Abstract

X-ray phase contrast imaging offers higher sensitivity compared to conventional X-ray attenuation imaging and can be simply implemented by propagation when using a partially coherent synchrotron beam. We address the phase retrieval in in-line phase nano-CT using multiple propagation distances. We derive a method which extends Paganin’s single distance method and compare it to the contrast transfer function (CTF) approach in the case of a homogeneous object. The methods are applied to phase nano-CT data acquired at the voxel size of 30 nm (ID16A, ESRF, Grenoble, France). Our results show a gain in image quality in terms of the signal-to-noise ratio and spatial resolution when using four distances instead of one. The extended Paganin’s method followed by an iterative refinement step provides the best reconstructions while the homogeneous CTF method delivers quasi comparable results for our data, even without refinement step.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase retrieval for arbitrary Fresnel-like linear shift-invariant imaging systems suitable for tomography

Stanislav Hrivňak, Andrej Hovan, Jozef Uličný, and Patrik Vagovič
Biomed. Opt. Express 9(9) 4390-4400 (2018)

Single-distance phase retrieval at large phase shifts

Julian Moosmann, Ralf Hofmann, and Tilo Baumbach
Opt. Express 19(13) 12066-12073 (2011)

Simple merging technique for improving resolution in qualitative single image phase contrast tomography

S Irvine, R Mokso, P Modregger, Z Wang, F Marone, and M Stampanoni
Opt. Express 22(22) 27257-27269 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Rüegsegger, B. Koller, and R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
    [Crossref] [PubMed]
  2. M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
    [Crossref] [PubMed]
  3. U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
    [Crossref]
  4. A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22(4), 375–379 (1995).
    [Crossref] [PubMed]
  5. R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
    [Crossref] [PubMed]
  6. M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
    [Crossref] [PubMed]
  7. M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, and T. Salditt, “Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs,” Sci. Rep. 5(1), 9973 (2015).
    [Crossref] [PubMed]
  8. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
    [Crossref] [PubMed]
  9. C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
    [Crossref] [PubMed]
  10. P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
    [Crossref]
  11. Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
    [Crossref]
  12. A. Balles, S. Zabler, T. Ebensperger, C. Fella, and R. Hanke, “Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups,” Rev. Sci. Instrum. 87(9), 093707 (2016).
    [Crossref] [PubMed]
  13. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co, 2005).
  14. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am. 72(9), 1199 (1982).
    [Crossref]
  15. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
    [Crossref]
  16. J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32(12), 1617–1619 (2007).
    [Crossref] [PubMed]
  17. M. Langer, P. Cloetens, J.-P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35(10), 4556–4566 (2008).
    [Crossref] [PubMed]
  18. M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
    [Crossref] [PubMed]
  19. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(Pt 1), 33–40 (2002).
    [Crossref] [PubMed]
  20. T. E. Gureyev, Y. I. Nesterets, A. Kozlov, D. M. Paganin, and H. M. Quiney, “On the “unreasonable” effectiveness of transport of intensity imaging and optical deconvolution,” J. Opt. Soc. Am. A 34(12), 2251–2260 (2017).
    [Crossref] [PubMed]
  21. M. S. del Rio and R. J. Dejus, “Status of XOP: an x-ray optics software toolkit,” in SPIE 49th Annual Meeting of Optical Science and Technology (International Society for Optics and Photonics, 2004), pp. 171–174.
  22. M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18(7), 6423–6436 (2010).
    [Crossref] [PubMed]
  23. M. Ullherr and S. Zabler, “Correcting multi material artifacts from single material phase retrieved holo-tomograms with a simple 3D Fourier method,” Opt. Express 23(25), 32718–32727 (2015).
    [Crossref] [PubMed]
  24. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express 19(11), 10359–10376 (2011).
    [Crossref] [PubMed]
  25. L. Turner, B. Dhal, J. Hayes, A. Mancuso, K. Nugent, D. Paterson, R. Scholten, C. Tran, and A. Peele, “X-ray phase imaging: Demonstration of extended conditions for homogeneous objects,” Opt. Express 12(13), 2960–2965 (2004).
    [Crossref] [PubMed]
  26. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
    [Crossref]
  27. J. Cesar da Silva, A. Pacureanu, Y. Yang, S. Bohic, C. Morawe, R. Barrett, and P. Cloetens, “Efficient concentration of high-energy x-rays for diffraction-limited imaging resolution,” Optica 4(5), 492 (2017).
    [Crossref]
  28. R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
    [Crossref]
  29. M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure,” PLoS One 7(8), e35691 (2012).
    [Crossref] [PubMed]
  30. A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 324, 41–48 (2014).
  31. M. Ullherr, A. Balles, C. Fella, and S. Zabler, “Using measurements of the spatial SNR to optimize phase contrast X-ray imaging,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 877, 44–50 (2018).
    [Crossref]
  32. A. V. Bronnikov, “Theory of quantitative phase-contrast computed tomography,” J. Opt. Soc. Am. A 19(3), 472–480 (2002).
    [Crossref] [PubMed]
  33. A. Kostenko, K. J. Batenburg, A. King, S. E. Offerman, and L. J. van Vliet, “Total variation minimization approach in in-line x-ray phase-contrast tomography,” Opt. Express 21(10), 12185–12196 (2013).
    [Crossref] [PubMed]
  34. R. D. Kongskov, J. S. Jørgensen, H. F. Poulsen, and P. C. Hansen, “Noise robustness of a combined phase retrieval and reconstruction method for phase-contrast tomography,” J. Opt. Soc. Am. A 33(4), 447–454 (2016).
    [Crossref] [PubMed]
  35. M. N. Boone, W. Devulder, M. Dierick, L. Brabant, E. Pauwels, and L. Van Hoorebeke, “Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging,” J. Opt. Soc. Am. A 29(12), 2667–2672 (2012).
    [Crossref] [PubMed]
  36. M. Krenkel, M. Toepperwien, F. Alves, and T. Salditt, “Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime,” Acta Crystallogr. A Found. Adv. 73(4), 282–292 (2017).
    [Crossref] [PubMed]
  37. A. J. Carroll, G. A. van Riessen, E. Balaur, I. P. Dolbnya, G. N. Tran, and A. G. Peele, “An iterative method for robust in-line phase contrast imaging,” New J. Phys. 18(4), 043003 (2016).
    [Crossref]
  38. A. Ruhlandt, M. Krenkel, M. Bartels, and T. Salditt, “Three-dimensional phase retrieval in propagation-based phase-contrast imaging,” Phys. Rev. A 89(3), 033847 (2014).
    [Crossref]

2018 (1)

M. Ullherr, A. Balles, C. Fella, and S. Zabler, “Using measurements of the spatial SNR to optimize phase contrast X-ray imaging,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 877, 44–50 (2018).
[Crossref]

2017 (3)

2016 (3)

A. J. Carroll, G. A. van Riessen, E. Balaur, I. P. Dolbnya, G. N. Tran, and A. G. Peele, “An iterative method for robust in-line phase contrast imaging,” New J. Phys. 18(4), 043003 (2016).
[Crossref]

R. D. Kongskov, J. S. Jørgensen, H. F. Poulsen, and P. C. Hansen, “Noise robustness of a combined phase retrieval and reconstruction method for phase-contrast tomography,” J. Opt. Soc. Am. A 33(4), 447–454 (2016).
[Crossref] [PubMed]

A. Balles, S. Zabler, T. Ebensperger, C. Fella, and R. Hanke, “Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups,” Rev. Sci. Instrum. 87(9), 093707 (2016).
[Crossref] [PubMed]

2015 (3)

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, and T. Salditt, “Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs,” Sci. Rep. 5(1), 9973 (2015).
[Crossref] [PubMed]

M. Ullherr and S. Zabler, “Correcting multi material artifacts from single material phase retrieved holo-tomograms with a simple 3D Fourier method,” Opt. Express 23(25), 32718–32727 (2015).
[Crossref] [PubMed]

2014 (3)

A. Ruhlandt, M. Krenkel, M. Bartels, and T. Salditt, “Three-dimensional phase retrieval in propagation-based phase-contrast imaging,” Phys. Rev. A 89(3), 033847 (2014).
[Crossref]

A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 324, 41–48 (2014).

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
[Crossref] [PubMed]

2013 (4)

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

A. Kostenko, K. J. Batenburg, A. King, S. E. Offerman, and L. J. van Vliet, “Total variation minimization approach in in-line x-ray phase-contrast tomography,” Opt. Express 21(10), 12185–12196 (2013).
[Crossref] [PubMed]

2012 (2)

M. N. Boone, W. Devulder, M. Dierick, L. Brabant, E. Pauwels, and L. Van Hoorebeke, “Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging,” J. Opt. Soc. Am. A 29(12), 2667–2672 (2012).
[Crossref] [PubMed]

M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure,” PLoS One 7(8), e35691 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2008 (1)

M. Langer, P. Cloetens, J.-P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35(10), 4556–4566 (2008).
[Crossref] [PubMed]

2007 (2)

J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32(12), 1617–1619 (2007).
[Crossref] [PubMed]

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

2005 (2)

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

2004 (1)

2002 (2)

A. V. Bronnikov, “Theory of quantitative phase-contrast computed tomography,” J. Opt. Soc. Am. A 19(3), 472–480 (2002).
[Crossref] [PubMed]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(Pt 1), 33–40 (2002).
[Crossref] [PubMed]

1999 (2)

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
[Crossref] [PubMed]

1997 (1)

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

1996 (1)

P. Rüegsegger, B. Koller, and R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[Crossref] [PubMed]

1995 (1)

A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22(4), 375–379 (1995).
[Crossref] [PubMed]

1982 (1)

1965 (1)

U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
[Crossref]

Alves, F.

M. Krenkel, M. Toepperwien, F. Alves, and T. Salditt, “Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime,” Acta Crystallogr. A Found. Adv. 73(4), 282–292 (2017).
[Crossref] [PubMed]

M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, and T. Salditt, “Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs,” Sci. Rep. 5(1), 9973 (2015).
[Crossref] [PubMed]

Arfelli, F.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Aubin, T.

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

Aubry, J.-F.

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

Balaur, E.

A. J. Carroll, G. A. van Riessen, E. Balaur, I. P. Dolbnya, G. N. Tran, and A. G. Peele, “An iterative method for robust in-line phase contrast imaging,” New J. Phys. 18(4), 043003 (2016).
[Crossref]

Balles, A.

M. Ullherr, A. Balles, C. Fella, and S. Zabler, “Using measurements of the spatial SNR to optimize phase contrast X-ray imaging,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 877, 44–50 (2018).
[Crossref]

A. Balles, S. Zabler, T. Ebensperger, C. Fella, and R. Hanke, “Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups,” Rev. Sci. Instrum. 87(9), 093707 (2016).
[Crossref] [PubMed]

Barrett, R.

Bartels, M.

M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, and T. Salditt, “Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs,” Sci. Rep. 5(1), 9973 (2015).
[Crossref] [PubMed]

A. Ruhlandt, M. Krenkel, M. Bartels, and T. Salditt, “Three-dimensional phase retrieval in propagation-based phase-contrast imaging,” Phys. Rev. A 89(3), 033847 (2014).
[Crossref]

Baruchel, J.

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
[Crossref] [PubMed]

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Batenburg, K. J.

Beltran, M. A.

Berthezène, Y.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Bohic, S.

Boistel, R.

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32(12), 1617–1619 (2007).
[Crossref] [PubMed]

Bonse, U.

U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
[Crossref]

Boone, M. N.

Brabant, L.

Bravin, A.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

Bronnikov, A. V.

Brun, E.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 324, 41–48 (2014).

Buffière, J. Y.

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Buffière, J.-Y.

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

Burvall, A.

Carroll, A. J.

A. J. Carroll, G. A. van Riessen, E. Balaur, I. P. Dolbnya, G. N. Tran, and A. G. Peele, “An iterative method for robust in-line phase contrast imaging,” New J. Phys. 18(4), 043003 (2016).
[Crossref]

Cesar da Silva, J.

Chabrol, A.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Chauveau, F.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Cho, T. H.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Cloetens, P.

J. Cesar da Silva, A. Pacureanu, Y. Yang, S. Bohic, C. Morawe, R. Barrett, and P. Cloetens, “Efficient concentration of high-energy x-rays for diffraction-limited imaging resolution,” Optica 4(5), 492 (2017).
[Crossref]

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
[Crossref] [PubMed]

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure,” PLoS One 7(8), e35691 (2012).
[Crossref] [PubMed]

M. Langer, P. Cloetens, J.-P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35(10), 4556–4566 (2008).
[Crossref] [PubMed]

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32(12), 1617–1619 (2007).
[Crossref] [PubMed]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
[Crossref] [PubMed]

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Coan, P.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

De Coppi, P.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Devulder, W.

Dhal, B.

Diemoz, P. C.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Dierick, M.

Dolbnya, I. P.

A. J. Carroll, G. A. van Riessen, E. Balaur, I. P. Dolbnya, G. N. Tran, and A. G. Peele, “An iterative method for robust in-line phase contrast imaging,” New J. Phys. 18(4), 043003 (2016).
[Crossref]

Dreossi, D.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Dullin, C.

M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, and T. Salditt, “Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs,” Sci. Rep. 5(1), 9973 (2015).
[Crossref] [PubMed]

Durand, A.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Ebensperger, T.

A. Balles, S. Zabler, T. Ebensperger, C. Fella, and R. Hanke, “Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups,” Rev. Sci. Instrum. 87(9), 093707 (2016).
[Crossref] [PubMed]

Endrizzi, M.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Fella, C.

M. Ullherr, A. Balles, C. Fella, and S. Zabler, “Using measurements of the spatial SNR to optimize phase contrast X-ray imaging,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 877, 44–50 (2018).
[Crossref]

A. Balles, S. Zabler, T. Ebensperger, C. Fella, and R. Hanke, “Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups,” Rev. Sci. Instrum. 87(9), 093707 (2016).
[Crossref] [PubMed]

Fukuda, J.

A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22(4), 375–379 (1995).
[Crossref] [PubMed]

Gerlach, J.

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

Gouillart, E.

A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 324, 41–48 (2014).

Grimal, Q.

M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure,” PLoS One 7(8), e35691 (2012).
[Crossref] [PubMed]

Guigay, J. P.

J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32(12), 1617–1619 (2007).
[Crossref] [PubMed]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Guigay, J.-P.

M. Langer, P. Cloetens, J.-P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35(10), 4556–4566 (2008).
[Crossref] [PubMed]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

Gureyev, T. E.

T. E. Gureyev, Y. I. Nesterets, A. Kozlov, D. M. Paganin, and H. M. Quiney, “On the “unreasonable” effectiveness of transport of intensity imaging and optical deconvolution,” J. Opt. Soc. Am. A 34(12), 2251–2260 (2017).
[Crossref] [PubMed]

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(Pt 1), 33–40 (2002).
[Crossref] [PubMed]

Hagen, C. K.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Hanke, R.

A. Balles, S. Zabler, T. Ebensperger, C. Fella, and R. Hanke, “Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups,” Rev. Sci. Instrum. 87(9), 093707 (2016).
[Crossref] [PubMed]

Hansen, P. C.

Hart, M.

U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
[Crossref]

Hayes, J.

Hertz, H. M.

Herzog, P.

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

Hesse, B.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
[Crossref] [PubMed]

Jørgensen, J. S.

Kieffer, J.

A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 324, 41–48 (2014).

King, A.

Kitchen, M. J.

Koller, B.

P. Rüegsegger, B. Koller, and R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[Crossref] [PubMed]

Kongskov, R. D.

Kostenko, A.

Kozlov, A.

Krenkel, M.

M. Krenkel, M. Toepperwien, F. Alves, and T. Salditt, “Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime,” Acta Crystallogr. A Found. Adv. 73(4), 282–292 (2017).
[Crossref] [PubMed]

M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, and T. Salditt, “Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs,” Sci. Rep. 5(1), 9973 (2015).
[Crossref] [PubMed]

A. Ruhlandt, M. Krenkel, M. Bartels, and T. Salditt, “Three-dimensional phase retrieval in propagation-based phase-contrast imaging,” Phys. Rev. A 89(3), 033847 (2014).
[Crossref]

Langer, M.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
[Crossref] [PubMed]

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure,” PLoS One 7(8), e35691 (2012).
[Crossref] [PubMed]

M. Langer, P. Cloetens, J.-P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35(10), 4556–4566 (2008).
[Crossref] [PubMed]

J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32(12), 1617–1619 (2007).
[Crossref] [PubMed]

Larsson, D. H.

Laval-Jeantet, A.-M.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
[Crossref] [PubMed]

Ludwig, W.

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Lundström, U.

Maghsoudlou, P.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Maire, E.

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

Mancuso, A.

Marinescu, M.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Markus, A.

M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, and T. Salditt, “Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs,” Sci. Rep. 5(1), 9973 (2015).
[Crossref] [PubMed]

Mayo, S. C.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(Pt 1), 33–40 (2002).
[Crossref] [PubMed]

Menk, R.-H.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Miller, P. R.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(Pt 1), 33–40 (2002).
[Crossref] [PubMed]

Mirone, A.

A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 324, 41–48 (2014).

Mokso, R.

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

Momose, A.

A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22(4), 375–379 (1995).
[Crossref] [PubMed]

Morawe, C.

Müller, R.

P. Rüegsegger, B. Koller, and R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[Crossref] [PubMed]

Nesterets, Y. I.

T. E. Gureyev, Y. I. Nesterets, A. Kozlov, D. M. Paganin, and H. M. Quiney, “On the “unreasonable” effectiveness of transport of intensity imaging and optical deconvolution,” J. Opt. Soc. Am. A 34(12), 2251–2260 (2017).
[Crossref] [PubMed]

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

Nighoghossian, N.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Nugent, K.

Odet, C.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
[Crossref] [PubMed]

Offerman, S. E.

Olivier, C.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Olivo, A.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Pacureanu, A.

J. Cesar da Silva, A. Pacureanu, Y. Yang, S. Bohic, C. Morawe, R. Barrett, and P. Cloetens, “Efficient concentration of high-energy x-rays for diffraction-limited imaging resolution,” Optica 4(5), 492 (2017).
[Crossref]

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
[Crossref] [PubMed]

M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure,” PLoS One 7(8), e35691 (2012).
[Crossref] [PubMed]

Paganin, D.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(Pt 1), 33–40 (2002).
[Crossref] [PubMed]

Paganin, D. M.

Paterson, D.

Pateyron-Salomé, M.

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Pauwels, E.

Peele, A.

Peele, A. G.

A. J. Carroll, G. A. van Riessen, E. Balaur, I. P. Dolbnya, G. N. Tran, and A. G. Peele, “An iterative method for robust in-line phase contrast imaging,” New J. Phys. 18(4), 043003 (2016).
[Crossref]

Peix, G.

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Peyrin, F.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
[Crossref] [PubMed]

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure,” PLoS One 7(8), e35691 (2012).
[Crossref] [PubMed]

M. Langer, P. Cloetens, J.-P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35(10), 4556–4566 (2008).
[Crossref] [PubMed]

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
[Crossref] [PubMed]

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Pogany, A.

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

Pollet, N.

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

Poulsen, H. F.

Quiney, H. M.

Raum, K.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
[Crossref] [PubMed]

Rigon, L.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Rositi, H.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Rüegsegger, P.

P. Rüegsegger, B. Koller, and R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[Crossref] [PubMed]

Ruhlandt, A.

A. Ruhlandt, M. Krenkel, M. Bartels, and T. Salditt, “Three-dimensional phase retrieval in propagation-based phase-contrast imaging,” Phys. Rev. A 89(3), 033847 (2014).
[Crossref]

Salditt, T.

M. Krenkel, M. Toepperwien, F. Alves, and T. Salditt, “Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime,” Acta Crystallogr. A Found. Adv. 73(4), 282–292 (2017).
[Crossref] [PubMed]

M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, and T. Salditt, “Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs,” Sci. Rep. 5(1), 9973 (2015).
[Crossref] [PubMed]

A. Ruhlandt, M. Krenkel, M. Bartels, and T. Salditt, “Three-dimensional phase retrieval in propagation-based phase-contrast imaging,” Phys. Rev. A 89(3), 033847 (2014).
[Crossref]

Salomé, M.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
[Crossref] [PubMed]

Schlenker, M.

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

Scholten, R.

Scotti, T.

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

Spanne, P.

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
[Crossref] [PubMed]

Stevenson, A. W.

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

Suhonen, H.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
[Crossref] [PubMed]

M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure,” PLoS One 7(8), e35691 (2012).
[Crossref] [PubMed]

Suortti, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

Tafforeau, P.

A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 324, 41–48 (2014).

Takman, P. A. C.

Teague, M. R.

Toepperwien, M.

M. Krenkel, M. Toepperwien, F. Alves, and T. Salditt, “Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime,” Acta Crystallogr. A Found. Adv. 73(4), 282–292 (2017).
[Crossref] [PubMed]

Totonelli, G.

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

Tran, C.

Tran, G. N.

A. J. Carroll, G. A. van Riessen, E. Balaur, I. P. Dolbnya, G. N. Tran, and A. G. Peele, “An iterative method for robust in-line phase contrast imaging,” New J. Phys. 18(4), 043003 (2016).
[Crossref]

Turner, L.

Uesugi, K.

Ullherr, M.

M. Ullherr, A. Balles, C. Fella, and S. Zabler, “Using measurements of the spatial SNR to optimize phase contrast X-ray imaging,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 877, 44–50 (2018).
[Crossref]

M. Ullherr and S. Zabler, “Correcting multi material artifacts from single material phase retrieved holo-tomograms with a simple 3D Fourier method,” Opt. Express 23(25), 32718–32727 (2015).
[Crossref] [PubMed]

Van Dyck, D.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

Van Hoorebeke, L.

Van Landuyt, J.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

van Riessen, G. A.

A. J. Carroll, G. A. van Riessen, E. Balaur, I. P. Dolbnya, G. N. Tran, and A. G. Peele, “An iterative method for robust in-line phase contrast imaging,” New J. Phys. 18(4), 043003 (2016).
[Crossref]

van Vliet, L. J.

Wiart, M.

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

Wilkins, S. W.

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(Pt 1), 33–40 (2002).
[Crossref] [PubMed]

Yang, Y.

Zabler, S.

M. Ullherr, A. Balles, C. Fella, and S. Zabler, “Using measurements of the spatial SNR to optimize phase contrast X-ray imaging,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 877, 44–50 (2018).
[Crossref]

A. Balles, S. Zabler, T. Ebensperger, C. Fella, and R. Hanke, “Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups,” Rev. Sci. Instrum. 87(9), 093707 (2016).
[Crossref] [PubMed]

M. Ullherr and S. Zabler, “Correcting multi material artifacts from single material phase retrieved holo-tomograms with a simple 3D Fourier method,” Opt. Express 23(25), 32718–32727 (2015).
[Crossref] [PubMed]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

Acta Crystallogr. A Found. Adv. (1)

M. Krenkel, M. Toepperwien, F. Alves, and T. Salditt, “Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime,” Acta Crystallogr. A Found. Adv. 73(4), 282–292 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999).
[Crossref]

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90(14), 144104 (2007).
[Crossref]

Calcif. Tissue Int. (1)

P. Rüegsegger, B. Koller, and R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif. Tissue Int. 58(1), 24–29 (1996).
[Crossref] [PubMed]

J. Appl. Phys. (1)

P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81(9), 5878–5886 (1997).
[Crossref]

J. Microsc. (1)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(Pt 1), 33–40 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Med. Phys. (3)

M. Langer, P. Cloetens, J.-P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys. 35(10), 4556–4566 (2008).
[Crossref] [PubMed]

M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.-M. Laval-Jeantet, J. Baruchel, and P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabecular bone samples,” Med. Phys. 26(10), 2194–2204 (1999).
[Crossref] [PubMed]

A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22(4), 375–379 (1995).
[Crossref] [PubMed]

Mol. Imaging Biol. (1)

M. Marinescu, M. Langer, A. Durand, C. Olivier, A. Chabrol, H. Rositi, F. Chauveau, T. H. Cho, N. Nighoghossian, Y. Berthezène, F. Peyrin, and M. Wiart, “Synchrotron radiation X-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain,” Mol. Imaging Biol. 15(5), 552–559 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

A. J. Carroll, G. A. van Riessen, E. Balaur, I. P. Dolbnya, G. N. Tran, and A. G. Peele, “An iterative method for robust in-line phase contrast imaging,” New J. Phys. 18(4), 043003 (2016).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. (1)

M. Ullherr, A. Balles, C. Fella, and S. Zabler, “Using measurements of the spatial SNR to optimize phase contrast X-ray imaging,” Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 877, 44–50 (2018).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. (1)

A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 324, 41–48 (2014).

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Philos Trans A Math Phys Eng Sci (1)

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos Trans A Math Phys Eng Sci 372(2010), 20130129 (2014).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

Phys. Rev. A (1)

A. Ruhlandt, M. Krenkel, M. Bartels, and T. Salditt, “Three-dimensional phase retrieval in propagation-based phase-contrast imaging,” Phys. Rev. A 89(3), 033847 (2014).
[Crossref]

PLoS One (1)

M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure,” PLoS One 7(8), e35691 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Boistel, T. Aubin, P. Cloetens, F. Peyrin, T. Scotti, P. Herzog, J. Gerlach, N. Pollet, and J.-F. Aubry, “How minute sooglossid frogs hear without a middle ear,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15360–15364 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, A. Pogany, and A. W. Stevenson, “On the optimization of experimental parameters for x-ray in-line phase-contrast imaging,” Rev. Sci. Instrum. 76(9), 093706 (2005).
[Crossref]

A. Balles, S. Zabler, T. Ebensperger, C. Fella, and R. Hanke, “Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups,” Rev. Sci. Instrum. 87(9), 093707 (2016).
[Crossref] [PubMed]

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, “Optimization of phase contrast imaging using hard x rays,” Rev. Sci. Instrum. 76(7), 073705 (2005).
[Crossref]

Sci. Rep. (2)

C. K. Hagen, P. Maghsoudlou, G. Totonelli, P. C. Diemoz, M. Endrizzi, L. Rigon, R.-H. Menk, F. Arfelli, D. Dreossi, E. Brun, P. Coan, A. Bravin, P. De Coppi, and A. Olivo, “High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography,” Sci. Rep. 5(1), 18156 (2015).
[Crossref] [PubMed]

M. Krenkel, A. Markus, M. Bartels, C. Dullin, F. Alves, and T. Salditt, “Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs,” Sci. Rep. 5(1), 9973 (2015).
[Crossref] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co, 2005).

M. S. del Rio and R. J. Dejus, “Status of XOP: an x-ray optics software toolkit,” in SPIE 49th Annual Meeting of Optical Science and Technology (International Society for Optics and Photonics, 2004), pp. 171–174.

Supplementary Material (8)

NameDescription
» Visualization 1       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method using 1 distance without iterative refinement
» Visualization 2       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method using 1 distance with 10 iterations' refinement
» Visualization 3       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method using 4 distances without iterative refinement
» Visualization 4       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method using 4 distances with 10 iterations' refinement
» Visualization 5       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method using 1 distance without iterative refinement
» Visualization 6       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method using 1 distance with 10 iterations' refinement
» Visualization 7       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method using 4 distances without iterative refinement
» Visualization 8       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method using 4 distances with 10 iterations' refinement

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of experimental setup of magnified X-ray phase nano-CT. Z 1 , Z 2 , Z 3 and Z 4 are 4 different focus-to-sample distances, Z d the focus-to-detector distance.
Fig. 2
Fig. 2 Plots of the filters in the Fourier domain. (a) The filters of both the homogeneous CTF method and Paganin’s method using a single distance; (c) the filters of the homogeneous CTF method using 4 different propagation distances; (e) the filters of the extended Paganin’s method using 4 different propagation distances; (b), (d) and (f) zoom on the filters corresponding to (a), (c) and (e) respectively.
Fig. 3
Fig. 3 Minimum Intensity Projections of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method. (a), (b), (c) phase retrieved without iterative refinement using 1, 2 and 4 distances respectively; (d), (e), (f) phase retrieved with 10 iterations’ refinement using 1, 2 and 4 distances respectively (see Visualization 1, Visualization 2, Visualization 3, and Visualization 4).
Fig. 4
Fig. 4 Minimum Intensity Projections of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method. (a), (b), (c) phase retrieved without iterative refinement using 1, 2 and 4 distances respectively; (d), (e), (f) phase retrieved with 10 iterations’ refinement using 1, 2 and 4 distances respectively (see Visualization 5, Visualization 6, Visualization 7, and Visualization 8).
Fig. 5
Fig. 5 Quantitative evaluation of SNR and spatial resolution of the reconstructions at 30 nm voxel size for both homogeneous CTF and Paganin’s methods followed by a refinement with 0 iteration or 10 iterations, using 1, 2 or 4 distances. (a) SNR; (b) spatial resolution. Blue: 1 distance, Red: 2 distances, Green: 4 distances.

Tables (2)

Tables Icon

Table 1 Specific experimental parameters.

Tables Icon

Table 2 Measurements of SNR and estimation of the spatial resolution in the reconstructed images for different phase retrieval methods.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

n( x,y,z )=1 δ n ( x,y,z )+iβ( x,y,z ),
T( x )=a( x )exp[ iφ( x ) ]=exp[ B( x )+iφ( x ) ] B( x )=( 2π/λ ) β( x,y,z )dz φ( x )=( 2π/λ ) δ n ( x,y,z )dz ,
I D k ( x )= | T( x ) P D k ( x ) | 2 P D k ( x )= 1 iλ D k exp( i π λ D k | x | 2 ) ,
φ( x )= 1 2 δ n β ln( F 1 { F( I D k / I Inc )( f ) 1+λ D k π δ n β f 2 }( x ) ),
T( x )1B( x )+iφ( x ).
I ˜ D k ( f )= δ Dirac ( f )2cos( πλ D k f 2 ) B ˜ ( f )+2sin( πλ D k f 2 ) φ ˜ ( f ),
B( x )= 2π λ 1 δ n /β δ n ( x,y,z )dz = 1 δ n /β φ( x ).
φ ˜ ( f )= 1 2 δ n β I ˜ D k ( f ) δ Dirac ( f ) cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 ) .
I ˜ norm,k ( f )=F( I D k I Inc )( f ), H ˜ k ( f )=1+ D k δ n λπ β f 2 T ˜ 1 ( f )=F{ exp( 2β δ n φ( x ) ) }( f ) .
I ˜ norm,k ( f )= T ˜ 1 ( f ) H ˜ k ( f ).
minε= k=1 K | T ˜ 1 ( f ) H ˜ k ( f ) I ˜ norm,k ( f ) | 2 +α | T ˜ 1 ( f ) | 2 .
T ˜ ^ 1 ( f )= 1 K k=1 K H ˜ k ( f ) I ˜ norm,k ( f ) 1 K k=1 K H ˜ k ( f ) 2 +α .
φ ^ ( x )= 1 2 δ n β ln( F 1 { 1 K k=1 K H ˜ k ( f ) I ˜ norm,k ( f ) 1 K k=1 K H ˜ k ( f ) 2 +α }( x ) ).
G ˜ k ( f )=cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 ).
I ˜ D k ( f )= δ Dirac ( f )+2 G ˜ k ( f ) φ ˜ ( f ).
φ ˜ ^ ( f )= 1 2 δ n β 1 K k=1 K G ˜ k ( f )( I ˜ D k ( f ) δ Dirac ( f ) ) 1 K k=1 K G ˜ k ( f ) 2 +α .
T 1 ( x )=exp( 2 δ n /β φ( x ) )1+ 2 δ n /β φ( x ).
T ˜ 1 ( f ) δ Dirac ( f )+ 2 δ n /β φ ˜ ( f ).
δ Dirac ( f )+ 2 δ n /β φ ˜ ( f )= I ˜ norm,k ( f ) 1+λ D k π δ n β f 2 .
φ ˜ ( f ) 1 2 δ n β I ˜ norm,k ( f ) δ Dirac ( f ) 1+λ D k π δ n β f 2 .
G ˜ k ( f )=cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 )1+λ D k π δ n β f 2 .
φ ˜ ^ ( f )= 1 2 δ n β 1 K k=1 K [ cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 ) ]( I ˜ D k ( f ) δ Dirac ( f ) ) 1 K k=1 K [ cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 ) ] 2 +α ,
φ ˜ ^ ( f )= 1 2 δ n β 1 K k=1 K ( 1+λ D k π δ n β f 2 )( I ˜ norm,k ( f ) δ Dirac ( f ) ) 1 K k=1 K ( 1+λ D k π δ n β f 2 ) 2 +α .
M k = Z d / Z k .
D k = [ Z k ( Z d Z k ) ]/ Z d .
F k = A 2 / λ D k ,
r= πw 4 1 log2log( 1/a ) ,

Metrics