Abstract

We report on the design and performance of high-Q integrated optical micro-trench cavities on silicon. The microcavities are co-integrated with silicon nitride bus waveguides and fabricated using wafer-scale silicon-photonics-compatible processing steps. The amorphous aluminum oxide resonator material is deposited via sputtering in a single straightforward post-processing step. We examine the theoretical and experimental optical properties of the aluminum oxide micro-trench cavities for different bend radii, film thicknesses and near-infrared wavelengths and demonstrate experimental Q factors of > 106. We propose that this high-Q micro-trench cavity design can be applied to incorporate a wide variety of novel microcavity materials, including rare-earth-doped films for microlasers, into wafer-scale silicon photonics platforms.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation

Yi Xuan, Yang Liu, Leo T. Varghese, Andrew J. Metcalf, Xiaoxiao Xue, Pei-Hsun Wang, Kyunghun Han, Jose A. Jaramillo-Villegas, Abdullah Al Noman, Cong Wang, Sangsik Kim, Min Teng, Yun Jo Lee, Ben Niu, Li Fan, Jian Wang, Daniel E. Leaird, Andrew M. Weiner, and Minghao Qi
Optica 3(11) 1171-1180 (2016)

Optically pumped rare-earth-doped Al2O3 distributed-feedback lasers on silicon [Invited]

Markus Pollnau and Jonathan D. B. Bradley
Opt. Express 26(18) 24164-24189 (2018)

High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler

Amir H. Hosseinnia, Amir H. Atabaki, Ali A. Eftekhar, and Ali Adibi
Opt. Express 23(23) 30297-30307 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).
  3. H.-Z. Song, “Microcavities for silica-fiber-based quantum information processing,” in Optoelectronics – Advanced Device Structures, S. L. Pyshkin and J. Ballato, eds. (InTech, 2017).
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  5. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  6. L. He, S. Kaya Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
    [Crossref]
  7. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  8. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37(20), 4236–4238 (2012).
    [Crossref] [PubMed]
  9. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref] [PubMed]
  10. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  11. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  12. K. Y. Yang, D. Y. Oh, S. H. Lee, and K. J. Vahala, “Ultra-high-Q silica-on-silicon ridge-ring-resonator with an integrated silicon nitride waveguide,” in CLEO: Science and Innovations 2016, OSA Technical Digest Series (Optical Society of America, 2016), paper JTh4B.7.
  13. J. D. B. Bradley, E. S. Hosseini, Z. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
    [Crossref] [PubMed]
  14. Z. Su, J. D. B. Bradley, N. Li, E. S. Magden, Purnawirman, D. Coleman, N. Fahrenkopf, C. Baiocco, T. N. Adam, G. Leake, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Ultra-compact CMOS-compatible ytterbium microlaser,” in Advanced Photonics 2016, Integrated Photonics Research, Silicon and Nano-Photonics, OSA Technical Digest Series (Optical Society of America, 2016), paper IW1A.3.
  15. Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
    [Crossref] [PubMed]
  16. E. S. Magden, M. Y. Peng, J. D. B. Bradley, G. Leake, D. Coolbaugh, L. A. Kolodziejski, F. X. Kaertner, and M. R. Watts, “Laser frequency stabilization using Pound-Drever-Hall technique with an integrated TiO2 athermal resonator,” in CLEO: Science and Innovations 2016, OSA Technical Digest Series (Optical Society of America, 2016), paper Stu1H.3.
  17. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
    [Crossref]
  18. J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
    [Crossref] [PubMed]
  19. M. Soltani, Novel Integrated Silicon Nanophotonic Structures using Ultra-high Q Resonators (Ph.D. Thesis. Georgia Institute of Technology, 2009).
  20. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
    [Crossref]
  21. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [Crossref]
  22. M. R. Watts, J. Sun, E. Timurdogan, E. Shah Hosseini, C. Sorace-agaskar, A. Yaacobi, Z. Su, M. Moresco, Purnawirman, J. D. B. Bradley, G. Leake, T. N. Adam, and D. Coolbaugh, “Very large scale integrated photonics,” in CLEO: Science and Innovations 2014, OSA Technical Digest Series (Optical Society of America, 2014), paper SM4O.4.

2016 (1)

2015 (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

L. He, S. Kaya Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37(20), 4236–4238 (2012).
[Crossref] [PubMed]

2011 (3)

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

2009 (2)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[Crossref]

2004 (1)

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Adam, T. N.

Agarwal, A.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Ay, F.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Barton, J. S.

Bauters, J. F.

Biberman, A.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Blauwendraat, T.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Blumenthal, D. J.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bowers, J. E.

Bradley, J. D. B.

Byrd, M.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Coolbaugh, D.

Dai, D.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Dumeige, Y.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Féron, P.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Ferrari, M.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Geskus, D.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

He, L.

L. He, S. Kaya Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Hosseini, E. S.

Hu, J.

John, D.

Kalkman, J.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

Kaya Özdemir, S.

L. He, S. Kaya Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Kimerling, L. C.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Leake, G.

Leinse, A.

Li, N.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Min, B.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Nunzi Conti, G.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Pollnau, M.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Polman, A.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

Purnawirman, J.

Purnawirman, P.

Purnawirman, Z.

Righini, G. C.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Ristic, D.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Salih Magden, E.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shah Hosseini, E.

Shaw, M. J.

Soria, S.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Su, Z.

Sun, J.

Sun, X.

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Thourhout, D. V.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Tien, M.-C.

Timurdogan, E.

Vahala, K. J.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Watts, M. R.

Wörhoff, K.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Wright, J. B.

Yang, L.

L. He, S. Kaya Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

L. He, S. Kaya Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Photonics (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Nature (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[Crossref]

Riv. Nuovo Cim. (1)

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (6)

H.-Z. Song, “Microcavities for silica-fiber-based quantum information processing,” in Optoelectronics – Advanced Device Structures, S. L. Pyshkin and J. Ballato, eds. (InTech, 2017).

E. S. Magden, M. Y. Peng, J. D. B. Bradley, G. Leake, D. Coolbaugh, L. A. Kolodziejski, F. X. Kaertner, and M. R. Watts, “Laser frequency stabilization using Pound-Drever-Hall technique with an integrated TiO2 athermal resonator,” in CLEO: Science and Innovations 2016, OSA Technical Digest Series (Optical Society of America, 2016), paper Stu1H.3.

M. Soltani, Novel Integrated Silicon Nanophotonic Structures using Ultra-high Q Resonators (Ph.D. Thesis. Georgia Institute of Technology, 2009).

Z. Su, J. D. B. Bradley, N. Li, E. S. Magden, Purnawirman, D. Coleman, N. Fahrenkopf, C. Baiocco, T. N. Adam, G. Leake, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Ultra-compact CMOS-compatible ytterbium microlaser,” in Advanced Photonics 2016, Integrated Photonics Research, Silicon and Nano-Photonics, OSA Technical Digest Series (Optical Society of America, 2016), paper IW1A.3.

K. Y. Yang, D. Y. Oh, S. H. Lee, and K. J. Vahala, “Ultra-high-Q silica-on-silicon ridge-ring-resonator with an integrated silicon nitride waveguide,” in CLEO: Science and Innovations 2016, OSA Technical Digest Series (Optical Society of America, 2016), paper JTh4B.7.

M. R. Watts, J. Sun, E. Timurdogan, E. Shah Hosseini, C. Sorace-agaskar, A. Yaacobi, Z. Su, M. Moresco, Purnawirman, J. D. B. Bradley, G. Leake, T. N. Adam, and D. Coolbaugh, “Very large scale integrated photonics,” in CLEO: Science and Innovations 2014, OSA Technical Digest Series (Optical Society of America, 2014), paper SM4O.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Aluminum oxide micro-trench cavity fabrication process: (i) PECVD deposition and (ii) patterning of a 200-nm-thick Si3N4 film on a 6-µm-thick PECVD SiO2 lower cladding layer on silicon; (iii) deposition and planarization of a PECVD SiO2 layer to a height of 100 nm above the first Si3N4 layer and deposition of a second 200-nm-thick Si3N4 film; (iv) patterning of the second Si3N4 film; (v) deposition and planarization of a ~5-µm-thick SiO2 top cladding; (vi) definition of the micro-trench into the SiO2 cladding using RIE and the second Si3N4 layer as an etch stop followed by deposition of a 100-nm-thick SiO2 layer; and (vii) deposition of a ~1-µm thick Al2O3 layer by reactive sputtering. Steps i–vi are completed in a silicon foundry, while step vii is carried out as a post-processing step.
Fig. 2
Fig. 2 (a) Schematic of a micro-trench cavity. (b) Cross-sectional SEM image taken along the dotted line in (a). The Pt coating is used as a protective layer during the FIB cutting of the chip and is not a part of the cavity design. (c) Magnified image of the cross-section (marked by the red rectangle in (b)) showing the trench angle, silicon nitride waveguide and gap.
Fig. 3
Fig. 3 (a) Measured refractive index of the amorphous Al2O3 film vs. wavelength. (b) Ex-field of the TE-like fundamental mode of the micro-trench cavity. (c) Ey-field of the TM-like fundamental mode of the micro-trench cavity. (d) Effective indices of the TE-like mode for different wavelengths and film thickness. (e) Effective indices of the TM-like mode for different wavelengths and film thickness.
Fig. 4
Fig. 4 Mode intensity overlap with Al2O3 for the (a) TE-like mode at 980nm, (b) TM-like mode at 980nm, (c) TE-like mode at 1550nm, and (d) TM-like mode at 1550nm for different microcavity radii and Al2O3 film thickness.
Fig. 5
Fig. 5 (a) Measured refractive indices of the PECVD Si3N4 film vs. wavelength. (b) Ex-field of the TE-like mode and (c) Ey-field of the TM-like mode of the double nitride waveguide. (d) Effective indices of the TE-like mode and (e) effective indices of the TM-like mode for different wavelengths and waveguide widths.
Fig. 6
Fig. 6 Transmission spectra and Q factors measured for micro-trench cavities with a 1.16-µm-thick Al2O3 film. (a) (b) Sample transmission spectra for a 150-µm-radius cavity measured at 1480 nm and 1610 nm wavelength with TE-polarized inputs. (c) Measured (points) and calculated (lines) intrinsic Q factors for different radii and wavelength ranges for TE-polarized modes. The calculated Q factors were determined using a finite-difference modesolver. (d) (e) Sample transmission spectra for a 150-µm-radius cavity measured at 1480 nm and 1610 nm wavelength with TM-polarized inputs. (f) Measured (points) and calculated (lines) intrinsic Q factors for different radii and wavelength ranges for TM-polarized modes.
Fig. 7
Fig. 7 Transmission spectra and Q factors measured for micro-trench cavities with a 1.58-µm-thick Al2O3 film. (a) (b) Sample transmission spectra for a 150-µm-radius cavity measured at 1480 nm and 1610 nm wavelength with TE-polarized inputs. (c) Measured (points) and calculated (lines) intrinsic Q factors for different radii and wavelength ranges for TE-polarized modes. The calculated Q factors were determined using a finite-difference modesolver. (d) (e) Sample transmission spectra for a 150-µm-radius cavity measured at 1480 nm and 1610 nm wavelength with TM-polarized inputs. (f) Measured (points) and calculated (lines) intrinsic Q factors for different radii and wavelength ranges for TM-polarized modes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eff = m λ 2 π R ,
γ = Al 2 O 3 I d A I d A ,

Metrics