B. Kim, and D. Yao, “Numerical simulation for injection molding with a rapidly heated mold, Part II: Birefringence prediction,” Polym.- Plast. Technol. 45(8), 903–909 (2006).
[Crossref]

Yi, A. Y.

Yin, K.

K. Yin, S. Ji, H. Fein, M. Ponting, A. Olah, and E. Baer, “Evaluation of high temperature polymers in nanolayered films and gradient refractive index (GRIN) lenses,” J. Appl. Polym. Sci. 132(44), 42741 (2015).
[Crossref]

Yin, X.-H.

X.-H. Yin, C. Yang, and X.-P. Li, “Simultaneous control of birefringence and warpage for thermoplastic optical lenses fabricated using microinjection molding,” Polym.-Plast. Technol. 54(17), 1772–1779 (2015).
[Crossref]

C. Yang, X.-H. Yin, and G.-M. Cheng, “Microinjection molding of microsystem components: new aspects in improving performance,” J. Micromech. Microeng. 23(9), 093001 (2013).
[Crossref]

Ying, J.

P. Zhao, S. Wang, J. Ying, and J. Z. Fu, “Non-destructive measurement of cavity pressure during injection molding process based on ultrasonic technology and Gaussian process,” Polym. Test. 32(8), 1436–1444 (2013).
[Crossref]

Yokoi, H.

T. Yamada, Y. Murata, and H. Yokoi, “Visualization analysis of a multilayer foam development process in microcellular injection molding,” Int. Polym. Process. 27(3), 299–309 (2012).
[Crossref]

Zhang, H.

Zhang, J.

M. Jin, R. X. La, Y. Zhang, K. J. Liu, X. P. Li, and J. Zhang, “Stratiform β crystals in ultrahigh molecular weight polyethylene and β-nucleating agent-nucleated isotactic polypropylene at micro-injection molding condition,” Polym. Test. 42, 135–143 (2015).
[Crossref]

Zhang, J. Z.

J. Z. Zhang, “Development of an in-process Pokayoke system utilizing accelerometer and logistic regression modeling for monitoring injection molding flash,” Int. J. Adv. Manuf. Technol. 71(9–12), 1793–1800 (2014).
[Crossref]

Zhang, Y.

M. Jin, R. X. La, Y. Zhang, K. J. Liu, X. P. Li, and J. Zhang, “Stratiform β crystals in ultrahigh molecular weight polyethylene and β-nucleating agent-nucleated isotactic polypropylene at micro-injection molding condition,” Polym. Test. 42, 135–143 (2015).
[Crossref]

Zhao, P.

P. Zhao, S. Wang, J. Ying, and J. Z. Fu, “Non-destructive measurement of cavity pressure during injection molding process based on ultrasonic technology and Gaussian process,” Polym. Test. 32(8), 1436–1444 (2013).
[Crossref]

Zhao, W.

Y. Wang, L. Qiu, Y. Song, and W. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol. 23(5), 055204 (2012).
[Crossref]

Appl. Opt. (1)

Int. J. Adv. Manuf. Technol. (3)

J. Z. Zhang, “Development of an in-process Pokayoke system utilizing accelerometer and logistic regression modeling for monitoring injection molding flash,” Int. J. Adv. Manuf. Technol. 71(9–12), 1793–1800 (2014).
[Crossref]

H. Hassan, “An experimental work on the effect of injection molding parameters on the cavity pressure and product weight,” Int. J. Adv. Manuf. Technol. 67(1–4), 675–686 (2013).
[Crossref]

K.-M. Tsai and J.-K. Lan, “Correlation between runner pressure and cavity pressure within injection mold,” Int. J. Adv. Manuf. Technol. 79(1–4), 273–284 (2015).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

R. Spina, P. Walach, J. Schild, and C. Hopmann, “Analysis of lens manufacturing with injection molding,” Int. J. Precis. Eng. Manuf. 13(11), 2087–2095 (2012).
[Crossref]

Int. Polym. Process. (2)

J. H. Choi, B. G. Pyo, J. S. Tae, H. P. Park, and B. O. Rhee, “Structural analysis examining the mold deformation behavior for the detection of the flash in the injection mold,” Int. Polym. Process. 29(4), 489–494 (2014).
[Crossref]

T. Yamada, Y. Murata, and H. Yokoi, “Visualization analysis of a multilayer foam development process in microcellular injection molding,” Int. Polym. Process. 27(3), 299–309 (2012).
[Crossref]

J. Appl. Polym. Sci. (1)

K. Yin, S. Ji, H. Fein, M. Ponting, A. Olah, and E. Baer, “Evaluation of high temperature polymers in nanolayered films and gradient refractive index (GRIN) lenses,” J. Appl. Polym. Sci. 132(44), 42741 (2015).
[Crossref]

J. Manuf. Sci. Eng. (1)

W.-S. Guan and H.-X. Huang, “A proposed technique to acquire cavity pressure using a surface strain sensor during injection-compression molding,” J. Manuf. Sci. Eng. 135(2), 021003 (2013).
[Crossref]

J. Micromech. Microeng. (2)

C. Yang, X.-H. Yin, and G.-M. Cheng, “Microinjection molding of microsystem components: new aspects in improving performance,” J. Micromech. Microeng. 23(9), 093001 (2013).
[Crossref]

R. Sun, L. Chang, and L. Li, “Manufacturing polymeric micro lenses and self-organised micro lens arrays by using microfluidic dispensers,” J. Micromech. Microeng. 25(11), 115012 (2015).
[Crossref]

Macromol. Res. (1)

V. Speranza, U. Vietri, and R. Pantani, “Monitoring of injection molding of thermoplastics: average solidification pressure as a key parameter for quality control,” Macromol. Res. 19(6), 542–554 (2011).
[Crossref]

Mater. Des. (1)

M. Kurt, O. S. Kamber, Y. Kaynak, G. Atakok, and O. Girit, “Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products,” Mater. Des. 30(8), 3217–3224 (2009).
[Crossref]

Meas. Sci. Technol. (1)

Y. Wang, L. Qiu, Y. Song, and W. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol. 23(5), 055204 (2012).
[Crossref]

Opt. Commun. (1)

J. Park, J. Jin, J. W. Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305, 170–174 (2013).
[Crossref]

Opt. Express (2)

Opt. Rev. (1)

J.-Y. Shieh, L. K. Wang, and S.-Y. Ke, “A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses,” Opt. Rev. 17(4), 399–403 (2010).
[Crossref]

Polym. Eng. Sci. (1)

T. Nguyen-Chung, G. Juttner, C. Loser, T. Pham, and M. Gehde, “Determination of the heat transfer coefficient from short-shots studies and precise simulation of microinjection molding,” Polym. Eng. Sci. 50(1), 165–173 (2010).
[Crossref]

Polym. Test. (3)

P. Zhao, S. Wang, J. Ying, and J. Z. Fu, “Non-destructive measurement of cavity pressure during injection molding process based on ultrasonic technology and Gaussian process,” Polym. Test. 32(8), 1436–1444 (2013).
[Crossref]

M. Jin, R. X. La, Y. Zhang, K. J. Liu, X. P. Li, and J. Zhang, “Stratiform β crystals in ultrahigh molecular weight polyethylene and β-nucleating agent-nucleated isotactic polypropylene at micro-injection molding condition,” Polym. Test. 42, 135–143 (2015).
[Crossref]

M. Rides, C. Allen, D. Fleming, B. Haworth, and A. Kelly, “Intercomparison of slip flow velocity measurements of filled polymers by capillary extrusion rheometry,” Polym. Test. 27(3), 308–320 (2008).
[Crossref]

Polym.- Plast. Technol. (1)

K. Park, B. Kim, and D. Yao, “Numerical simulation for injection molding with a rapidly heated mold, Part II: Birefringence prediction,” Polym.- Plast. Technol. 45(8), 903–909 (2006).
[Crossref]

Polym.-Plast. Technol. (1)

X.-H. Yin, C. Yang, and X.-P. Li, “Simultaneous control of birefringence and warpage for thermoplastic optical lenses fabricated using microinjection molding,” Polym.-Plast. Technol. 54(17), 1772–1779 (2015).
[Crossref]

Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. (1)

J. S. Nam, D. S. Baek, H. H. Jo, J. Y. Song, T. H. Ha, and S. W. Lee, “Lens injection moulding condition diagnosis and form error analysis using cavity pressure signals based on response surface methodology,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(7), 1343–1350 (2016).
[Crossref]

Rheol. Acta (1)

S.-Q. Wang and P. A. Drda, “Stick-slip transition in capillary flow of linear polyethylene: 3. Surface conditions,” Rheol. Acta 36(2), 128–134 (1997).
[Crossref]

Other (2)

N. R. Draper and H. Smith, Applied regression analysis (Wiley, 1998).

S. Bäumer, Handbook of plastic optics (Wiley-VCH, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 μIM process illustration concerning (a) key molding parameters and (b) influencing factors for the final part thickness.
Fig. 2
Fig. 2 Schematic representation of the proposed measuring methodology with different views: (a) frontal sectioned view, and (b) top view.
Fig. 3
Fig. 3 Lens thickness distribution obtained with confocal microscope for a single measurement: (a) isometric view, (b) top view, (c) thickness distribution, and (d) & (e) 1D thickness profiles along a-a′ and b-b′ directions as indicated in Fig. 3(b), respectively.
Fig. 4
Fig. 4 Comparison of the experimental and simulated cavity pressures.
Fig. 5
Fig. 5 Typical thickness distributions of lenses molded under condition No.1 in both measuring directions (in each image the white arrow and numbers indicate the thickness-decreasing direction and “High value”/“Low value” in the colorbar, respectively).
Fig. 6
Fig. 6 Thickness distributions of lenses molded under condition No.1 in both measuring directions with thirteen measuring positions (in each image the white arrow and numbers indicate the thickness-decreasing direction and “High value”/“Low value” in the colorbar, respectively).
Fig. 7
Fig. 7 The lens thickness and cavity pressure distributions (a), and regression analysis result for relationship between both quantities (b) under process condition No.1.
Fig. 8
Fig. 8 The overall thickness distributions as a function of the process condition.
Fig. 9
Fig. 9 Local thickness distributions of lenses molded under condition No.6 in both measuring directions (in each image the white arrow and numbers indicate the thickness-decreasing direction and “High value”/“Low value” in the colorbar, respectively; the circle indicates the direction change of the arrow compared with that in Fig. 5).
Fig. 10
Fig. 10 Local thickness distributions of lenses molded under condition No.6 with increased lens nominal thickness in both measuring directions (in each image the white arrow and numbers indicate the thickness-decreasing direction and “High value”/“Low value” in the colorbar, respectively; the circles indicate the direction change of the arrows compared with those in Fig. 5).
Fig. 11
Fig. 11 The local thickness distribution (a) and the corresponding average thickness (b) of the lenses at position A3 under all process conditions (in each image the numbers indicate the “High value”/“Low value” in the colorbar).
Fig. 12
Fig. 12 The local thickness distribution (a) and the corresponding average thickness (b) of the lenses at position A1 under all process conditions (in each image the numbers indicate the “High value”/“Low value” in the colorbar).
Fig. 13
Fig. 13 Response of S/N ratio for smaller-the-better analysis of TSD.

Tables (1)

Tables Icon

Table 1 Orthogonal array L9 (34) with the experiment results

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P CE =k T L +b
k= n i=1 n ( T L i P C i ) i=1 n T L i i=1 n P C i n i=1 n T L i 2 ( i=1 n T L i ) 2
b= i=1 n P C i n k i=1 n T L i n
R 2 = ( n i=1 n ( T L i P C i ) i=1 n T L i i=1 n P C i ) 2 ( n i=1 n T L i 2 ( i=1 n T L i ) 2 )( n i=1 n P C i 2 ( i=1 n P C i ) 2 )
TSD= i=1 n ( h i h a ) 2 n1
h a = i=1 n h i n

Metrics