Abstract

In this research, we investigate the electromagnetic behavior of a metallic thin-film with a periodic array of subwavelength apertures when dielectric objects are located on it. The influence of size, geometry and optical properties of the objects on the transmission spectra is numerically analyzed. We study the sensitivity of this system to changes in the refractive index of the illuminated volume induced by the presence of objects with sizes from hundreds of nanometers (submicron-sized objects) to a few microns (micron-sized objects). Parameters such as the object volume within the penetration depth of the surface plasmon in the buffer medium or the contact surface between the object and the nanostructured substrate strongly affect the sensitivity. The proposed system models the presence of objects and their detection through the spectral shifts undergone by the transmission spectra. Also, we demonstrate that these can be used for obtaining information about the refractive index of a micron-sized object immersed in a buffer and located on the nanostructured sensitive surface. We believe that results found in this study can help biomedical researchers and experimentalists in the process of detecting and monitoring biological organisms of large sizes (notably, cells).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures

Jiajie Xu, Pavel Kvasnička, Matthew Idso, Roger W. Jordan, Heng Gong, Jiří Homola, and Qiuming Yu
Opt. Express 19(21) 20493-20505 (2011)

Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate

Siwen Zhang, Haitao Liu, and Guoguang Mu
J. Opt. Soc. Am. A 28(5) 879-886 (2011)

Self-referenced biosensor based on thin dielectric grating combined with thin metal film

Mohammad Abutoama and Ibrahim Abdulhalim
Opt. Express 23(22) 28667-28682 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
    [Crossref]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  4. A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
    [Crossref]
  5. J. S. Kee, S. Lim, A. P. Perera, and M. K. Park, “Plasmonic Nanohole Array for Biosensor Applications,” in Proceedings of IEEE Photonics Global Conference (IEEE, 2012), pp. 1–4.
  6. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
    [Crossref]
  7. M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, and T. Kawamura, “Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications,” Appl. Phys. Lett. 104(24), 243102 (2014).
    [Crossref]
  8. M. Couture, Y. Liang, H.-P. Poirier Richard, R. Faid, W. Peng, and J.-F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–408 (2013).
    [Crossref] [PubMed]
  9. M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst 137(18), 4162–4170 (2012).
    [Crossref] [PubMed]
  10. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100(6), 066408 (2008).
    [Crossref] [PubMed]
  11. S. M. Jang, D. Kim, S. H. Choi, K. M. Byun, and S. J. Kim, “Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings,” Appl. Opt. 50(18), 2846–2854 (2011).
    [Crossref] [PubMed]
  12. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  13. J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
    [Crossref]
  14. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
    [Crossref]
  15. J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
    [Crossref] [PubMed]
  16. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
    [Crossref] [PubMed]
  17. G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
    [Crossref] [PubMed]
  18. T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
    [Crossref] [PubMed]
  19. P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
    [Crossref] [PubMed]
  20. E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “A detailed study of the scattered near field of nanoprotuberances on flat surfaces,” J. Phys. D: Appl. Phys. 31(21), 3009–3019 (1998).
    [Crossref]
  21. E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “Multiscattering effects in the far-field region for two small particles on a flat conducting substrate,” Waves Random Media 7(3), 319–329 (1997).
    [Crossref]
  22. F. Moreno, B. García-Cámara, J. M. Saiz, and F. González, “Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles,” Opt. Express 16(17), 12487–12504 (2008).
    [Crossref] [PubMed]
  23. J. L. de la Peña, F. González, J. M. Saiz, F. Moreno, and P. J. Valle, “Sizing particles on substrates. A general method for oblique incidence,” J. Appl. Phys. 85(1), 432–438 (1999).
    [Crossref]
  24. J. L. de la Peña, J. M. Saiz, G. Videen, F. González, P. J. Valle, and F. Moreno, “Scattering from particles on surfaces: visibility factor and polydispersity,” Opt. Lett. 24(21), 1451–1453 (1999).
    [Crossref]
  25. J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, and F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21(17), 1330–1332 (1996).
    [Crossref] [PubMed]
  26. P. J. Valle, F. González, and F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33(3), 512–523 (1994).
    [Crossref] [PubMed]
  27. F. Moreno, J. M. Saiz, P. J. Valle, and F. González, “Metallic particle sizing on flat surfaces: Application to conducting substrates,” Appl. Phys. Lett. 68(22), 3087–3089 (1996).
    [Crossref]
  28. J. M. Saiz, P. J. Valle, F. González, F. Moreno, and D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33(4), 1261–1270 (1994).
    [Crossref]
  29. P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Electromagnetic interaction between two parallel circular cylinders on a planar interface,” IEEE Trans. Antennas Propag. 44(3), 321–325 (1996).
    [Crossref]
  30. F. González, J. M. Saiz, P. J. Valle, and F. Moreno, “Multiple scattering in particulate surfaces: Cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
    [Crossref]
  31. E. Baquedano, M. U. González, R. Paniagua-Domínguez, J. A. Sánchez-Gil, and P. A. Postigo, “Low-cost and large-size nanoplasmonic sensor based on Fano resonances with fast response and high sensitivity,” Opt. Express 25(14), 15967–15976 (2017).
    [Crossref] [PubMed]
  32. B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
    [Crossref]
  33. K. D. Young, “Bacterial morphology: Why have different shapes?” Curr. Opin. Microbiol. 10(6), 596–600 (2007).
    [Crossref] [PubMed]
  34. A. Tripathy, P. Sen, B. Su, and W. H. Briscoe, “Natural and bioinspired nanostructured bactericidal surfaces,” Adv. Colloid Interface Sci. 248, 85–104 (2017).
    [Crossref] [PubMed]
  35. S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
    [Crossref] [PubMed]
  36. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [Crossref] [PubMed]
  37. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (SpringerBerlin Heidelberg, 1988).
    [Crossref]
  38. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
    [Crossref]
  39. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref] [PubMed]
  40. A. Djalalian-Assl, J. J. Cadusch, Z. Q. Teo, T. J. Davis, and A. Roberts, “Surface plasmon wave plates,” Appl. Phys. Lett. 106(4), 041104 (2015).
    [Crossref]
  41. E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  42. COMSOL Multiphysics 5.0, COMSOL Inc. ( http://www.comsol.com/ ).
  43. J. Martinez-Perdiguero, A. Retolaza, A. Juarros, D. Otaduy, and S. Merino, “Enhanced Transmission through Gold Nanohole Arrays Fabricated by Thermal Nanoimprint Lithography for Surface Plasmon Based Biosensors,” Procedia Eng. 47, 805–808 (2012).
    [Crossref]
  44. J. Martinez-Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography,” Sensors 13(10), 13960–13968 (2013).
    [Crossref] [PubMed]
  45. P. Albella, F. Moreno, J. M. Saiz, and F. González, “Monitoring small defects on surface microstructures through backscattering measurements,” Opt. Lett. 31(11), 1744–1746 (2006).
    [Crossref] [PubMed]
  46. P. Albella, F. Moreno, J. M. Saiz, and F. González, “Backscattering of metallic microstructures with small defects located on flat substrates,” Opt. Express 15(11), 6857–6867 (2007).
    [Crossref] [PubMed]
  47. A. Colombelli, M. G. Manera, G. Montagna, R. Rella, and A. Convertino, “Three-dimensional Plasmonic Materials for Chemical Sensor Application,” in Proceedings of the Second National Conference on Sensors, D. Compagnone, F. Baldini, C. Di Natale, G. Betta, and P. Siciliano, eds. (Switzerland: Springer International Publishing, 2015), pp. 171–175.
  48. X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
    [Crossref]
  49. M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. Baumberg, “Wetting of regularly structured gold surfaces,” Langmuir 21(5), 1753–1757 (2005).
    [Crossref] [PubMed]
  50. A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
    [Crossref]
  51. J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
    [Crossref]
  52. W. J. Choi, D. I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18(22), 23285–23295 (2010).
    [Crossref] [PubMed]

2017 (3)

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

E. Baquedano, M. U. González, R. Paniagua-Domínguez, J. A. Sánchez-Gil, and P. A. Postigo, “Low-cost and large-size nanoplasmonic sensor based on Fano resonances with fast response and high sensitivity,” Opt. Express 25(14), 15967–15976 (2017).
[Crossref] [PubMed]

A. Tripathy, P. Sen, B. Su, and W. H. Briscoe, “Natural and bioinspired nanostructured bactericidal surfaces,” Adv. Colloid Interface Sci. 248, 85–104 (2017).
[Crossref] [PubMed]

2016 (1)

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

2015 (2)

A. Djalalian-Assl, J. J. Cadusch, Z. Q. Teo, T. J. Davis, and A. Roberts, “Surface plasmon wave plates,” Appl. Phys. Lett. 106(4), 041104 (2015).
[Crossref]

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

2014 (3)

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, and T. Kawamura, “Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications,” Appl. Phys. Lett. 104(24), 243102 (2014).
[Crossref]

2013 (5)

M. Couture, Y. Liang, H.-P. Poirier Richard, R. Faid, W. Peng, and J.-F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–408 (2013).
[Crossref] [PubMed]

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
[Crossref]

J. Martinez-Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography,” Sensors 13(10), 13960–13968 (2013).
[Crossref] [PubMed]

2012 (4)

J. Martinez-Perdiguero, A. Retolaza, A. Juarros, D. Otaduy, and S. Merino, “Enhanced Transmission through Gold Nanohole Arrays Fabricated by Thermal Nanoimprint Lithography for Surface Plasmon Based Biosensors,” Procedia Eng. 47, 805–808 (2012).
[Crossref]

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

2011 (2)

S. M. Jang, D. Kim, S. H. Choi, K. M. Byun, and S. J. Kim, “Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings,” Appl. Opt. 50(18), 2846–2854 (2011).
[Crossref] [PubMed]

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

2010 (3)

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

W. J. Choi, D. I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18(22), 23285–23295 (2010).
[Crossref] [PubMed]

2008 (3)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

F. Moreno, B. García-Cámara, J. M. Saiz, and F. González, “Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles,” Opt. Express 16(17), 12487–12504 (2008).
[Crossref] [PubMed]

2007 (4)

K. D. Young, “Bacterial morphology: Why have different shapes?” Curr. Opin. Microbiol. 10(6), 596–600 (2007).
[Crossref] [PubMed]

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

P. Albella, F. Moreno, J. M. Saiz, and F. González, “Backscattering of metallic microstructures with small defects located on flat substrates,” Opt. Express 15(11), 6857–6867 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. Baumberg, “Wetting of regularly structured gold surfaces,” Langmuir 21(5), 1753–1757 (2005).
[Crossref] [PubMed]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[Crossref]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

2002 (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

1999 (2)

J. L. de la Peña, F. González, J. M. Saiz, F. Moreno, and P. J. Valle, “Sizing particles on substrates. A general method for oblique incidence,” J. Appl. Phys. 85(1), 432–438 (1999).
[Crossref]

J. L. de la Peña, J. M. Saiz, G. Videen, F. González, P. J. Valle, and F. Moreno, “Scattering from particles on surfaces: visibility factor and polydispersity,” Opt. Lett. 24(21), 1451–1453 (1999).
[Crossref]

1998 (3)

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “A detailed study of the scattered near field of nanoprotuberances on flat surfaces,” J. Phys. D: Appl. Phys. 31(21), 3009–3019 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1997 (2)

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “Multiscattering effects in the far-field region for two small particles on a flat conducting substrate,” Waves Random Media 7(3), 319–329 (1997).
[Crossref]

F. González, J. M. Saiz, P. J. Valle, and F. Moreno, “Multiple scattering in particulate surfaces: Cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[Crossref]

1996 (3)

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Electromagnetic interaction between two parallel circular cylinders on a planar interface,” IEEE Trans. Antennas Propag. 44(3), 321–325 (1996).
[Crossref]

F. Moreno, J. M. Saiz, P. J. Valle, and F. González, “Metallic particle sizing on flat surfaces: Application to conducting substrates,” Appl. Phys. Lett. 68(22), 3087–3089 (1996).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, and F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21(17), 1330–1332 (1996).
[Crossref] [PubMed]

1994 (2)

P. J. Valle, F. González, and F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33(3), 512–523 (1994).
[Crossref] [PubMed]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, and D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33(4), 1261–1270 (1994).
[Crossref]

Abdelsalam, M. E.

M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. Baumberg, “Wetting of regularly structured gold surfaces,” Langmuir 21(5), 1753–1757 (2005).
[Crossref] [PubMed]

Ahn, S. G.

Albella, P.

Allier, C.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Altug, H.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Artar, A.

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Ayi, T. C.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Bai, P.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Baird, R.

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Baquedano, E.

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Bartlett, P. N.

M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. Baumberg, “Wetting of regularly structured gold surfaces,” Langmuir 21(5), 1753–1757 (2005).
[Crossref] [PubMed]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Baumberg, J.

M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. Baumberg, “Wetting of regularly structured gold surfaces,” Langmuir 21(5), 1753–1757 (2005).
[Crossref] [PubMed]

Berini, P.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

Bourouina, T.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Brenton, J. D.

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Briscoe, W. H.

A. Tripathy, P. Sen, B. Su, and W. H. Briscoe, “Natural and bioinspired nanostructured bactericidal surfaces,” Adv. Colloid Interface Sci. 248, 85–104 (2017).
[Crossref] [PubMed]

Brolo, A. G.

J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Brongersma, M. L.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[Crossref]

Busson, M. P.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Byun, K. M.

Cadusch, J. J.

A. Djalalian-Assl, J. J. Cadusch, Z. Q. Teo, T. J. Davis, and A. Roberts, “Surface plasmon wave plates,” Appl. Phys. Lett. 106(4), 041104 (2015).
[Crossref]

Caldas, C.

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Carneiro, L. B.

J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
[Crossref]

Cervantes Tellez, G. A.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

Cetin, A. E.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Chalmond, B.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Chen, H. F.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Chin, L. K.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Choi, S. H.

Choi, W. J.

Cioni, O.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Colombelli, A.

A. Colombelli, M. G. Manera, G. Montagna, R. Rella, and A. Convertino, “Three-dimensional Plasmonic Materials for Chemical Sensor Application,” in Proceedings of the Second National Conference on Sensors, D. Compagnone, F. Baldini, C. Di Natale, G. Betta, and P. Siciliano, eds. (Switzerland: Springer International Publishing, 2015), pp. 171–175.

Connor, J. H.

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Convertino, A.

A. Colombelli, M. G. Manera, G. Montagna, R. Rella, and A. Convertino, “Three-dimensional Plasmonic Materials for Chemical Sensor Application,” in Proceedings of the Second National Conference on Sensors, D. Compagnone, F. Baldini, C. Di Natale, G. Betta, and P. Siciliano, eds. (Switzerland: Springer International Publishing, 2015), pp. 171–175.

Couture, M.

M. Couture, Y. Liang, H.-P. Poirier Richard, R. Faid, W. Peng, and J.-F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–408 (2013).
[Crossref] [PubMed]

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Cui, X.

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

David-Watine, B.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Davis, T. J.

A. Djalalian-Assl, J. J. Cadusch, Z. Q. Teo, T. J. Davis, and A. Roberts, “Surface plasmon wave plates,” Appl. Phys. Lett. 106(4), 041104 (2015).
[Crossref]

de la Peña, J. L.

J. L. de la Peña, J. M. Saiz, G. Videen, F. González, P. J. Valle, and F. Moreno, “Scattering from particles on surfaces: visibility factor and polydispersity,” Opt. Lett. 24(21), 1451–1453 (1999).
[Crossref]

J. L. de la Peña, F. González, J. M. Saiz, F. Moreno, and P. J. Valle, “Sizing particles on substrates. A general method for oblique incidence,” J. Appl. Phys. 85(1), 432–438 (1999).
[Crossref]

Deng, J.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Dhawan, A.

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Dinten, J. M.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Djalalian-Assl, A.

A. Djalalian-Assl, J. J. Cadusch, Z. Q. Teo, T. J. Davis, and A. Roberts, “Surface plasmon wave plates,” Appl. Phys. Lett. 106(4), 041104 (2015).
[Crossref]

Dubrulle, N.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Eksioglu, Y.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Etezadi, D.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Faid, R.

M. Couture, Y. Liang, H.-P. Poirier Richard, R. Faid, W. Peng, and J.-F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–408 (2013).
[Crossref] [PubMed]

Ferreira, J.

J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
[Crossref]

Freida, D.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Galarreta, B. C.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

García-Cámara, B.

García-Corbacho, J.

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gidrol, X.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Girotto, E. M.

J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
[Crossref]

González, F.

F. Moreno, B. García-Cámara, J. M. Saiz, and F. González, “Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles,” Opt. Express 16(17), 12487–12504 (2008).
[Crossref] [PubMed]

P. Albella, F. Moreno, J. M. Saiz, and F. González, “Backscattering of metallic microstructures with small defects located on flat substrates,” Opt. Express 15(11), 6857–6867 (2007).
[Crossref] [PubMed]

P. Albella, F. Moreno, J. M. Saiz, and F. González, “Monitoring small defects on surface microstructures through backscattering measurements,” Opt. Lett. 31(11), 1744–1746 (2006).
[Crossref] [PubMed]

J. L. de la Peña, J. M. Saiz, G. Videen, F. González, P. J. Valle, and F. Moreno, “Scattering from particles on surfaces: visibility factor and polydispersity,” Opt. Lett. 24(21), 1451–1453 (1999).
[Crossref]

J. L. de la Peña, F. González, J. M. Saiz, F. Moreno, and P. J. Valle, “Sizing particles on substrates. A general method for oblique incidence,” J. Appl. Phys. 85(1), 432–438 (1999).
[Crossref]

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “A detailed study of the scattered near field of nanoprotuberances on flat surfaces,” J. Phys. D: Appl. Phys. 31(21), 3009–3019 (1998).
[Crossref]

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “Multiscattering effects in the far-field region for two small particles on a flat conducting substrate,” Waves Random Media 7(3), 319–329 (1997).
[Crossref]

F. González, J. M. Saiz, P. J. Valle, and F. Moreno, “Multiple scattering in particulate surfaces: Cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[Crossref]

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Electromagnetic interaction between two parallel circular cylinders on a planar interface,” IEEE Trans. Antennas Propag. 44(3), 321–325 (1996).
[Crossref]

F. Moreno, J. M. Saiz, P. J. Valle, and F. González, “Metallic particle sizing on flat surfaces: Application to conducting substrates,” Appl. Phys. Lett. 68(22), 3087–3089 (1996).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, and F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21(17), 1330–1332 (1996).
[Crossref] [PubMed]

P. J. Valle, F. González, and F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33(3), 512–523 (1994).
[Crossref] [PubMed]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, and D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33(4), 1261–1270 (1994).
[Crossref]

González, M. U.

Gordon, R.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Han, S.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Hassan, S.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Hsieh, C.-M.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Huang, M.

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Im, H.

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Jang, S. M.

Jans, H.

M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, and T. Kawamura, “Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications,” Appl. Phys. Lett. 104(24), 243102 (2014).
[Crossref]

Jeon, D. I.

Jordan, D. L.

J. M. Saiz, P. J. Valle, F. González, F. Moreno, and D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33(4), 1261–1270 (1994).
[Crossref]

Juarros, A.

J. Martinez-Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography,” Sensors 13(10), 13960–13968 (2013).
[Crossref] [PubMed]

J. Martinez-Perdiguero, A. Retolaza, A. Juarros, D. Otaduy, and S. Merino, “Enhanced Transmission through Gold Nanohole Arrays Fabricated by Thermal Nanoimprint Lithography for Surface Plasmon Based Biosensors,” Procedia Eng. 47, 805–808 (2012).
[Crossref]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Kawamura, T.

M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, and T. Kawamura, “Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications,” Appl. Phys. Lett. 104(24), 243102 (2014).
[Crossref]

Kee, J. S.

J. S. Kee, S. Lim, A. P. Perera, and M. K. Park, “Plasmonic Nanohole Array for Biosensor Applications,” in Proceedings of IEEE Photonics Global Conference (IEEE, 2012), pp. 1–4.

Kelf, T.

M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. Baumberg, “Wetting of regularly structured gold surfaces,” Langmuir 21(5), 1753–1757 (2005).
[Crossref] [PubMed]

Khanikaev, A.

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Kim, D.

Kim, S.

Kim, S. J.

Kintaka, K.

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Lagae, L.

M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, and T. Kawamura, “Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications,” Appl. Phys. Lett. 104(24), 243102 (2014).
[Crossref]

Lee, B. H.

Lee, C.-H.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Leprince-Wang, Y.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Lesuffleur, A.

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Lezec, H. J.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Liang, Y.

M. Couture, Y. Liang, H.-P. Poirier Richard, R. Faid, W. Peng, and J.-F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–408 (2013).
[Crossref] [PubMed]

Liedberg, B.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Lim, S.

J. S. Kee, S. Lim, A. P. Perera, and M. K. Park, “Plasmonic Nanohole Array for Biosensor Applications,” in Proceedings of IEEE Photonics Global Conference (IEEE, 2012), pp. 1–4.

Lindquist, N. C.

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Linke, R. A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Liu, P. Y.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Live, L. S.

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Lodewijks, K.

M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, and T. Kawamura, “Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications,” Appl. Phys. Lett. 104(24), 243102 (2014).
[Crossref]

Loke, Y. C.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Manera, M. G.

A. Colombelli, M. G. Manera, G. Montagna, R. Rella, and A. Convertino, “Three-dimensional Plasmonic Materials for Chemical Sensor Application,” in Proceedings of the Second National Conference on Sensors, D. Compagnone, F. Baldini, C. Di Natale, G. Betta, and P. Siciliano, eds. (Switzerland: Springer International Publishing, 2015), pp. 171–175.

Martinez-Perdiguero, J.

J. Martinez-Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography,” Sensors 13(10), 13960–13968 (2013).
[Crossref] [PubMed]

J. Martinez-Perdiguero, A. Retolaza, A. Juarros, D. Otaduy, and S. Merino, “Enhanced Transmission through Gold Nanohole Arrays Fabricated by Thermal Nanoimprint Lithography for Surface Plasmon Based Biosensors,” Procedia Eng. 47, 805–808 (2012).
[Crossref]

Massie, C.

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Masson, J.-F.

M. Couture, Y. Liang, H.-P. Poirier Richard, R. Faid, W. Peng, and J.-F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–408 (2013).
[Crossref] [PubMed]

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Merino, S.

J. Martinez-Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography,” Sensors 13(10), 13960–13968 (2013).
[Crossref] [PubMed]

J. Martinez-Perdiguero, A. Retolaza, A. Juarros, D. Otaduy, and S. Merino, “Enhanced Transmission through Gold Nanohole Arrays Fabricated by Thermal Nanoimprint Lithography for Surface Plasmon Based Biosensors,” Procedia Eng. 47, 805–808 (2012).
[Crossref]

Momey, F.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Montagna, G.

A. Colombelli, M. G. Manera, G. Montagna, R. Rella, and A. Convertino, “Three-dimensional Plasmonic Materials for Chemical Sensor Application,” in Proceedings of the Second National Conference on Sensors, D. Compagnone, F. Baldini, C. Di Natale, G. Betta, and P. Siciliano, eds. (Switzerland: Springer International Publishing, 2015), pp. 171–175.

Monteiro, J. P.

J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
[Crossref]

Moreno, F.

F. Moreno, B. García-Cámara, J. M. Saiz, and F. González, “Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles,” Opt. Express 16(17), 12487–12504 (2008).
[Crossref] [PubMed]

P. Albella, F. Moreno, J. M. Saiz, and F. González, “Backscattering of metallic microstructures with small defects located on flat substrates,” Opt. Express 15(11), 6857–6867 (2007).
[Crossref] [PubMed]

P. Albella, F. Moreno, J. M. Saiz, and F. González, “Monitoring small defects on surface microstructures through backscattering measurements,” Opt. Lett. 31(11), 1744–1746 (2006).
[Crossref] [PubMed]

J. L. de la Peña, J. M. Saiz, G. Videen, F. González, P. J. Valle, and F. Moreno, “Scattering from particles on surfaces: visibility factor and polydispersity,” Opt. Lett. 24(21), 1451–1453 (1999).
[Crossref]

J. L. de la Peña, F. González, J. M. Saiz, F. Moreno, and P. J. Valle, “Sizing particles on substrates. A general method for oblique incidence,” J. Appl. Phys. 85(1), 432–438 (1999).
[Crossref]

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “A detailed study of the scattered near field of nanoprotuberances on flat surfaces,” J. Phys. D: Appl. Phys. 31(21), 3009–3019 (1998).
[Crossref]

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “Multiscattering effects in the far-field region for two small particles on a flat conducting substrate,” Waves Random Media 7(3), 319–329 (1997).
[Crossref]

F. González, J. M. Saiz, P. J. Valle, and F. Moreno, “Multiple scattering in particulate surfaces: Cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[Crossref]

F. Moreno, J. M. Saiz, P. J. Valle, and F. González, “Metallic particle sizing on flat surfaces: Application to conducting substrates,” Appl. Phys. Lett. 68(22), 3087–3089 (1996).
[Crossref]

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Electromagnetic interaction between two parallel circular cylinders on a planar interface,” IEEE Trans. Antennas Propag. 44(3), 321–325 (1996).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, and F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21(17), 1330–1332 (1996).
[Crossref] [PubMed]

P. J. Valle, F. González, and F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33(3), 512–523 (1994).
[Crossref] [PubMed]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, and D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33(4), 1261–1270 (1994).
[Crossref]

Mouliere, F.

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Mousavi, S. H.

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Nahata, A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Ng, S. H.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Nishii, J.

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Oh, S.-H.

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Ortiz, E. M.

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “A detailed study of the scattered near field of nanoprotuberances on flat surfaces,” J. Phys. D: Appl. Phys. 31(21), 3009–3019 (1998).
[Crossref]

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “Multiscattering effects in the far-field region for two small particles on a flat conducting substrate,” Waves Random Media 7(3), 319–329 (1997).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, and F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21(17), 1330–1332 (1996).
[Crossref] [PubMed]

Otaduy, D.

J. Martinez-Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography,” Sensors 13(10), 13960–13968 (2013).
[Crossref] [PubMed]

J. Martinez-Perdiguero, A. Retolaza, A. Juarros, D. Otaduy, and S. Merino, “Enhanced Transmission through Gold Nanohole Arrays Fabricated by Thermal Nanoimprint Lithography for Surface Plasmon Based Biosensors,” Procedia Eng. 47, 805–808 (2012).
[Crossref]

Pacey, S.

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Palik, E.D.

E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Paniagua-Domínguez, R.

Park, M. K.

J. S. Kee, S. Lim, A. P. Perera, and M. K. Park, “Plasmonic Nanohole Array for Biosensor Applications,” in Proceedings of IEEE Photonics Global Conference (IEEE, 2012), pp. 1–4.

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Peng, W.

M. Couture, Y. Liang, H.-P. Poirier Richard, R. Faid, W. Peng, and J.-F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–408 (2013).
[Crossref] [PubMed]

Perchec, J. Le

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Perera, A. P.

J. S. Kee, S. Lim, A. P. Perera, and M. K. Park, “Plasmonic Nanohole Array for Biosensor Applications,” in Proceedings of IEEE Photonics Global Conference (IEEE, 2012), pp. 1–4.

Poirier Richard, H.-P.

M. Couture, Y. Liang, H.-P. Poirier Richard, R. Faid, W. Peng, and J.-F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–408 (2013).
[Crossref] [PubMed]

Postigo, P. A.

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (SpringerBerlin Heidelberg, 1988).
[Crossref]

Rahman, M. M.

J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
[Crossref]

Rella, R.

A. Colombelli, M. G. Manera, G. Montagna, R. Rella, and A. Convertino, “Three-dimensional Plasmonic Materials for Chemical Sensor Application,” in Proceedings of the Second National Conference on Sensors, D. Compagnone, F. Baldini, C. Di Natale, G. Betta, and P. Siciliano, eds. (Switzerland: Springer International Publishing, 2015), pp. 171–175.

Retolaza, A.

J. Martinez-Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography,” Sensors 13(10), 13960–13968 (2013).
[Crossref] [PubMed]

J. Martinez-Perdiguero, A. Retolaza, A. Juarros, D. Otaduy, and S. Merino, “Enhanced Transmission through Gold Nanohole Arrays Fabricated by Thermal Nanoimprint Lithography for Surface Plasmon Based Biosensors,” Procedia Eng. 47, 805–808 (2012).
[Crossref]

Roberts, A.

A. Djalalian-Assl, J. J. Cadusch, Z. Q. Teo, T. J. Davis, and A. Roberts, “Surface plasmon wave plates,” Appl. Phys. Lett. 106(4), 041104 (2015).
[Crossref]

Rosenfeld, N.

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Saiz, J. M.

F. Moreno, B. García-Cámara, J. M. Saiz, and F. González, “Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles,” Opt. Express 16(17), 12487–12504 (2008).
[Crossref] [PubMed]

P. Albella, F. Moreno, J. M. Saiz, and F. González, “Backscattering of metallic microstructures with small defects located on flat substrates,” Opt. Express 15(11), 6857–6867 (2007).
[Crossref] [PubMed]

P. Albella, F. Moreno, J. M. Saiz, and F. González, “Monitoring small defects on surface microstructures through backscattering measurements,” Opt. Lett. 31(11), 1744–1746 (2006).
[Crossref] [PubMed]

J. L. de la Peña, J. M. Saiz, G. Videen, F. González, P. J. Valle, and F. Moreno, “Scattering from particles on surfaces: visibility factor and polydispersity,” Opt. Lett. 24(21), 1451–1453 (1999).
[Crossref]

J. L. de la Peña, F. González, J. M. Saiz, F. Moreno, and P. J. Valle, “Sizing particles on substrates. A general method for oblique incidence,” J. Appl. Phys. 85(1), 432–438 (1999).
[Crossref]

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “A detailed study of the scattered near field of nanoprotuberances on flat surfaces,” J. Phys. D: Appl. Phys. 31(21), 3009–3019 (1998).
[Crossref]

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “Multiscattering effects in the far-field region for two small particles on a flat conducting substrate,” Waves Random Media 7(3), 319–329 (1997).
[Crossref]

F. González, J. M. Saiz, P. J. Valle, and F. Moreno, “Multiple scattering in particulate surfaces: Cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[Crossref]

F. Moreno, J. M. Saiz, P. J. Valle, and F. González, “Metallic particle sizing on flat surfaces: Application to conducting substrates,” Appl. Phys. Lett. 68(22), 3087–3089 (1996).
[Crossref]

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Electromagnetic interaction between two parallel circular cylinders on a planar interface,” IEEE Trans. Antennas Propag. 44(3), 321–325 (1996).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, and F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21(17), 1330–1332 (1996).
[Crossref] [PubMed]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, and D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33(4), 1261–1270 (1994).
[Crossref]

Sánchez-Gil, J. A.

Santos, M. J. L.

J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
[Crossref]

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[Crossref]

Sen, P.

A. Tripathy, P. Sen, B. Su, and W. H. Briscoe, “Natural and bioinspired nanostructured bactericidal surfaces,” Adv. Colloid Interface Sci. 248, 85–104 (2017).
[Crossref] [PubMed]

Ser, W.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Shioi, M.

M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, and T. Kawamura, “Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications,” Appl. Phys. Lett. 104(24), 243102 (2014).
[Crossref]

Shorte, S.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Shvets, G.

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Su, B.

A. Tripathy, P. Sen, B. Su, and W. H. Briscoe, “Natural and bioinspired nanostructured bactericidal surfaces,” Adv. Colloid Interface Sci. 248, 85–104 (2017).
[Crossref] [PubMed]

Sulpice, E.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Sung, K.-B.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Tait, R. N.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

Tan, C. Y. L.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Tawa, K.

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Teo, Z. Q.

A. Djalalian-Assl, J. J. Cadusch, Z. Q. Teo, T. J. Davis, and A. Roberts, “Surface plasmon wave plates,” Appl. Phys. Lett. 106(4), 041104 (2015).
[Crossref]

Thio, T.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Tripathy, A.

A. Tripathy, P. Sen, B. Su, and W. H. Briscoe, “Natural and bioinspired nanostructured bactericidal surfaces,” Adv. Colloid Interface Sci. 248, 85–104 (2017).
[Crossref] [PubMed]

Tse, M. S.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Valle, P. J.

J. L. de la Peña, F. González, J. M. Saiz, F. Moreno, and P. J. Valle, “Sizing particles on substrates. A general method for oblique incidence,” J. Appl. Phys. 85(1), 432–438 (1999).
[Crossref]

J. L. de la Peña, J. M. Saiz, G. Videen, F. González, P. J. Valle, and F. Moreno, “Scattering from particles on surfaces: visibility factor and polydispersity,” Opt. Lett. 24(21), 1451–1453 (1999).
[Crossref]

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “A detailed study of the scattered near field of nanoprotuberances on flat surfaces,” J. Phys. D: Appl. Phys. 31(21), 3009–3019 (1998).
[Crossref]

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “Multiscattering effects in the far-field region for two small particles on a flat conducting substrate,” Waves Random Media 7(3), 319–329 (1997).
[Crossref]

F. González, J. M. Saiz, P. J. Valle, and F. Moreno, “Multiple scattering in particulate surfaces: Cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[Crossref]

F. Moreno, J. M. Saiz, P. J. Valle, and F. González, “Metallic particle sizing on flat surfaces: Application to conducting substrates,” Appl. Phys. Lett. 68(22), 3087–3089 (1996).
[Crossref]

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Electromagnetic interaction between two parallel circular cylinders on a planar interface,” IEEE Trans. Antennas Propag. 44(3), 321–325 (1996).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, and F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21(17), 1330–1332 (1996).
[Crossref] [PubMed]

P. J. Valle, F. González, and F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33(3), 512–523 (1994).
[Crossref] [PubMed]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, and D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33(4), 1261–1270 (1994).
[Crossref]

Van Dorpe, P.

M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, and T. Kawamura, “Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications,” Appl. Phys. Lett. 104(24), 243102 (2014).
[Crossref]

Videen, G.

Vinjimore Kesavan, S.

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Wan, J. C. M.

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Wang, K.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Wang, Y.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Wong, T. I.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Wu, L.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Xu, W.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Yang, X. D.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Yanik, A.

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Yap, P. H.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Yoon, J. H.

Young, K. D.

K. D. Young, “Bacterial morphology: Why have different shapes?” Curr. Opin. Microbiol. 10(6), 596–600 (2007).
[Crossref] [PubMed]

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Zhang, J.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Zhang, L.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Zhou, X.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Zia, R.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[Crossref]

Acc. Chem. Res. (1)

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A New Generation of Sensors Based on Extraordinary Optical Transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

ACS Photonics (1)

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Adv. Colloid Interface Sci. (1)

A. Tripathy, P. Sen, B. Su, and W. H. Briscoe, “Natural and bioinspired nanostructured bactericidal surfaces,” Adv. Colloid Interface Sci. 248, 85–104 (2017).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole Array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Analyst (1)

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

F. Moreno, J. M. Saiz, P. J. Valle, and F. González, “Metallic particle sizing on flat surfaces: Application to conducting substrates,” Appl. Phys. Lett. 68(22), 3087–3089 (1996).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, and T. Kawamura, “Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications,” Appl. Phys. Lett. 104(24), 243102 (2014).
[Crossref]

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

A. Djalalian-Assl, J. J. Cadusch, Z. Q. Teo, T. J. Davis, and A. Roberts, “Surface plasmon wave plates,” Appl. Phys. Lett. 106(4), 041104 (2015).
[Crossref]

Curr. Opin. Microbiol. (1)

K. D. Young, “Bacterial morphology: Why have different shapes?” Curr. Opin. Microbiol. 10(6), 596–600 (2007).
[Crossref] [PubMed]

IEEE Trans. Antennas Propag. (1)

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Electromagnetic interaction between two parallel circular cylinders on a planar interface,” IEEE Trans. Antennas Propag. 44(3), 321–325 (1996).
[Crossref]

J. Appl. Phys. (1)

J. L. de la Peña, F. González, J. M. Saiz, F. Moreno, and P. J. Valle, “Sizing particles on substrates. A general method for oblique incidence,” J. Appl. Phys. 85(1), 432–438 (1999).
[Crossref]

J. Phys. D: Appl. Phys. (2)

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “A detailed study of the scattered near field of nanoprotuberances on flat surfaces,” J. Phys. D: Appl. Phys. 31(21), 3009–3019 (1998).
[Crossref]

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45(11), 113001 (2012).
[Crossref]

Lab Chip (3)

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Langmuir (1)

M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. Baumberg, “Wetting of regularly structured gold surfaces,” Langmuir 21(5), 1753–1757 (2005).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]

Nanoscale (1)

M. Couture, Y. Liang, H.-P. Poirier Richard, R. Faid, W. Peng, and J.-F. Masson, “Tuning the 3D plasmon field of nanohole arrays,” Nanoscale 5(24), 12399–408 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[Crossref]

Nat. Photonics (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

Nat. Rev. Cancer (1)

J. C. M. Wan, C. Massie, J. García-Corbacho, F. Mouliere, J. D. Brenton, C. Caldas, S. Pacey, R. Baird, and N. Rosenfeld, “Liquid biopsies come of age: towards implementation of circulating tumour DNA,” Nat. Rev. Cancer 17, 223–238 (2017).
[Crossref] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

F. González, J. M. Saiz, P. J. Valle, and F. Moreno, “Multiple scattering in particulate surfaces: Cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[Crossref]

Opt. Eng. (1)

J. M. Saiz, P. J. Valle, F. González, F. Moreno, and D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33(4), 1261–1270 (1994).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[Crossref]

Phys. Rev. Lett. (1)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Procedia Eng. (1)

J. Martinez-Perdiguero, A. Retolaza, A. Juarros, D. Otaduy, and S. Merino, “Enhanced Transmission through Gold Nanohole Arrays Fabricated by Thermal Nanoimprint Lithography for Surface Plasmon Based Biosensors,” Procedia Eng. 47, 805–808 (2012).
[Crossref]

Sci. Rep. (1)

S. Vinjimore Kesavan, F. Momey, O. Cioni, B. David-Watine, N. Dubrulle, S. Shorte, E. Sulpice, D. Freida, B. Chalmond, J. M. Dinten, X. Gidrol, and C. Allier, “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep. 4, 5942 (2014).
[Crossref] [PubMed]

Sens. Actuator. B Chem. (1)

J. P. Monteiro, L. B. Carneiro, M. M. Rahman, A. G. Brolo, M. J. L. Santos, J. Ferreira, and E. M. Girotto, “Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays,” Sens. Actuator. B Chem. 178, 366–370 (2013).
[Crossref]

Sensors (1)

J. Martinez-Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography,” Sensors 13(10), 13960–13968 (2013).
[Crossref] [PubMed]

Waves Random Media (1)

E. M. Ortiz, P. J. Valle, J. M. Saiz, F. González, and F. Moreno, “Multiscattering effects in the far-field region for two small particles on a flat conducting substrate,” Waves Random Media 7(3), 319–329 (1997).
[Crossref]

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (SpringerBerlin Heidelberg, 1988).
[Crossref]

J. S. Kee, S. Lim, A. P. Perera, and M. K. Park, “Plasmonic Nanohole Array for Biosensor Applications,” in Proceedings of IEEE Photonics Global Conference (IEEE, 2012), pp. 1–4.

E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

COMSOL Multiphysics 5.0, COMSOL Inc. ( http://www.comsol.com/ ).

A. Colombelli, M. G. Manera, G. Montagna, R. Rella, and A. Convertino, “Three-dimensional Plasmonic Materials for Chemical Sensor Application,” in Proceedings of the Second National Conference on Sensors, D. Compagnone, F. Baldini, C. Di Natale, G. Betta, and P. Siciliano, eds. (Switzerland: Springer International Publishing, 2015), pp. 171–175.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Penetration depth δϵ of SP’s in the dielectric medium (water in this case nw = 1.33). Gold was considered as the metallic material [41].
Fig. 2
Fig. 2 Scheme of the unit cell used for simulating the periodic nanohole array in 3D. The illumination consists of a plane wave propagating along the z axis and linearly polarized along the x axis. k and E represent respectively the propagation direction and the polarization of the incident radiation.
Fig. 3
Fig. 3 (a) Scheme of a 2D periodic array. The system is illuminated with a Gaussian beam propagating along the z axis and linearly polarized along the x axis. (b) Normalized near field map of the electric field norm (|E| in linear scale) in the plane XZ at 768 nm.
Fig. 4
Fig. 4 Transmission spectra of a periodically nanostructured gold thin-film of thickness (t = 60 nm) and period (P = 500 nm) sandwiched between two dielectric media made of water and glass. (a) 3D geometry (hole radius R = 90 nm), (b) 2D geometry (nanoapertures width W = 180 nm).
Fig. 5
Fig. 5 Configuration of the studied geometry for rectangular objects, which have been placed on the nanostructured substrate described in Section 2. The area of the rectangles is 0.12 µm2 and their refractive index no = 1.4.
Fig. 6
Fig. 6 (a) Transmission spectra of the SP − nw EOT resonance due to the presence of rectangular objects in the water buffer and located on the nanostructured gold film. (b) Spectral position of the maximum value in the transmission spectra as a function of the number of objects.
Fig. 7
Fig. 7 Configuration of the studied geometry for circular objects. The area of the circles is 0.12 µm2 and their refractive index no = 1.4.
Fig. 8
Fig. 8 (a) Transmission spectra of the SP − nw EOT resonance due to the presence of circular objects in the water buffer and located on the nanostructured gold film. (b) Spectral position of the maximum value in the transmission spectra as a function of the number of objects.
Fig. 9
Fig. 9 Configuration of the studied geometry for semicircular objects. The area of the semicircles is 0.12 µm2 and their refractive index no = 1.4.
Fig. 10
Fig. 10 (a) Transmission spectra of the SP − nw resonance due to the presence of semicircular objects in the water buffer and located on the nanostructured gold film. (b) Spectral position of the maximum value in the transmission spectra as a function of the number of objects.
Fig. 11
Fig. 11 Configurations used for studying the flattening effect of a large object (R = 10 µm) on a nanostructured metallic film substrate. The contact surface between the object and the substrate is (a) through only one point (rigid object) or (b) the object covers some nanoapertures (flexible object like a conventional cell).
Fig. 12
Fig. 12 (a) Transmission spectra of the SP − nw resonance due to the presence of a large, circular object (R = 10 µm) in the water buffer and located on the nanostructured gold film for different contact surfaces. (b) Spectral position of the maximum value in the transmission spectra as a function of the number of nanoapertures blocked by the object.
Fig. 13
Fig. 13 Transmission spectra of the SP − nw resonance due to changes in a micron-sized object refractive index: no ∈ [1.33, 1.45]. The contact surface between the object and the substrate is through (a) only one point or (c) the object blocks 6 nanoapertures. In (b) and (d), the wavelength corresponding to the maximum value of the SP − nw resonance is plotted as a function of the object refractive index when the contact surface between the object and the substrate is through only one point or the object covers 6 nanoapertures, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k SP = ω c ϵ 1 ϵ 2 ϵ 1 + ϵ 2
k SP = k ± i G x ± j G y
λ SP = P ϵ 1 ϵ 2 ϵ 1 + ϵ 2 i 2 + j 2
δ ϵ | ϵ 2 | λ 2 π ϵ 1
S NO = δ λ max δ NO
S NA = δ λ max δ NA
S n o = δ λ max δ n o

Metrics