Abstract

We describe a theoretical study of dipole emitters inside buckled-dome Fabry-Perot cavities with Si/SiO2-based omnidirectional Bragg mirrors. The low penetration depth of the mirrors contributes to low mode volumes, potentially enabling large enhancement of spontaneous emission into moderate-quality-factor cavity modes. Furthermore, the omnidirectional mirrors can significantly inhibit background emission. For a representative cavity operating in a fundamental spatial mode regime at λ ~1550 nm, and an optimally located emitter, we predict simultaneous enhancement of emission into the cavity mode by ~120 and suppression of background emission by ~25, implying the potential for a cooperativity C ~1500. This is combined with Q ~103, significantly lower than is required to attain similar values of C without background inhibition, and thus implying better compatibility for broad line-width emitters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermomechanical characterization of on-chip buckled dome Fabry–Perot microcavities

M. H. Bitarafan, H. Ramp, T. W. Allen, C. Potts, X. Rojas, A. J. R. MacDonald, J. P. Davis, and R. G. DeCorby
J. Opt. Soc. Am. B 32(6) 1214-1220 (2015)

Bistability in buckled dome microcavities

M. H. Bitarafan, H. Ramp, C. Potts, T. W. Allen, J. P. Davis, and R. G. DeCorby
Opt. Lett. 40(22) 5375-5378 (2015)

High-quality-factor Bragg onion resonators with omnidirectional reflector cladding

Yong Xu, Wei Liang, Amnon Yariv, J. G. Fleming, and Shawn-Yu Lin
Opt. Lett. 28(22) 2144-2146 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, 2nd ed. (Oxford University, 2017), Chap. 6.
  2. D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58(13), 1320–1323 (1987).
    [Crossref] [PubMed]
  3. F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
    [Crossref] [PubMed]
  4. G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
    [Crossref] [PubMed]
  5. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
    [Crossref]
  6. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  7. Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
    [Crossref]
  8. A. Kuhn and D. Ljunggren, “Cavity-based single-photon sources,” Contemp. Phys. 51(4), 289–313 (2010).
    [Crossref]
  9. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
    [Crossref]
  10. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
    [Crossref] [PubMed]
  11. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [Crossref] [PubMed]
  12. C. Hooijer, D. Lenstra, and A. Lagendijk, “Mode density inside an omnidirectional mirror is heavily directional but not small,” Opt. Lett. 25(22), 1666–1668 (2000).
    [Crossref] [PubMed]
  13. P. St. J. Russell, S. Tredwell, and P. J. Roberts, “Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun. 160(1-3), 66–71 (1999).
    [Crossref]
  14. P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
    [Crossref]
  15. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “High-quality-factor Bragg onion resonators with omnidirectional reflector cladding,” Opt. Lett. 28(22), 2144–2146 (2003).
    [Crossref] [PubMed]
  16. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Modal analysis of Bragg onion resonators,” Opt. Lett. 29(5), 424–426 (2004).
    [Crossref] [PubMed]
  17. W. Liang, Y. Huang, A. Yariv, Y. Xu, and S.-Y. Lin, “Modification of spontaneous emission in Bragg onion resonators,” Opt. Express 14(16), 7398–7419 (2006).
    [Crossref] [PubMed]
  18. T. W. Allen, J. Silverstone, N. Ponnampalam, T. Olsen, A. Meldrum, and R. G. DeCorby, “High-finesse cavities fabricated by buckling self-assembly of a-Si/SiO2 multilayers,” Opt. Express 19(20), 18903–18909 (2011).
    [Crossref] [PubMed]
  19. C. A. Potts, A. Melnyk, H. Ramp, M. H. Bitarafan, D. Vick, L. J. Leblanc, J. P. Davis, and R. G. DeCorby, “Tunable open-access microcavities for on-chip cavity quantum electrodynamics,” Appl. Phys. Lett. 108(4), 041103 (2016).
    [Crossref]
  20. M. H. Bitarafan, H. Ramp, T. W. Allen, C. Potts, X. Rojas, A. J. R. MacDonald, J. P. Davis, and R. G. DeCorby, “Thermomechanical characterization of on-chip buckled dome Fabry-Perot microcavities,” J. Opt. Soc. Am. B 32(6), 1214–1220 (2015).
    [Crossref]
  21. M. H. Bitarafan and R. G. DeCorby, “Small-mode-volume, channel-connected Fabry-Perot microcavities on a chip,” Appl. Opt. 56(36), 9992–9997 (2017).
    [Crossref]
  22. M. H. Bitarafan, C. A. Potts, and R. G. DeCorby, “Cut-off-based dual-taper reflectors in on-chip hollow waveguides,” Opt. Express 25(5), 5101–5106 (2017).
    [Crossref] [PubMed]
  23. M. H. Bitarafan, H. Ramp, C. Potts, T. W. Allen, J. P. Davis, and R. G. DeCorby, “Bistability in buckled dome microcavities,” Opt. Lett. 40(22), 5375–5378 (2015).
    [Crossref] [PubMed]
  24. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
    [Crossref]
  25. S. E. Morin, Q. Wu, and T. W. Mossberg, “Cavity quantum electrodynamics at optical frequencies,” Opt. Photonics News 3, 8–14 (1998).
  26. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15(4), 962–971 (1998).
    [Crossref]
  27. M. S. Tomaš, “Green function for multilayers: light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
    [Crossref] [PubMed]
  28. M. S. Tomaš and Z. Lenac, “Spontaneous –emission spectrum in an absorbing Fabry-Perot cavity,” Phys. Rev. A 60(3), 2431–2437 (1999).
    [Crossref]
  29. H. J. W. M. Hoekstra and H. B. H. Elrofai, “Theory of optical spontaneous emission rates in layered structures,” Phys. Rev. E 71(4), 046609 (2005).
    [Crossref] [PubMed]
  30. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 2005), Chap. 11.
  31. S. Nussmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95(17), 173602 (2005).
    [Crossref] [PubMed]
  32. H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88(5), 053812 (2013).
    [Crossref]
  33. S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
    [Crossref]
  34. M. Jiang, J. A. Kurvits, Y. Lu, A. V. Nurmikko, and R. Zia, “Reusable inorganic templates for electrostatic self-assembly of individual quantum dots, nanodiamonds, and lanthanide-doped nanoparticles,” Nano Lett. 15(8), 5010–5016 (2015).
    [Crossref] [PubMed]
  35. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22(4), 4779–4788 (2014).
    [Crossref] [PubMed]
  36. J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17(12), 7394–7400 (2017).
    [Crossref] [PubMed]
  37. H. Z. Song, K. Takemoto, T. Miyazawa, M. Takatsu, S. Iwamoto, T. Yamamoto, and Y. Arakawa, “Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 μm from InAs/InP quantum dots,” Opt. Lett. 38(17), 3241–3244 (2013).
    [Crossref] [PubMed]
  38. M. Humer, R. Guider, W. Jantsch, and T. Fromherz, “Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths,” Opt. Express 21(16), 18680–18688 (2013).
    [Crossref] [PubMed]
  39. E. Miyazono, I. Craiciu, A. Arbabi, T. Zhong, and A. Faraon, “Coupling erbium dopants in yttrium orthosilicate to silicon photonic resonators and waveguides,” Opt. Express 25(3), 2863–2871 (2017).
    [Crossref] [PubMed]

2017 (4)

2016 (1)

C. A. Potts, A. Melnyk, H. Ramp, M. H. Bitarafan, D. Vick, L. J. Leblanc, J. P. Davis, and R. G. DeCorby, “Tunable open-access microcavities for on-chip cavity quantum electrodynamics,” Appl. Phys. Lett. 108(4), 041103 (2016).
[Crossref]

2015 (5)

M. H. Bitarafan, H. Ramp, T. W. Allen, C. Potts, X. Rojas, A. J. R. MacDonald, J. P. Davis, and R. G. DeCorby, “Thermomechanical characterization of on-chip buckled dome Fabry-Perot microcavities,” J. Opt. Soc. Am. B 32(6), 1214–1220 (2015).
[Crossref]

M. H. Bitarafan, H. Ramp, C. Potts, T. W. Allen, J. P. Davis, and R. G. DeCorby, “Bistability in buckled dome microcavities,” Opt. Lett. 40(22), 5375–5378 (2015).
[Crossref] [PubMed]

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

M. Jiang, J. A. Kurvits, Y. Lu, A. V. Nurmikko, and R. Zia, “Reusable inorganic templates for electrostatic self-assembly of individual quantum dots, nanodiamonds, and lanthanide-doped nanoparticles,” Nano Lett. 15(8), 5010–5016 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

2011 (1)

2010 (2)

A. Kuhn and D. Ljunggren, “Cavity-based single-photon sources,” Contemp. Phys. 51(4), 289–313 (2010).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

2006 (1)

2005 (2)

H. J. W. M. Hoekstra and H. B. H. Elrofai, “Theory of optical spontaneous emission rates in layered structures,” Phys. Rev. E 71(4), 046609 (2005).
[Crossref] [PubMed]

S. Nussmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95(17), 173602 (2005).
[Crossref] [PubMed]

2004 (2)

Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Modal analysis of Bragg onion resonators,” Opt. Lett. 29(5), 424–426 (2004).
[Crossref] [PubMed]

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[Crossref]

2003 (1)

2001 (2)

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[Crossref] [PubMed]

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (2)

P. St. J. Russell, S. Tredwell, and P. J. Roberts, “Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun. 160(1-3), 66–71 (1999).
[Crossref]

M. S. Tomaš and Z. Lenac, “Spontaneous –emission spectrum in an absorbing Fabry-Perot cavity,” Phys. Rev. A 60(3), 2431–2437 (1999).
[Crossref]

1998 (3)

S. E. Morin, Q. Wu, and T. W. Mossberg, “Cavity quantum electrodynamics at optical frequencies,” Opt. Photonics News 3, 8–14 (1998).

K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15(4), 962–971 (1998).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

1995 (1)

M. S. Tomaš, “Green function for multilayers: light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
[Crossref] [PubMed]

1993 (1)

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
[Crossref]

1987 (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58(13), 1320–1323 (1987).
[Crossref] [PubMed]

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[Crossref] [PubMed]

1981 (1)

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
[Crossref]

Aghaeimeibodi, S.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17(12), 7394–7400 (2017).
[Crossref] [PubMed]

Allen, T. W.

Arakawa, Y.

Arbabi, A.

Auffeves, A.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Bayer, M.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[Crossref] [PubMed]

Bermel, P.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[Crossref]

Bitarafan, M. H.

Chang, H.-C.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88(5), 053812 (2013).
[Crossref]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Chen, Y. C.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Childs, J. J.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58(13), 1320–1323 (1987).
[Crossref] [PubMed]

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Craiciu, I.

Davis, J. P.

DeCorby, R. G.

Deutsch, C.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88(5), 053812 (2013).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Dolan, P. R.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Elrofai, H. B. H.

H. J. W. M. Hoekstra and H. B. H. Elrofai, “Theory of optical spontaneous emission rates in layered structures,” Phys. Rev. E 71(4), 046609 (2005).
[Crossref] [PubMed]

Englund, D.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17(12), 7394–7400 (2017).
[Crossref] [PubMed]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Faraon, A.

Feld, M. S.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58(13), 1320–1323 (1987).
[Crossref] [PubMed]

Fink, Y.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Fleming, J. G.

Forchel, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[Crossref] [PubMed]

Fromherz, T.

Grange, T.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Guider, R.

Hansch, T. W.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88(5), 053812 (2013).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Heinzen, D. J.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58(13), 1320–1323 (1987).
[Crossref] [PubMed]

Hijlkema, M.

S. Nussmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95(17), 173602 (2005).
[Crossref] [PubMed]

Hoekstra, H. J. W. M.

H. J. W. M. Hoekstra and H. B. H. Elrofai, “Theory of optical spontaneous emission rates in layered structures,” Phys. Rev. E 71(4), 046609 (2005).
[Crossref] [PubMed]

Hooijer, C.

Hornecker, G.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Huang, Y.

Hughes, G. M.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Humer, M.

Hunger, D.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88(5), 053812 (2013).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Innocenti, G.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[Crossref] [PubMed]

Iwamoto, S.

Jacobovitz, G. R.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[Crossref] [PubMed]

Jantsch, W.

Jiang, M.

M. Jiang, J. A. Kurvits, Y. Lu, A. V. Nurmikko, and R. Zia, “Reusable inorganic templates for electrostatic self-assembly of individual quantum dots, nanodiamonds, and lanthanide-doped nanoparticles,” Nano Lett. 15(8), 5010–5016 (2015).
[Crossref] [PubMed]

Joannopoulos, J. D.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Johnson, S.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Kamei, T.

Kaupp, H.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88(5), 053812 (2013).
[Crossref]

Kim, J.-H.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17(12), 7394–7400 (2017).
[Crossref] [PubMed]

Kleppner, D.

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
[Crossref]

Kuhn, A.

A. Kuhn and D. Ljunggren, “Cavity-based single-photon sources,” Contemp. Phys. 51(4), 289–313 (2010).
[Crossref]

S. Nussmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95(17), 173602 (2005).
[Crossref] [PubMed]

Kurvits, J. A.

M. Jiang, J. A. Kurvits, Y. Lu, A. V. Nurmikko, and R. Zia, “Reusable inorganic templates for electrostatic self-assembly of individual quantum dots, nanodiamonds, and lanthanide-doped nanoparticles,” Nano Lett. 15(8), 5010–5016 (2015).
[Crossref] [PubMed]

Lagendijk, A.

Lane, P. A.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[Crossref]

Larionov, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[Crossref] [PubMed]

Leavitt, R. P.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17(12), 7394–7400 (2017).
[Crossref] [PubMed]

Leblanc, L. J.

C. A. Potts, A. Melnyk, H. Ramp, M. H. Bitarafan, D. Vick, L. J. Leblanc, J. P. Davis, and R. G. DeCorby, “Tunable open-access microcavities for on-chip cavity quantum electrodynamics,” Appl. Phys. Lett. 108(4), 041103 (2016).
[Crossref]

Lenac, Z.

M. S. Tomaš and Z. Lenac, “Spontaneous –emission spectrum in an absorbing Fabry-Perot cavity,” Phys. Rev. A 60(3), 2431–2437 (1999).
[Crossref]

Lenstra, D.

Liang, W.

Lin, S.-Y.

Ljunggren, D.

A. Kuhn and D. Ljunggren, “Cavity-based single-photon sources,” Contemp. Phys. 51(4), 289–313 (2010).
[Crossref]

Lu, Y.

M. Jiang, J. A. Kurvits, Y. Lu, A. V. Nurmikko, and R. Zia, “Reusable inorganic templates for electrostatic self-assembly of individual quantum dots, nanodiamonds, and lanthanide-doped nanoparticles,” Nano Lett. 15(8), 5010–5016 (2015).
[Crossref] [PubMed]

MacDonald, A. J. R.

Manako, S.

Martini, F. D.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[Crossref] [PubMed]

Mataloni, P.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[Crossref] [PubMed]

McDonald, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[Crossref] [PubMed]

Meldrum, A.

Melnyk, A.

C. A. Potts, A. Melnyk, H. Ramp, M. H. Bitarafan, D. Vick, L. J. Leblanc, J. P. Davis, and R. G. DeCorby, “Tunable open-access microcavities for on-chip cavity quantum electrodynamics,” Appl. Phys. Lett. 108(4), 041103 (2016).
[Crossref]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Miyazawa, T.

Miyazono, E.

Mori, M.

Morin, S. E.

S. E. Morin, Q. Wu, and T. W. Mossberg, “Cavity quantum electrodynamics at optical frequencies,” Opt. Photonics News 3, 8–14 (1998).

Mossberg, T. W.

S. E. Morin, Q. Wu, and T. W. Mossberg, “Cavity quantum electrodynamics at optical frequencies,” Opt. Photonics News 3, 8–14 (1998).

Neyts, K. A.

Nurmikko, A. V.

M. Jiang, J. A. Kurvits, Y. Lu, A. V. Nurmikko, and R. Zia, “Reusable inorganic templates for electrostatic self-assembly of individual quantum dots, nanodiamonds, and lanthanide-doped nanoparticles,” Nano Lett. 15(8), 5010–5016 (2015).
[Crossref] [PubMed]

Nussmann, S.

S. Nussmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95(17), 173602 (2005).
[Crossref] [PubMed]

Olsen, T.

Omoda, E.

Pelton, M.

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[Crossref] [PubMed]

Ponnampalam, N.

Potts, C.

Potts, C. A.

M. H. Bitarafan, C. A. Potts, and R. G. DeCorby, “Cut-off-based dual-taper reflectors in on-chip hollow waveguides,” Opt. Express 25(5), 5101–5106 (2017).
[Crossref] [PubMed]

C. A. Potts, A. Melnyk, H. Ramp, M. H. Bitarafan, D. Vick, L. J. Leblanc, J. P. Davis, and R. G. DeCorby, “Tunable open-access microcavities for on-chip cavity quantum electrodynamics,” Appl. Phys. Lett. 108(4), 041103 (2016).
[Crossref]

Ramp, H.

Reichel, J.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88(5), 053812 (2013).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Reinecke, T. L.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[Crossref] [PubMed]

Reiserer, A.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

Rempe, G.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

S. Nussmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95(17), 173602 (2005).
[Crossref] [PubMed]

Richardson, C. J. K.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17(12), 7394–7400 (2017).
[Crossref] [PubMed]

Roberts, P. J.

P. St. J. Russell, S. Tredwell, and P. J. Roberts, “Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun. 160(1-3), 66–71 (1999).
[Crossref]

Rohde, F.

S. Nussmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95(17), 173602 (2005).
[Crossref] [PubMed]

Rojas, X.

Russell, P. St. J.

P. St. J. Russell, S. Tredwell, and P. J. Roberts, “Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun. 160(1-3), 66–71 (1999).
[Crossref]

Sakakibara, Y.

Silverstone, J.

Slusher, R. E.

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
[Crossref]

Smith, J. M.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Solomon, G. S.

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[Crossref] [PubMed]

Song, H. Z.

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Takatsu, M.

Takei, R.

Takemoto, K.

Tapalian, C.

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[Crossref]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Thomas, J. E.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58(13), 1320–1323 (1987).
[Crossref] [PubMed]

Tomaš, M. S.

M. S. Tomaš and Z. Lenac, “Spontaneous –emission spectrum in an absorbing Fabry-Perot cavity,” Phys. Rev. A 60(3), 2431–2437 (1999).
[Crossref]

M. S. Tomaš, “Green function for multilayers: light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
[Crossref] [PubMed]

Tredwell, S.

P. St. J. Russell, S. Tredwell, and P. J. Roberts, “Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun. 160(1-3), 66–71 (1999).
[Crossref]

Trichet, A. A. P.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Vick, D.

C. A. Potts, A. Melnyk, H. Ramp, M. H. Bitarafan, D. Vick, L. J. Leblanc, J. P. Davis, and R. G. DeCorby, “Tunable open-access microcavities for on-chip cavity quantum electrodynamics,” Appl. Phys. Lett. 108(4), 041103 (2016).
[Crossref]

Waks, E.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17(12), 7394–7400 (2017).
[Crossref] [PubMed]

Watt, A. A. R.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Weber, B.

S. Nussmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95(17), 173602 (2005).
[Crossref] [PubMed]

Weidner, F.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[Crossref] [PubMed]

Weng, L.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Wu, Q.

S. E. Morin, Q. Wu, and T. W. Mossberg, “Cavity quantum electrodynamics at optical frequencies,” Opt. Photonics News 3, 8–14 (1998).

Xu, Y.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, T.

Yamamoto, Y.

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[Crossref] [PubMed]

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
[Crossref]

Yariv, A.

Zhong, T.

Zia, R.

M. Jiang, J. A. Kurvits, Y. Lu, A. V. Nurmikko, and R. Zia, “Reusable inorganic templates for electrostatic self-assembly of individual quantum dots, nanodiamonds, and lanthanide-doped nanoparticles,” Nano Lett. 15(8), 5010–5016 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. A. Potts, A. Melnyk, H. Ramp, M. H. Bitarafan, D. Vick, L. J. Leblanc, J. P. Davis, and R. G. DeCorby, “Tunable open-access microcavities for on-chip cavity quantum electrodynamics,” Appl. Phys. Lett. 108(4), 041103 (2016).
[Crossref]

Contemp. Phys. (1)

A. Kuhn and D. Ljunggren, “Cavity-based single-photon sources,” Contemp. Phys. 51(4), 289–313 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

M. Jiang, J. A. Kurvits, Y. Lu, A. V. Nurmikko, and R. Zia, “Reusable inorganic templates for electrostatic self-assembly of individual quantum dots, nanodiamonds, and lanthanide-doped nanoparticles,” Nano Lett. 15(8), 5010–5016 (2015).
[Crossref] [PubMed]

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17(12), 7394–7400 (2017).
[Crossref] [PubMed]

New J. Phys. (2)

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17(12), 122003 (2015).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Opt. Commun. (1)

P. St. J. Russell, S. Tredwell, and P. J. Roberts, “Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun. 160(1-3), 66–71 (1999).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Opt. Photonics News (1)

S. E. Morin, Q. Wu, and T. W. Mossberg, “Cavity quantum electrodynamics at optical frequencies,” Opt. Photonics News 3, 8–14 (1998).

Phys. Rev. A (3)

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hansch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88(5), 053812 (2013).
[Crossref]

M. S. Tomaš, “Green function for multilayers: light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995).
[Crossref] [PubMed]

M. S. Tomaš and Z. Lenac, “Spontaneous –emission spectrum in an absorbing Fabry-Perot cavity,” Phys. Rev. A 60(3), 2431–2437 (1999).
[Crossref]

Phys. Rev. B (1)

P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004).
[Crossref]

Phys. Rev. E (1)

H. J. W. M. Hoekstra and H. B. H. Elrofai, “Theory of optical spontaneous emission rates in layered structures,” Phys. Rev. E 71(4), 046609 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (7)

S. Nussmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95(17), 173602 (2005).
[Crossref] [PubMed]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86(14), 3168–3171 (2001).
[Crossref] [PubMed]

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58(13), 1320–1323 (1987).
[Crossref] [PubMed]

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59(26), 2955–2958 (1987).
[Crossref] [PubMed]

G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[Crossref] [PubMed]

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Phys. Today (1)

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993).
[Crossref]

Rev. Mod. Phys. (1)

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Other (2)

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, 2nd ed. (Oxford University, 2017), Chap. 6.

P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 2005), Chap. 11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Microscope image of a portion of a large array of 50-μm-base-diameter domes. (b) Typical wavelength scan showing a fundamental resonance (at ~1610 nm for this particular cavity) and several higher-order transverse resonances. The solid lines are Lorentzian fits, and mode-field-intensity images associated with each resonance are shown as insets. (c) Schematic 3-D cut-out view of a buckled dome cavity, showing the fundamental resonant mode (at ~1527 nm using the cavity parameters described in the main text) predicted by a finite-element numerical simulation. (d) Predicted reflectance versus incidence angle from air at 1550 nm wavelength, for the 4-period lower mirror of the cavities.
Fig. 2
Fig. 2 (a) Schematic diagram of a dipole emitter (indicated by the horizontal block arrow) inside a buckled dome microcavity, showing 3 possible routes for spontaneous emission. Emission into a cavity mode (A) can be predicted by the Purcell factor, emission into free-space vacuum modes (B) is assumed to be negligible due to the omnidirectional nature of the cladding mirrors, and emission into cladding modes (C) can be treated approximately using a planar model. (b) Planar model used to estimate the rate of emission into cladding modes. The dipole is placed at some distance dZ from the interface with the bottom mirror.
Fig. 3
Fig. 3 (a) The LDOM distribution (i.e. the integrand of the TE expression in Eq. (3)) in transverse-wave-vector space is plotted for various dipole positions and emission wavelengths. The integrand of the TM expression for one representative case (λ = 1570 nm, dZ = dA/2) is also shown (dash-dot line). (b) The total relative emission rate (γTE + γTM)/γ0 for a dipole emitting at λ = 1550 nm is plotted versus dipole location relative to the bottom mirror interface. The contributions from the cavity mode (i.e. 0 < k// < k0) and the cladding modes (i.e. k// > k0) are also shown separately.
Fig. 4
Fig. 4 (a) The fundamental mode intensity profile is plotted for a planar cavity comprising a quarter-wave air layer and a quarter-wave spacer layer with refractive index nD. The multilayer structure, including 4.5- and 4-period upper and lower mirrors, respectively, is overlaid on the plot. A dipole emitter at the air-spacer interface is also depicted. (b) The predicted rate of emission into cladding modes is plotted versus spacer layer refractive index, for a horizontal monochromatic (λ = 1550 nm) dipole at the air-spacer interface, and with the spacer layer set to quarter-wavelength optical thickness in each case.
Fig. 5
Fig. 5 (a) Cross-sectional mode-field profile at the resonant wavelength λ ~1527.3 nm for a buckled cavity with ~λ/2 air-core thickness, as predicted by the FDTD-based solution. (b) Wavelength-dependent emission rate relative to the free-space emission rate, for a horizontally oriented dipole located in the middle of the air cavity. (c) Far-field projection of the power radiated from the top of the buckled cavity at the resonant wavelength. The plot is a 2-D representation (i.e. ‘overhead’ view, with the angle relative to normal indicated by the concentric circles in increments of 10 degrees) of the power distribution on a hemispherical surface of radius 1 m. (d) As in part (c), but for λ ~1531.1 nm.
Fig. 6
Fig. 6 (a) Cross-sectional mode-field profile at the resonant wavelength λ ~1537.2 nm for a buckled cavity with ~λ/4 air-core thickness and ~λ/4 SiO2 spacer layer, as predicted by the FDTD-based solution. (b) Wavelength-dependent emission rate relative to the free-space emission rate, for a horizontally oriented dipole located at the top of the spacer layer.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C g 2 2κ γ BG = γ C 2 γ BG ,
β= κ out κ γ C γ BG + γ C = κ out κ 2C 1+2C ,
γ TE γ 0 = 3 4 k 0 Re 0 d k // k // k Z { 1+ r TE + exp[ 2i k Z ( d A d Z ) ] }{ 1+ r TE exp[ 2i k Z d Z ] } ( 1 r TE + r TE exp[ 2i k Z d A ] ) ; γ TM γ 0 = 3 4 k 0 3 Re 0 d k // k // k Z { r TM + exp[ 2i k Z ( d A d Z ) ]1 }{ r TM exp[ 2i k Z d Z ]1 } ( 1 r TM + r TM exp[ 2i k Z d A ] ) .

Metrics