Abstract

We demonstrate a wide-bandgap semiconductor photonics platform based on nanocrystalline aluminum nitride (AlN) on sapphire. This photonics platform guides light at low loss from the ultraviolet (UV) to the visible spectrum. We measure ring resonators with intrinsic quality factor (Q) exceeding 170,000 at 638 nm and Q >20,000 down to 369.5 nm, which shows a promising path for low-loss integrated photonics in UV and visible spectrum. This platform opens up new possibilities in integrated quantum optics with trapped ions or atom-like color centers in solids, as well as classical applications including nonlinear optics and on-chip UV-spectroscopy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range

Mohammad Soltani, Richard Soref, Tomas Palacios, and Dirk Englund
Opt. Express 24(22) 25415-25423 (2016)

Aluminum nitride-on-sapphire platform for integrated high-Q microresonators

Xianwen Liu, Changzheng Sun, Bing Xiong, Lai Wang, Jian Wang, Yanjun Han, Zhibiao Hao, Hongtao Li, Yi Luo, Jianchang Yan, Tongbo Wei, Yun Zhang, and Junxi Wang
Opt. Express 25(2) 587-594 (2017)

Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths

Sebastian Romero-García, Florian Merget, Frank Zhong, Hod Finkelstein, and Jeremy Witzens
Opt. Express 21(12) 14036-14046 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).
  2. M. Soltani, R. Soref, T. Palacios, and D. Englund, “AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range,” Opt. Express 24, 25415 (2016).
  3. K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).
  4. M. Pant, H. Choi, S. Guha, and D. Englund, “Percolation based architecture for cluster state quantum computation using photon-mediated entanglement between atomic memories,” https://arXiv:1704.07292 (2017).
  5. L.-M. Duan and C. Monroe, “Colloquium: quantum networks with trapped ions,” Rev. Mod. Phys. 82, 1209–1224 (2010).
  6. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).
  7. L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today 67 (10), 38–43 (2014).
  8. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
  9. K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechnol. 11, 1066 (2016).
  10. S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).
  11. C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12 (7), 3562–3568 (2012).
  12. C. Xiong, X. Sun, K. Y. Fong, and H. X. Tang, “Integrated high frequency aluminum nitride optomechanical resonators,” Appl. Phys. Lett. 100, 171111 (2012).
  13. S. P. Fang and H. F. Taylor, “High-performance single-mode fiber-optic switch,” Opt. Lett. 19, 1204–1206 (1994).
  14. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100 (22), 223501 (2012).
  15. Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31, 815–816 (1977).
  16. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
  17. H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396 (2014).
  18. X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes,” Phys. Rev. Lett. 117 (12), 123902 (2016).
  19. X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4, 893–896 (2017).
  20. T. Troha, M. Rigler, D. Alden, I. Bryan, W. Guo, R. Kirste, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “UV second harmonic generation in AlN waveguides with modal phase matching,” Opt. Mater. Express 6 (6), 2014–2023 (2016).
  21. H. Jung and H. X. Tang, “Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion,” Nanophotonics 5 (2), 263–271 (2016).
  22. X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6(5), e16249 (2017).
  23. X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride-on-sapphire microresonators,” arXiv:1611.01994v2 (2016).
  24. P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).
  25. A. Patra, R. E. Tallman, and B. A. Weinstein, “Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals,” Opt. Mater. 27, 1396–1401 (2005).
  26. I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).
  27. C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
  28. A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).
  29. J. K. W. Yang and K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25 (6), 2025 (2007).
  30. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technology Letters 14, 483–485 (2002).
  31. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electronics Letters 36, 321–322 (2000).
  32. J. Levy, “Integrated nonlinear optics in silicon nitride waveguides and resonators,” PhD Thesis (2011).
  33. A. Dutt, “On-chip Quantum and Nonlinear Optics: From Squeezing to Spectroscopy,” PhD Thesis (2017).
  34. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
  35. J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).
  36. J. C. Mikkelsen, W. D. Sacher, and J. K. S. Poon, “Dimensional variation tolerant silicon-on-insulator directional couplers,” Opt. Express 22, 3145–3150 (2014).
  37. M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
  38. X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Aluminum nitride-on-sapphire platform for integrated high-Q microresonators,” Opt. Express 25, 587–594 (2017).
  39. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008).
  40. L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).
  41. D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).
  42. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1–7 (2012).
  43. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8 (5), 667–686 (2014).
  44. G. Poberaj, R. Degl’Innocenti, C. Medrano, and P. Günter, “UV integrated optics devices based on beta-barium borate,” Optical Materials 31, 1049–1053 (2009).
  45. J. Schroeder, R. Mohr, C. J. Montrose, and P. B. Macedo, “Light Scattering in a Number of Optical Grade Glasses,” J. Non-Cryst. Solids 40, 313–320 (1980).
  46. B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).
  47. H. Miyake, C. H. Lin, K. Tokoro, and K. Hiramatsu, “Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing,” J. Cryst. Growth 456, 155–159 (2016).
  48. B. Karunagaran, S. J. Chung, S. Velumani, and E.-K. Suh, “Effect of rapid thermal annealing on the properties of PECVD SiNx thin films,” Mater. Chem. Phys. 106, 130–133 (2007).
  49. M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).
  50. R. H. French, “Electronic Band Structure of Al2O3, with Comparison to Alon and AIN,” J. Am. Ceram. Soc. 73 (3), 477–489 (1990).
  51. A. Majkić, U. Puc, A. Franke, R. Kirste, R. Collazo, Z. Sitar, and M. Zgonik, “Optical properties of aluminum nitride single crystals in the THz region,” Opt. Mater. Express 5, 2106 (2015).
  52. A. Majkić, U. Puc, A. Franke, R. Kirste, R. Schlesser, R. Collazo, Z. Sitar, and M. Zgonik, “Optical nonlinear and electro-optical coefficients in bulk aluminium nitride single crystals,” Phys. Status Solidi B 254, 1700077 (2017).
  53. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
  54. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 (1), 37–40 (2010).
  55. D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).
  56. J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
  57. G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15 (6), 1406–1418 (2006).
  58. C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, “Piezoelectric coefficient of aluminum nitride and gallium nitride,” J. Appl. Phys. 88, 5360–5363 (2000).
  59. S. Miller, Y.-H. D. Lee, J. Cardenas, A. L. Gaeta, and M. Lipson, “Electro-optic effect in silicon nitride,” in Proceedings of CLEO (2015), paper SF1G.4.
  60. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).
  61. P. Muellner, A. Maese-Novo, E. Melnik, R. Hainberger, G. Koppitsch, J. Kraft, and G. Meinhardt, “CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing,” in Proceedings of ECIO (2016).
  62. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16 (17), 12987–12994 (2008).

2017 (7)

X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6(5), e16249 (2017).

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Schlesser, R. Collazo, Z. Sitar, and M. Zgonik, “Optical nonlinear and electro-optical coefficients in bulk aluminium nitride single crystals,” Phys. Status Solidi B 254, 1700077 (2017).

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Aluminum nitride-on-sapphire platform for integrated high-Q microresonators,” Opt. Express 25, 587–594 (2017).

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4, 893–896 (2017).

2016 (8)

T. Troha, M. Rigler, D. Alden, I. Bryan, W. Guo, R. Kirste, S. Mita, M. D. Gerhold, R. Collazo, Z. Sitar, and M. Zgonik, “UV second harmonic generation in AlN waveguides with modal phase matching,” Opt. Mater. Express 6 (6), 2014–2023 (2016).

M. Soltani, R. Soref, T. Palacios, and D. Englund, “AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range,” Opt. Express 24, 25415 (2016).

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

H. Miyake, C. H. Lin, K. Tokoro, and K. Hiramatsu, “Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing,” J. Cryst. Growth 456, 155–159 (2016).

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes,” Phys. Rev. Lett. 117 (12), 123902 (2016).

H. Jung and H. X. Tang, “Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion,” Nanophotonics 5 (2), 263–271 (2016).

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechnol. 11, 1066 (2016).

2015 (3)

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Collazo, Z. Sitar, and M. Zgonik, “Optical properties of aluminum nitride single crystals in the THz region,” Opt. Mater. Express 5, 2106 (2015).

2014 (9)

J. C. Mikkelsen, W. D. Sacher, and J. K. S. Poon, “Dimensional variation tolerant silicon-on-insulator directional couplers,” Opt. Express 22, 3145–3150 (2014).

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396 (2014).

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today 67 (10), 38–43 (2014).

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8 (5), 667–686 (2014).

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

2013 (4)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).

2012 (5)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1–7 (2012).

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12 (7), 3562–3568 (2012).

C. Xiong, X. Sun, K. Y. Fong, and H. X. Tang, “Integrated high frequency aluminum nitride optomechanical resonators,” Appl. Phys. Lett. 100, 171111 (2012).

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100 (22), 223501 (2012).

2010 (5)

L.-M. Duan and C. Monroe, “Colloquium: quantum networks with trapped ions,” Rev. Mod. Phys. 82, 1209–1224 (2010).

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 (1), 37–40 (2010).

M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).

2009 (1)

G. Poberaj, R. Degl’Innocenti, C. Medrano, and P. Günter, “UV integrated optics devices based on beta-barium borate,” Optical Materials 31, 1049–1053 (2009).

2008 (2)

2007 (2)

B. Karunagaran, S. J. Chung, S. Velumani, and E.-K. Suh, “Effect of rapid thermal annealing on the properties of PECVD SiNx thin films,” Mater. Chem. Phys. 106, 130–133 (2007).

J. K. W. Yang and K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25 (6), 2025 (2007).

2006 (1)

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15 (6), 1406–1418 (2006).

2005 (1)

A. Patra, R. E. Tallman, and B. A. Weinstein, “Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals,” Opt. Mater. 27, 1396–1401 (2005).

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technology Letters 14, 483–485 (2002).

2001 (1)

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

2000 (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electronics Letters 36, 321–322 (2000).

C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, “Piezoelectric coefficient of aluminum nitride and gallium nitride,” J. Appl. Phys. 88, 5360–5363 (2000).

1994 (1)

1990 (1)

R. H. French, “Electronic Band Structure of Al2O3, with Comparison to Alon and AIN,” J. Am. Ceram. Soc. 73 (3), 477–489 (1990).

1980 (1)

J. Schroeder, R. Mohr, C. J. Montrose, and P. B. Macedo, “Light Scattering in a Number of Optical Grade Glasses,” J. Non-Cryst. Solids 40, 313–320 (1980).

1977 (1)

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31, 815–816 (1977).

Agarwal, A.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).

Aimez, V.

Alden, D.

Alic, N.

Aspar, B.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Baets, R.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Barge, T.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8 (5), 667–686 (2014).

Benassayag, G.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Berggren, K. K.

J. K. W. Yang and K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25 (6), 2025 (2007).

Biasse, B.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Bickermann, M.

M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).

Bois, B. Du

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Boucaud, P.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8 (5), 667–686 (2014).

Braeken, D.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

Brimont, C.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Bruzewicz, C. D.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechnol. 11, 1066 (2016).

Bryan, I.

Buczak, K.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Cardenas, J.

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

S. Miller, Y.-H. D. Lee, J. Cardenas, A. L. Gaeta, and M. Lipson, “Electro-optic effect in silicon nitride,” in Proceedings of CLEO (2015), paper SF1G.4.

Cassabois, G.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

Chan, H. L. W.

C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, “Piezoelectric coefficient of aluminum nitride and gallium nitride,” J. Appl. Phys. 88, 5360–5363 (2000).

Chang, D. E.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Charette, P.

Checoury, X.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Chen, E. H.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1–7 (2012).

Cheng, R.

X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6(5), e16249 (2017).

Chiaverini, J.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechnol. 11, 1066 (2016).

Childress, L.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today 67 (10), 38–43 (2014).

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Choi, H.

M. Pant, H. Choi, S. Guha, and D. Englund, “Percolation based architecture for cluster state quantum computation using photon-mediated entanglement between atomic memories,” https://arXiv:1704.07292 (2017).

Choi, K. S.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Choy, C. L.

C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, “Piezoelectric coefficient of aluminum nitride and gallium nitride,” J. Appl. Phys. 88, 5360–5363 (2000).

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Chung, S. J.

B. Karunagaran, S. J. Chung, S. Velumani, and E.-K. Suh, “Effect of rapid thermal annealing on the properties of PECVD SiNx thin films,” Mater. Chem. Phys. 106, 130–133 (2007).

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Claverie, A.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Collazo, R.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8 (5), 667–686 (2014).

Degl’Innocenti, R.

G. Poberaj, R. Degl’Innocenti, C. Medrano, and P. Günter, “UV integrated optics devices based on beta-barium borate,” Optical Materials 31, 1049–1053 (2009).

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Devitt, S. J.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Dhakal, A.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Diddams, S. A.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).

Duan, L.-M.

L.-M. Duan and C. Monroe, “Colloquium: quantum networks with trapped ions,” Rev. Mod. Phys. 82, 1209–1224 (2010).

Dutt, A.

A. Dutt, “On-chip Quantum and Nonlinear Optics: From Squeezing to Spectroscopy,” PhD Thesis (2017).

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Ebert, J.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).

Englund, D.

M. Soltani, R. Soref, T. Palacios, and D. Englund, “AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range,” Opt. Express 24, 25415 (2016).

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

M. Pant, H. Choi, S. Guha, and D. Englund, “Percolation based architecture for cluster state quantum computation using photon-mediated entanglement between atomic memories,” https://arXiv:1704.07292 (2017).

Everitt, M. S.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Fainman, Y.

Fang, S. P.

Feneberg, M.

M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).

Fischer, D.

Fong, K. Y.

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).

C. Xiong, X. Sun, K. Y. Fong, and H. X. Tang, “Integrated high frequency aluminum nitride optomechanical resonators,” Appl. Phys. Lett. 100, 171111 (2012).

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 (1), 37–40 (2010).

Franke, A.

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Schlesser, R. Collazo, Z. Sitar, and M. Zgonik, “Optical nonlinear and electro-optical coefficients in bulk aluminium nitride single crystals,” Phys. Status Solidi B 254, 1700077 (2017).

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Collazo, Z. Sitar, and M. Zgonik, “Optical properties of aluminum nitride single crystals in the THz region,” Opt. Mater. Express 5, 2106 (2015).

Fredrick, C.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).

French, R. H.

R. H. French, “Electronic Band Structure of Al2O3, with Comparison to Alon and AIN,” J. Am. Ceram. Soc. 73 (3), 477–489 (1990).

Fujii, Y.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31, 815–816 (1977).

Gaeta, A. L.

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 (1), 37–40 (2010).

S. Miller, Y.-H. D. Lee, J. Cardenas, A. L. Gaeta, and M. Lipson, “Electro-optic effect in silicon nitride,” in Proceedings of CLEO (2015), paper SF1G.4.

Gayral, B.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Gerhold, M. D.

Ghyselen, B.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Gielen, G.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

Goban, A.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Goldstein, J.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 (1), 37–40 (2010).

Gorin, A.

Griffith, A. G.

Grisolia, J.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Grondin, E.

Guha, S.

M. Pant, H. Choi, S. Guha, and D. Englund, “Percolation based architecture for cluster state quantum computation using photon-mediated entanglement between atomic memories,” https://arXiv:1704.07292 (2017).

Guillet, T.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Günter, P.

G. Poberaj, R. Degl’Innocenti, C. Medrano, and P. Günter, “UV integrated optics devices based on beta-barium borate,” Optical Materials 31, 1049–1053 (2009).

Guo, W.

Guo, X.

X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6(5), e16249 (2017).

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes,” Phys. Rev. Lett. 117 (12), 123902 (2016).

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396 (2014).

Hainberger, R.

P. Muellner, A. Maese-Novo, E. Melnik, R. Hainberger, G. Koppitsch, J. Kraft, and G. Meinhardt, “CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing,” in Proceedings of ECIO (2016).

Han, Y.

Hao, Z.

Harris, N. C.

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8 (5), 667–686 (2014).

Helin, P.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Hiramatsu, K.

H. Miyake, C. H. Lin, K. Tokoro, and K. Hiramatsu, “Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing,” J. Cryst. Growth 456, 155–159 (2016).

Hoffman, L.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

Hood, J. D.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Hung, C.-L.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Ikeda, K.

Ilin, K.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).

Jalaguier, E.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Jaouad, A.

Ji, X.

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Jung, H.

X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6(5), e16249 (2017).

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes,” Phys. Rev. Lett. 117 (12), 123902 (2016).

H. Jung and H. X. Tang, “Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion,” Nanophotonics 5 (2), 263–271 (2016).

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396 (2014).

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).

Karunagaran, B.

B. Karunagaran, S. J. Chung, S. Velumani, and E.-K. Suh, “Effect of rapid thermal annealing on the properties of PECVD SiNx thin films,” Mater. Chem. Phys. 106, 130–133 (2007).

Kiesel, N.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).

Kim, J.

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).

Kimble, H. J.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Kimerling, L. C.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).

Kirste, R.

Komarov, F.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Koppitsch, G.

P. Muellner, A. Maese-Novo, E. Melnik, R. Hainberger, G. Koppitsch, J. Kraft, and G. Meinhardt, “CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing,” in Proceedings of ECIO (2016).

Kopycinski, P.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Kraft, J.

P. Muellner, A. Maese-Novo, E. Melnik, R. Hainberger, G. Koppitsch, J. Kraft, and G. Meinhardt, “CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing,” in Proceedings of ECIO (2016).

Krischek, R.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).

Kurdi, M. El

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Lagahe, C.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Lahini, Y.

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1–7 (2012).

Lee, J. H.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Lee, Y.-H. D.

S. Miller, Y.-H. D. Lee, J. Cardenas, A. L. Gaeta, and M. Lipson, “Electro-optic effect in silicon nitride,” in Proceedings of CLEO (2015), paper SF1G.4.

Letertre, F.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Leute, R. A. R.

M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).

Levy, J.

J. Levy, “Integrated nonlinear optics in silicon nitride waveguides and resonators,” PhD Thesis (2011).

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 (1), 37–40 (2010).

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Li, H.

Li, J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1–7 (2012).

Li, L.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Lin, C. H.

H. Miyake, C. H. Lin, K. Tokoro, and K. Hiramatsu, “Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing,” J. Cryst. Growth 456, 155–159 (2016).

Lin, P. T.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).

Lipson, M.

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 (1), 37–40 (2010).

S. Miller, Y.-H. D. Lee, J. Cardenas, A. L. Gaeta, and M. Lipson, “Electro-optic effect in silicon nitride,” in Proceedings of CLEO (2015), paper SF1G.4.

Liu, X.

Lueng, C. M.

C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, “Piezoelectric coefficient of aluminum nitride and gallium nitride,” J. Appl. Phys. 88, 5360–5363 (2000).

Lukin, M.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today 67 (10), 38–43 (2014).

Lukin, M. D.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Luo, Y.

Macedo, P. B.

J. Schroeder, R. Mohr, C. J. Montrose, and P. B. Macedo, “Light Scattering in a Number of Optical Grade Glasses,” J. Non-Cryst. Solids 40, 313–320 (1980).

Maekawa, S.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31, 815–816 (1977).

Maese-Novo, A.

P. Muellner, A. Maese-Novo, E. Melnik, R. Hainberger, G. Koppitsch, J. Kraft, and G. Meinhardt, “CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing,” in Proceedings of ECIO (2016).

Majkic, A.

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Schlesser, R. Collazo, Z. Sitar, and M. Zgonik, “Optical nonlinear and electro-optical coefficients in bulk aluminium nitride single crystals,” Phys. Status Solidi B 254, 1700077 (2017).

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Collazo, Z. Sitar, and M. Zgonik, “Optical properties of aluminum nitride single crystals in the THz region,” Opt. Mater. Express 5, 2106 (2015).

Makhavikou, M.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Maleville, C.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Markham, M. L.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Martin, M. J.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

McClung, A. C.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

McConnell, R.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechnol. 11, 1066 (2016).

Meckbach, J. M.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).

Medrano, C.

G. Poberaj, R. Degl’Innocenti, C. Medrano, and P. Günter, “UV integrated optics devices based on beta-barium borate,” Optical Materials 31, 1049–1053 (2009).

Mehta, K. K.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechnol. 11, 1066 (2016).

Meinhardt, G.

P. Muellner, A. Maese-Novo, E. Melnik, R. Hainberger, G. Koppitsch, J. Kraft, and G. Meinhardt, “CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing,” in Proceedings of ECIO (2016).

Melnik, E.

P. Muellner, A. Maese-Novo, E. Melnik, R. Hainberger, G. Koppitsch, J. Kraft, and G. Meinhardt, “CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing,” in Proceedings of ECIO (2016).

Mexis, M.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

Michelberger, P.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).

Mikkelsen, J. C.

Milchanin, O.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Miller, S.

S. Miller, Y.-H. D. Lee, J. Cardenas, A. L. Gaeta, and M. Lipson, “Electro-optic effect in silicon nitride,” in Proceedings of CLEO (2015), paper SF1G.4.

Miller, S. A.

Misawa, S.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31, 815–816 (1977).

Mita, S.

Miyake, H.

H. Miyake, C. H. Lin, K. Tokoro, and K. Hiramatsu, “Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing,” J. Cryst. Growth 456, 155–159 (2016).

Mohr, R.

J. Schroeder, R. Mohr, C. J. Montrose, and P. B. Macedo, “Light Scattering in a Number of Optical Grade Glasses,” J. Non-Cryst. Solids 40, 313–320 (1980).

Monroe, C.

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).

L.-M. Duan and C. Monroe, “Colloquium: quantum networks with trapped ions,” Rev. Mod. Phys. 82, 1209–1224 (2010).

Montrose, C. J.

J. Schroeder, R. Mohr, C. J. Montrose, and P. B. Macedo, “Light Scattering in a Number of Optical Grade Glasses,” J. Non-Cryst. Solids 40, 313–320 (1980).

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

Moriceau, H.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

Mouradian, S. L.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Mower, J.

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).

Mudryi, A.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Muellner, P.

P. Muellner, A. Maese-Novo, E. Melnik, R. Hainberger, G. Koppitsch, J. Kraft, and G. Meinhardt, “CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing,” in Proceedings of ECIO (2016).

Muniz, J. A.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Munro, W. J.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Murzalinov, D.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Néel, D.

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Nemoto, K.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Neuschl, B.

M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Nöbauer, T.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Oh, D. Y.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).

Ozawa, A.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).

Painter, O.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1–7 (2012).

Palacios, T.

Pant, M.

M. Pant, H. Choi, S. Guha, and D. Englund, “Percolation based architecture for cluster state quantum computation using photon-mediated entanglement between atomic memories,” https://arXiv:1704.07292 (2017).

Papon, A. M.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Parkhomenko, I.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Patra, A.

A. Patra, R. E. Tallman, and B. A. Weinstein, “Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals,” Opt. Mater. 27, 1396–1401 (2005).

Pernice, W. H. P.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100 (22), 223501 (2012).

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12 (7), 3562–3568 (2012).

Peyskens, F.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Piazza, G.

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15 (6), 1406–1418 (2006).

Pisano, A. P.

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15 (6), 1406–1418 (2006).

Poberaj, G.

G. Poberaj, R. Degl’Innocenti, C. Medrano, and P. Günter, “UV integrated optics devices based on beta-barium borate,” Optical Materials 31, 1049–1053 (2009).

Poitras, C. B.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Poon, J. K. S.

Puc, U.

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Schlesser, R. Collazo, Z. Sitar, and M. Zgonik, “Optical nonlinear and electro-optical coefficients in bulk aluminium nitride single crystals,” Phys. Status Solidi B 254, 1700077 (2017).

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Collazo, Z. Sitar, and M. Zgonik, “Optical properties of aluminum nitride single crystals in the THz region,” Opt. Mater. Express 5, 2106 (2015).

Puers, R.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

Ram, R. J.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechnol. 11, 1066 (2016).

Rayssac, O.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Rigler, M.

Roland, I.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Sacher, W. D.

Sage, J. M.

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechnol. 11, 1066 (2016).

Sakudo, T.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31, 815–816 (1977).

Saperstein, R. E.

Sauvage, S.

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Scharfenberger, B.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Schlesser, R.

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Schlesser, R. Collazo, Z. Sitar, and M. Zgonik, “Optical nonlinear and electro-optical coefficients in bulk aluminium nitride single crystals,” Phys. Status Solidi B 254, 1700077 (2017).

Schmiedmayer, J.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Schröder, T.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Schroeder, J.

J. Schroeder, R. Mohr, C. J. Montrose, and P. B. Macedo, “Light Scattering in a Number of Optical Grade Glasses,” J. Non-Cryst. Solids 40, 313–320 (1980).

Schuck, C.

X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6(5), e16249 (2017).

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100 (22), 223501 (2012).

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).

Sellés, J.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Semond, F.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Siegel, M.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).

Sitar, Z.

Soltani, M.

Soref, R.

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Soubie, A.

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

Spencer, D. T.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8 (5), 667–686 (2014).

Stegmaier, M.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).

Steinbrecher, G. R.

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).

Stephanou, P. J.

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15 (6), 1406–1418 (2006).

Stephens, A. M.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Stoll, R.

Subramanian, A.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

Subramanian, A. Z.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Suh, E.-K.

B. Karunagaran, S. J. Chung, S. Velumani, and E.-K. Suh, “Effect of rapid thermal annealing on the properties of PECVD SiNx thin films,” Mater. Chem. Phys. 106, 130–133 (2007).

Sun, C.

Sun, X.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).

C. Xiong, X. Sun, K. Y. Fong, and H. X. Tang, “Integrated high frequency aluminum nitride optomechanical resonators,” Appl. Phys. Lett. 100, 171111 (2012).

Surya, C.

C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, “Piezoelectric coefficient of aluminum nitride and gallium nitride,” J. Appl. Phys. 88, 5360–5363 (2000).

Tallman, R. E.

A. Patra, R. E. Tallman, and B. A. Weinstein, “Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals,” Opt. Mater. 27, 1396–1401 (2005).

Tang, H. X.

X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6(5), e16249 (2017).

H. Jung and H. X. Tang, “Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion,” Nanophotonics 5 (2), 263–271 (2016).

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes,” Phys. Rev. Lett. 117 (12), 123902 (2016).

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1, 396 (2014).

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).

C. Xiong, X. Sun, K. Y. Fong, and H. X. Tang, “Integrated high frequency aluminum nitride optomechanical resonators,” Appl. Phys. Lett. 100, 171111 (2012).

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12 (7), 3562–3568 (2012).

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100 (22), 223501 (2012).

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).

Taylor, H. F.

Thonke, K.

M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Tokoro, K.

H. Miyake, C. H. Lin, K. Tokoro, and K. Hiramatsu, “Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing,” J. Cryst. Growth 456, 155–159 (2016).

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Troha, T.

Trupke, M.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 (1), 37–40 (2010).

Twitchen, D. J.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Udem, T.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).

Vahala, K. J.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1–7 (2012).

Valvin, P.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

Van Dorpe, P.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

Velumani, S.

B. Karunagaran, S. J. Chung, S. Velumani, and E.-K. Suh, “Effect of rapid thermal annealing on the properties of PECVD SiNx thin films,” Mater. Chem. Phys. 106, 130–133 (2007).

Vlasukova, L.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Walsh, M.

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

Walsworth, R.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today 67 (10), 38–43 (2014).

Wang, J.

Wang, L.

Wei, T.

Weinfurter, H.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).

Weinstein, B. A.

A. Patra, R. E. Tallman, and B. A. Weinstein, “Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals,” Opt. Mater. 27, 1396–1401 (2005).

Wieczorek, W.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).

Xiong, B.

Xiong, C.

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100 (22), 223501 (2012).

C. Xiong, X. Sun, K. Y. Fong, and H. X. Tang, “Integrated high frequency aluminum nitride optomechanical resonators,” Appl. Phys. Lett. 100, 171111 (2012).

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12 (7), 3562–3568 (2012).

Yan, J.

Yang, J. K. W.

J. K. W. Yang and K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25 (6), 2025 (2007).

Yang, K. Y.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technology Letters 14, 483–485 (2002).

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electronics Letters 36, 321–322 (2000).

Ycas, G.

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).

Yoshida, S.

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31, 815–816 (1977).

Yu, M.

Yu, S.-P.

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

Zeng, Y.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

Zgonik, M.

Zhang, X.

Zhang, Y.

Zhivulko, V.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

Zou, C.-L.

X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6(5), e16249 (2017).

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes,” Phys. Rev. Lett. 117 (12), 123902 (2016).

Zuk, J.

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Adv. Nat. Sci: Nanosci. Nanotechnol. (1)

D. Néel, I. Roland, X. Checoury, M. El Kurdi, S. Sauvage, P. Boucaud, C. Brimont, T. Guillet, B. Gayral, and F. Semond, “AlN photonic crystals and microdisks for UV nanophotonics,” Adv. Nat. Sci: Nanosci. Nanotechnol. 5, 023001 (2014).

Appl. Phys. Lett. (4)

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).

C. Xiong, X. Sun, K. Y. Fong, and H. X. Tang, “Integrated high frequency aluminum nitride optomechanical resonators,” Appl. Phys. Lett. 100, 171111 (2012).

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100 (22), 223501 (2012).

Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett. 31, 815–816 (1977).

Electronics Letters (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electronics Letters 36, 321–322 (2000).

IEEE Photon. J. (2)

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. Van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications,” IEEE Photon. J. 8 (5), 2701211 (2016).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5 (6), 2202809 (2013).

IEEE Photonics Technology Letters (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technology Letters 14, 483–485 (2002).

J. Am. Ceram. Soc. (1)

R. H. French, “Electronic Band Structure of Al2O3, with Comparison to Alon and AIN,” J. Am. Ceram. Soc. 73 (3), 477–489 (1990).

J. Appl. Phys. (1)

C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, “Piezoelectric coefficient of aluminum nitride and gallium nitride,” J. Appl. Phys. 88, 5360–5363 (2000).

J. Cryst. Growth (1)

H. Miyake, C. H. Lin, K. Tokoro, and K. Hiramatsu, “Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing,” J. Cryst. Growth 456, 155–159 (2016).

J. Electron. Mater. (1)

B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia, G. Benassayag, F. Letertre, O. Rayssac, T. Barge, C. Maleville, and B. Ghyselen, “The Generic Nature of the Smart-Cut® Process for Thin Film Transfer,” J. Electron. Mater. 30, 834–840 (2001).

J. Microelectromech. Syst. (1)

G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst. 15 (6), 1406–1418 (2006).

J. Non-Cryst. Solids (1)

J. Schroeder, R. Mohr, C. J. Montrose, and P. B. Macedo, “Light Scattering in a Number of Optical Grade Glasses,” J. Non-Cryst. Solids 40, 313–320 (1980).

J. Vac. Sci. Technol. B (1)

J. K. W. Yang and K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25 (6), 2025 (2007).

Laser Photon. Rev. (1)

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8, L23–L28 (2014).

Laser Photonics Rev. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8 (5), 667–686 (2014).

Light Sci. Appl. (1)

X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6(5), e16249 (2017).

Mater. Chem. Phys. (1)

B. Karunagaran, S. J. Chung, S. Velumani, and E.-K. Suh, “Effect of rapid thermal annealing on the properties of PECVD SiNx thin films,” Mater. Chem. Phys. 106, 130–133 (2007).

Nano Lett. (1)

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12 (7), 3562–3568 (2012).

Nanophotonics (1)

H. Jung and H. X. Tang, “Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion,” Nanophotonics 5 (2), 263–271 (2016).

Nat. Commun. (3)

A. Goban, C.-L. Hung, S.-P. Yu, J. D. Hood, J. A. Muniz, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter, and H. J. Kimble, “Atom-light interactions in photonic crystals,” Nat. Commun. 5, 3808 (2014).

D. Y. Oh, K. Y. Yang, C. Fredrick, G. Ycas, S. A. Diddams, and K. J. Vahala, “Coherent ultra-violet to near-infrared generation in silica ridge waveguides,” Nat. Commun. 8, 13922 (2017).

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 1–7 (2012).

Nat. Nanotechnol. (1)

K. K. Mehta, C. D. Bruzewicz, R. McConnell, R. J. Ram, J. M. Sage, and J. Chiaverini, “Integrated optical addressing of an ion qubit,” Nat. Nanotechnol. 11, 1066 (2016).

Nat. Photonics (3)

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4 (3), 170–173 (2010).

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4 (1), 37–40 (2010).

Nature (1)

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466 (7307), 730–734 (2010).

New J. Phys. (1)

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (1)

A. Patra, R. E. Tallman, and B. A. Weinstein, “Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals,” Opt. Mater. 27, 1396–1401 (2005).

Opt. Mater. Express (2)

Optica (3)

Optical Materials (1)

G. Poberaj, R. Degl’Innocenti, C. Medrano, and P. Günter, “UV integrated optics devices based on beta-barium borate,” Optical Materials 31, 1049–1053 (2009).

Phys. Rev. A (1)

J. Mower, N. C. Harris, G. R. Steinbrecher, Y. Lahini, and D. Englund, “High-fidelity quantum state evolution in imperfect photonic integrated circuits,” Phys. Rev. A 92, 032322 (2015).

Phys. Rev. B (1)

M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).

Phys. Rev. Lett. (1)

X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes,” Phys. Rev. Lett. 117 (12), 123902 (2016).

Phys. Rev. X (2)

S. L. Mouradian, T. Schröder, C. B. Poitras, L. Li, J. Goldstein, E. H. Chen, M. Walsh, J. Cardenas, M. L. Markham, D. J. Twitchen, M. Lipson, and D. Englund, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X 5, 031009 (2015).

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4 (3), 031022 (2014).

Phys. Status Solidi B (1)

A. Majkić, U. Puc, A. Franke, R. Kirste, R. Schlesser, R. Collazo, Z. Sitar, and M. Zgonik, “Optical nonlinear and electro-optical coefficients in bulk aluminium nitride single crystals,” Phys. Status Solidi B 254, 1700077 (2017).

Phys. Today (1)

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today 67 (10), 38–43 (2014).

Rev. Mod. Phys. (1)

L.-M. Duan and C. Monroe, “Colloquium: quantum networks with trapped ions,” Rev. Mod. Phys. 82, 1209–1224 (2010).

Sci. Rep. (1)

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).

Science (1)

C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).

Thin Solid Films (1)

I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, “Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films,” Thin Solid Films 626, 70–75 (2017).

Other (6)

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride-on-sapphire microresonators,” arXiv:1611.01994v2 (2016).

J. Levy, “Integrated nonlinear optics in silicon nitride waveguides and resonators,” PhD Thesis (2011).

A. Dutt, “On-chip Quantum and Nonlinear Optics: From Squeezing to Spectroscopy,” PhD Thesis (2017).

M. Pant, H. Choi, S. Guha, and D. Englund, “Percolation based architecture for cluster state quantum computation using photon-mediated entanglement between atomic memories,” https://arXiv:1704.07292 (2017).

P. Muellner, A. Maese-Novo, E. Melnik, R. Hainberger, G. Koppitsch, J. Kraft, and G. Meinhardt, “CMOS-compatible low-loss silicon nitride waveguide integration platform for interferometric sensing,” in Proceedings of ECIO (2016).

S. Miller, Y.-H. D. Lee, J. Cardenas, A. L. Gaeta, and M. Lipson, “Electro-optic effect in silicon nitride,” in Proceedings of CLEO (2015), paper SF1G.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Properties of AlN-on-sapphire material. (a) Cross section illustrating each layer of the wafer, along with their respective thickness; top inset: atomic force microscopy scan of AlN film showing the nanocolumn size. Surface roughness is measured to be 0.9 nm RMS with 26.5 nm grain size (b) High resolution x-ray diffraction (002) and (015) ω scan of AlN. (c) (015) ϕ scan of AlN showing six-fold symmetry wurtzite structure. (d) Refractive index measurements using ellipsometry. (e) Background fluorescence from sapphire substrate (yellow), unpatterned AlN (blue), patterned AlN (orange), and stoichiometric silicon nitride (purple). Top inset (purple): Fluorescence spectrum of SiN. Bottom inset (blue): Fluorescence spectrum of AlN. (f) Background fluorescence from SiON top cladding, before (blue circles) and after (orange squares) bleaching.
Fig. 2
Fig. 2 (a) AlN on sapphire photonics fabrication process: (i) Start off with an unpatterned AlN-on-sapphire chip diced up from a whole wafer. (ii) Spin coat HSQ (2% XR-1541), pattern using electron beam lithography, and develop using an aqueous mixture of 1 wt % NaOH and 4 wt % NaCl for high contrast. (iii) Etch by ICP-RIE using chlorine chemistry. (iv) Strip HSQ. (v) Clad with silicon oxynitride using plasma-enhanced chemical vapor deposition (PECVD). (vi) Edge polish for making the inverse-tapered edge couplers. (b) Scanning electron microscope (SEM) image of a fabricated AlN waveguide at a 50 degrees tilted view. (c) Transversal component of TE mode in AlN waveguide for PMMA and SiON cladding for 638 nm (top) and 400 nm (bottom) wavelengths. The dimensions of the waveguide for 638 nm wavelength are 450 nm wide ×200 nm thick. The dimensions of the waveguide for 400 nm wavelength are 250 nm wide ×200 nm thick.
Fig. 3
Fig. 3 (a) SEM images of the grating couplers. First gap of the grating coupler is 60 nm, and the gaps are linearly increasing. Curvatures are set to be matched with mode evolution so that there is no reflection. Top: green spectrum grating coupler. Bottom: red spectrum grating coupler (b) Green line: simulated coupling efficiency vs. wavelength plot of green-spectrum grating coupler optimized for 500 to 600 nm. Black line: measured experimental transmission intensity vs. wavelength plot of green-spectrum grating coupler. (c) Red line: simulated coupling efficiency vs. wavelength plot of red-spectrum grating coupler optimized for 600 to 700 nm. Black line: measured experimental transmission intensity vs. wavelength plot of red-spectrum grating coupler. (d) Fiber edge coupling to the waveguides at 369.5 nm using Nufern SM300 fiber. (e), (f) Free-space edge coupling using aspheric lenses into a waveguides that are designed to be single mode in the traverse electric polarization at 468 nm and 369.5 nm, respectively.
Fig. 4
Fig. 4 (a) SEM of the ring resonator. Inset shows a close up of the ring resonator at a 50 degrees tilted view. The gap between the waveguide and the ring is 300 nm for the undercoupling regime, which was used to verify the unloaded Q. (b) Wavelength response at 369.5 nm of the ring resonator cladded with SiON around resonance. The Lorentzian fitting shows a Q of >24,000. (c) Quality factors of 40 µm radius ring resonators measured using an optical spectrum analyzer (OSA) for wavelengths spanning from 380 nm to 480 nm, along with the quality factors at 369.5 nm wavelength using both frequency doubled pulsed and continuous-wave (CW) TI:Sapphire lasers. (d) Wavelength response at 637 nm of the ring resonator cladded with PMMA around resonance. The Lorentzian fitting shows a Q of >140,000. Inset shows a zoom-in of the wavelength response.
Fig. 5
Fig. 5 (a) SEM of the distributed Bragg reflector (DBR) with adiabatic tapering for low insertion loss. Inset shows a zoom-in of the DBR. (b) Simulated and measured transmission vs. wavelength for the DBR. In simulation, we achieve 45 dB extinction for 532 nm green pump light typically used for NV excitation. Experimentally, we achieve >13 dB extinction for 532 nm. (c) SEM of directional couplers with 50/50 splitting ratio at a 50 degrees tilted view. Inset shows a zoom-in of the directional couplers at a 50 degrees tilted view. (d) Measured transmission power at the two output ports of the directional couplers as a function of coupling length in the straight, parallel waveguides region.

Tables (1)

Tables Icon

Table 1 Comparison of different demonstrated UV/VIS photonics platforms.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q = 2 π n g λ α
loss = 10 log 10 ( e α )
n g = λ 2 ( FSR ) ( L )
Q i = 2 Q l 1 ± T 0
K = sin 2 ( π L Δ n λ )

Metrics