Abstract

We propose a two-mode optical fiber (TMF) with a low sensitivity of differential modal group delay (DMD) to change of the core radius and the refractive index of the core in the index profile which are major factors for DMD deviation. This was done to achieve high reproducibility of fiber fabrication. The proposed TMF has a graded index (GI) core and a depressed inner cladding, and we optimize structural parameters. We fabricated different kinds of TMFs to confirm the low DMD sensitivity of our proposed fiber. The fabricated TMF showed that the DMD sensitivity to changes in core radius of the TMF was approximately 8 ps/km/μm which is 98% smaller than that of a GI-TMF without a depressed inner cladding.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two mode optical fibers with low and flattened differential modal delay suitable for WDM-MIMO combined system

Ryo Maruyama, Nobuo Kuwaki, Shoichiro Matsuo, and Masaharu Ohashi
Opt. Express 22(12) 14311-14321 (2014)

Optimized graded index two-mode optical fiber with low DMD, large Aeff and low bending loss

Kiminori Sato, Ryo Maruyama, Nobuo Kuwaki, Shoichiro Matsuo, and Masaharu Ohashi
Opt. Express 21(14) 16231-16238 (2013)

Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay

Jiajing Tu, Kunimasa Saitoh, Katsuhiro Takenaga, and Shoichiro Matsuo
Opt. Express 22(4) 4329-4341 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. K. Fontaine, R. Ryf, H. Chen, A. V. Benitez, J. E. Antonio Lopez, R. A. Correa, B. Guan, B. Ercan, R. P. Scott, S. J. Ben Yoo, L. Gr¨uner-Nielsen, Y. Sun, and R. J. Lingle, “30×30 MIMO Transmission over 15 Spatial Modes, ” in Proceedings of the Opt. Fiber Communication Conf. Exhibition, paper Th5C (2015).
    [Crossref]
  2. B. Inan, B. Spinnler, F. Ferreira, D. van den Borne, A. Lobato, S. Adhikari, V. A. J. M. Sleiffer, M. Kuschnerov, N. Hanik, and S. L. Jansen, “DSP complexity of mode-division multiplexed receivers,” Opt. Express 20(10), 10859–10869 (2012).
    [Crossref] [PubMed]
  3. R. V. Jensen, L. Grüner-Nielsen, N. H. L. Wong, Y. Sun, Y. Jung, and D. J. Richardson, “Demonstration of a 9 LP-Mode Transmission Fiber with Low DMD and Loss” in Proceedings of Opt.Fiber Communication Conf. Exhibition, paper W2A.34 (2015).
    [Crossref]
  4. P. Sillard, D. Molin, M. B. Astruc, H. Maerten, D. Van Ras, and F. Achten, “Low-DMGD 6-LP-Mode Fiber, ” in Proceedings of the Opt.Fiber Communication Conf. Exhibition, paper M3F.2 (2014).
  5. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Six-LP-mode transmission fiber with DMD of less than 70 ps/km over C+L band,” in Proceedings of Opt.Fiber Communication Conf. Exhibition, paper M3F.3 (2014).
    [Crossref]
  6. K. Sato, R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Optimized graded index two-mode optical fiber with low DMD, large Aeff and low bending loss,” Opt. Express 21(14), 16231–16238 (2013).
    [Crossref] [PubMed]
  7. R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Two mode optical fibers with low and flattened differential modal delay suitable for WDM-MIMO combined system,” Opt. Express 22(12), 14311–14321 (2014).
    [Crossref] [PubMed]
  8. T. Sakamoto, T. Mori, T. Yamamoto, and S. Tomita, “Differential mode delay managed transmission line for WDM-MIMO system using multi-step index fiber,” J. Lightwave Technol. 30(17), 2783–2787 (2012).
    [Crossref]
  9. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Corteselli, S. Chandrasekhar, A. H. Gnauck, C. Xie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber, ” in Proceedings of Optical Fiber Communication Conf.Exposition National Fiber Optic Engineers Conf., paper PDP5A.1 (2013).
    [Crossref]
  10. C. D. Hussey and C. Pask, “Theory of the profile-moments description of single-mode fibres,” IEE Proceeding 129(3), 123–134 (1982)
    [Crossref]
  11. J. M. Senior, Optical Fiber Communications Principles and Practice, (Prentice Hall, 2009), Chap. 2.
  12. K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [Crossref]
  13. I. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications Volume V. I. B.: Systems and Networks, p. 619, no.6, Academic Press, (2013).
  14. http://kylia.com/kylia/?portfolio=modal-muxdemux-mx .
  15. R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Measurement Techniques for Few-mode Fibers,” inProceedings of the 22rd Opto-Electronics and Communications Conference (2017), paper 3-4G-3.
  16. N. Shibata, M. Ohashi, R. Maruyama, and N. Kuwaki, “Measurements of differential group delay and chromatic dispersion for LP01 and LP11 modes of few-mode fibers with depressed claddings,” Opt. Rev. 22(1), 65–70 (2015).
    [Crossref]
  17. N. Shibata, K. Watanabe, and M. Ohashi, “Chromatic dispersion diagnosis for the two-modes of few-mode photonic crystal fiber,” IEEE Photonics Technol. Lett. 28(4), 437–440 (2016).
    [Crossref]

2016 (1)

N. Shibata, K. Watanabe, and M. Ohashi, “Chromatic dispersion diagnosis for the two-modes of few-mode photonic crystal fiber,” IEEE Photonics Technol. Lett. 28(4), 437–440 (2016).
[Crossref]

2015 (1)

N. Shibata, M. Ohashi, R. Maruyama, and N. Kuwaki, “Measurements of differential group delay and chromatic dispersion for LP01 and LP11 modes of few-mode fibers with depressed claddings,” Opt. Rev. 22(1), 65–70 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (2)

2002 (1)

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Adhikari, S.

Ferreira, F.

Hanik, N.

Inan, B.

Jansen, S. L.

Koshiba, M.

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Kuschnerov, M.

Kuwaki, N.

Lobato, A.

Maruyama, R.

Matsuo, S.

Mori, T.

Ohashi, M.

N. Shibata, K. Watanabe, and M. Ohashi, “Chromatic dispersion diagnosis for the two-modes of few-mode photonic crystal fiber,” IEEE Photonics Technol. Lett. 28(4), 437–440 (2016).
[Crossref]

N. Shibata, M. Ohashi, R. Maruyama, and N. Kuwaki, “Measurements of differential group delay and chromatic dispersion for LP01 and LP11 modes of few-mode fibers with depressed claddings,” Opt. Rev. 22(1), 65–70 (2015).
[Crossref]

R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Two mode optical fibers with low and flattened differential modal delay suitable for WDM-MIMO combined system,” Opt. Express 22(12), 14311–14321 (2014).
[Crossref] [PubMed]

K. Sato, R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Optimized graded index two-mode optical fiber with low DMD, large Aeff and low bending loss,” Opt. Express 21(14), 16231–16238 (2013).
[Crossref] [PubMed]

Saitoh, K.

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Sakamoto, T.

Sato, K.

Shibata, N.

N. Shibata, K. Watanabe, and M. Ohashi, “Chromatic dispersion diagnosis for the two-modes of few-mode photonic crystal fiber,” IEEE Photonics Technol. Lett. 28(4), 437–440 (2016).
[Crossref]

N. Shibata, M. Ohashi, R. Maruyama, and N. Kuwaki, “Measurements of differential group delay and chromatic dispersion for LP01 and LP11 modes of few-mode fibers with depressed claddings,” Opt. Rev. 22(1), 65–70 (2015).
[Crossref]

Sleiffer, V. A. J. M.

Spinnler, B.

Tomita, S.

van den Borne, D.

Watanabe, K.

N. Shibata, K. Watanabe, and M. Ohashi, “Chromatic dispersion diagnosis for the two-modes of few-mode photonic crystal fiber,” IEEE Photonics Technol. Lett. 28(4), 437–440 (2016).
[Crossref]

Yamamoto, T.

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. Shibata, K. Watanabe, and M. Ohashi, “Chromatic dispersion diagnosis for the two-modes of few-mode photonic crystal fiber,” IEEE Photonics Technol. Lett. 28(4), 437–440 (2016).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Rev. (1)

N. Shibata, M. Ohashi, R. Maruyama, and N. Kuwaki, “Measurements of differential group delay and chromatic dispersion for LP01 and LP11 modes of few-mode fibers with depressed claddings,” Opt. Rev. 22(1), 65–70 (2015).
[Crossref]

Other (10)

N. K. Fontaine, R. Ryf, H. Chen, A. V. Benitez, J. E. Antonio Lopez, R. A. Correa, B. Guan, B. Ercan, R. P. Scott, S. J. Ben Yoo, L. Gr¨uner-Nielsen, Y. Sun, and R. J. Lingle, “30×30 MIMO Transmission over 15 Spatial Modes, ” in Proceedings of the Opt. Fiber Communication Conf. Exhibition, paper Th5C (2015).
[Crossref]

I. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications Volume V. I. B.: Systems and Networks, p. 619, no.6, Academic Press, (2013).

http://kylia.com/kylia/?portfolio=modal-muxdemux-mx .

R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Measurement Techniques for Few-mode Fibers,” inProceedings of the 22rd Opto-Electronics and Communications Conference (2017), paper 3-4G-3.

R. V. Jensen, L. Grüner-Nielsen, N. H. L. Wong, Y. Sun, Y. Jung, and D. J. Richardson, “Demonstration of a 9 LP-Mode Transmission Fiber with Low DMD and Loss” in Proceedings of Opt.Fiber Communication Conf. Exhibition, paper W2A.34 (2015).
[Crossref]

P. Sillard, D. Molin, M. B. Astruc, H. Maerten, D. Van Ras, and F. Achten, “Low-DMGD 6-LP-Mode Fiber, ” in Proceedings of the Opt.Fiber Communication Conf. Exhibition, paper M3F.2 (2014).

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Six-LP-mode transmission fiber with DMD of less than 70 ps/km over C+L band,” in Proceedings of Opt.Fiber Communication Conf. Exhibition, paper M3F.3 (2014).
[Crossref]

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Corteselli, S. Chandrasekhar, A. H. Gnauck, C. Xie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber, ” in Proceedings of Optical Fiber Communication Conf.Exposition National Fiber Optic Engineers Conf., paper PDP5A.1 (2013).
[Crossref]

C. D. Hussey and C. Pask, “Theory of the profile-moments description of single-mode fibres,” IEE Proceeding 129(3), 123–134 (1982)
[Crossref]

J. M. Senior, Optical Fiber Communications Principles and Practice, (Prentice Hall, 2009), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Proposed refractive index profile of the TMF.
Fig. 2
Fig. 2 DMD properties for different α and Δ+ with Δ+ = 0.40%, 0.425%, and 0.45%, Ra = 0.5 and Rd = 0.38.
Fig. 3
Fig. 3 DMD properties for different Rd values.
Fig. 4
Fig. 4 SDT deviation for each normalized parameter for P-GI-TMF and GI-TMFR.
Fig. 5
Fig. 5 Relationship between normalized parameter deviation and DMD at 1550 nm. (a) Rd, Ra, for the P-GI-TMF, (b) a, (c) Δ+ and (d) α for the P-GI-TMF and GI-TMFR
Fig. 6
Fig. 6 DMD and SDa for a P-GI-TMF with Ra = 0.50, α = 1.71, and Rd = 0.38.
Fig. 7
Fig. 7 OTDR traces of LP01 and LP11 modes for TMF1.
Fig. 8
Fig. 8 Measured impulse response of TMF1 at 1550 nm with or without offset connection to a launched fiber.
Fig. 9
Fig. 9 Interference spectrum of TMF1 with a 100 m length cut from one end.
Fig. 10
Fig. 10 Measured DMD as a function of wavelength for TMF1, TMF2, and TMF3.
Fig. 11
Fig. 11 Measured DMD as a function of wavelength for GI-TMFR and TMF1.
Fig. 12
Fig. 12 Measured DMD at 1.55 μm as a function of core radius for P-GI-TMF and GI-TMFR.

Tables (2)

Tables Icon

Table 1 Structural Parameters of the Fabricated TMF1 Compared to Our Design Values

Tables Icon

Table 2 Optical Properties of the Fabricated TMFs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n(r)={ n 1 [ 12 Δ + (r/a) α ] 1/2 (0ra) n d (ara+W) n 2 (ra+W)
T= 2 k 2 n(r)> n 2 [ n 2 (r) n 2 2 ]rdr =ka n 1 2 Δ + A A= α/(α+2)
DMD=1/ v g11 1/ v g01
λ B = λ 2 cDMDL

Metrics