Abstract

We report a broadband mid-infrared frequency comb with three-optical-cycle pulse duration centered around 4.2 µm, via half-harmonic generation using orientation-patterned GaP (OP-GaP) with ~43% conversion efficiency. We experimentally compare performance of GaP with GaAs and lithium niobate as the nonlinear element, and show how properties of GaP at this wavelength lead to generation of the shortest pulses and the highest conversion efficiency. These results shed new light on half-harmonic generation of frequency combs, and pave the way for generation of short-pulse intrinsically-locked frequency combs at longer wavelengths in the mid-infrared with high conversion efficiencies.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in OP-GaP crystal

Jarosław Sotor, Tadeusz Martynkien, Peter G. Schunemann, Paweł Mergo, Lucile Rutkowski, and Grzegorz Soboń
Opt. Express 26(9) 11756-11763 (2018)

Advances in nonlinear optical crystals for mid-infrared coherent sources

Peter G. Schunemann, Kevin T. Zawilski, Leonard A. Pomeranz, Daniel J. Creeden, and Peter A. Budni
J. Opt. Soc. Am. B 33(11) D36-D43 (2016)

Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared

Alireza Marandi, Kirk A. Ingold, Marc Jankowski, and Robert L. Byer
Optica 3(3) 324-327 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  2. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
    [Crossref]
  3. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
    [Crossref]
  4. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [Crossref] [PubMed]
  5. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
    [Crossref]
  6. M. W. Haakestad, T. P. Lamour, N. Leindecker, A. Marandi, and K. L. Vodopyanov, “Intracavity trace molecular detection with a broadband mid-IR frequency comb source,” J. Opt. Soc. Am. B 30(3), 631–640 (2013).
    [Crossref]
  7. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picque, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15(25), 16540–16545 (2007).
    [Crossref] [PubMed]
  8. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref] [PubMed]
  9. S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
    [Crossref]
  10. A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express 20(7), 7255–7262 (2012).
    [Crossref] [PubMed]
  11. A. Marandi, K. A. Ingold, M. Jankowski, and R. L. Byer, “Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared,” Optica 3(3), 324–327 (2016).
    [Crossref]
  12. S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
    [Crossref] [PubMed]
  13. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
    [Crossref] [PubMed]
  14. C. W. Rudy, A. Marandi, K. A. Ingold, S. J. Wolf, K. L. Vodopyanov, R. L. Byer, L. Yang, P. Wan, and J. Liu, “Sub-50 fs pulses around 2070 nm from a synchronously-pumped, degenerate OPO,” Opt. Express 20(25), 27589–27595 (2012).
    [Crossref] [PubMed]
  15. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
    [Crossref] [PubMed]
  16. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
    [Crossref] [PubMed]
  17. V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
    [Crossref] [PubMed]
  18. V. Smolski, S. Vasilyev, I. Moskalev, M. Mirov, A. Muraviev, S. Mirov, K. Vodopyanov, and V. Gapontsev, “Sub-Watt Femtosecond Laser Source with the Spectrum Spanning 3-8 μm,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), AM4A.6.
    [Crossref]
  19. V. Tassev, M. Snure, R. Petterson, K. L. Schepler, R. G. Bedford, J. M. Mann, S. Vangala, W. Goodhue, A. Lin, J. S. Harris, M. Fejer, P. G. Schunemann, “Recent Progress in Development Orientation-Patterned GaP for Next-Generation Frequency Conversion Devices,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JM4K.5.
  20. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
    [Crossref]
  21. Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser,” Opt. Lett. 42(22), 4756–4759 (2017).
    [Crossref] [PubMed]
  22. L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
    [Crossref] [PubMed]
  23. E. Sorokin, A. Marandi, P. G. Schunemann, M. Fejer, I. T. Sorokina, R. L. Byer, “Three-optical-cycle frequency comb centered around 4.2 μm using OP-GaP-based half-harmonic generation,” in High Brightness Sources and Light-Driven Interactions, OSA Technical Digest (Optical Society of America, 2016), paper MS3C.2.
  24. T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27(8), 628–630 (2002).
    [Crossref] [PubMed]
  25. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [Crossref]
  26. G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
    [Crossref] [PubMed]
  27. R. C. Miller, “Optical Second Harmonic Generation In Piezoelectric Crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
    [Crossref]
  28. R. L. Byer, “Nonlinear Optical Phenomena and Materials,” Annu. Rev. Mater. Sci. 4(1), 147–190 (1974).
    [Crossref]
  29. M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal Simultons in Optical Parametric Oscillators,” Phys. Rev. Lett. 120(5), 053904 (2018).
    [Crossref] [PubMed]
  30. K. F. Lee, C. Mohr, J. Jiang, P. G. Schunemann, K. L. Vodopyanov, and M. E. Fermann, “Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator,” Opt. Express 23(20), 26596–26603 (2015).
    [Crossref] [PubMed]
  31. O. H. Heckl, B. J. Bjork, G. Winkler, P. Bryan Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41(22), 5405–5408 (2016).
    [Crossref] [PubMed]
  32. I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
    [Crossref]

2018 (1)

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal Simultons in Optical Parametric Oscillators,” Phys. Rev. Lett. 120(5), 053904 (2018).
[Crossref] [PubMed]

2017 (1)

2016 (5)

2015 (2)

2014 (2)

2013 (2)

M. W. Haakestad, T. P. Lamour, N. Leindecker, A. Marandi, and K. L. Vodopyanov, “Intracavity trace molecular detection with a broadband mid-IR frequency comb source,” J. Opt. Soc. Am. B 30(3), 631–640 (2013).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (2)

S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
[Crossref]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

2008 (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

2004 (1)

2002 (1)

1997 (1)

1974 (1)

R. L. Byer, “Nonlinear Optical Phenomena and Materials,” Annu. Rev. Mater. Sci. 4(1), 147–190 (1974).
[Crossref]

1964 (1)

R. C. Miller, “Optical Second Harmonic Generation In Piezoelectric Crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
[Crossref]

Arisholm, G.

Baumann, E.

Becker, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Becouarn, L.

Bernhardt, B.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Bjork, B. J.

Borri, S.

Bryan Changala, P.

Budni, P. A.

Bui, T. Q.

Byer, R. L.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal Simultons in Optical Parametric Oscillators,” Phys. Rev. Lett. 120(5), 053904 (2018).
[Crossref] [PubMed]

A. Marandi, K. A. Ingold, M. Jankowski, and R. L. Byer, “Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared,” Optica 3(3), 324–327 (2016).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express 20(7), 7255–7262 (2012).
[Crossref] [PubMed]

C. W. Rudy, A. Marandi, K. A. Ingold, S. J. Wolf, K. L. Vodopyanov, R. L. Byer, L. Yang, P. Wan, and J. Liu, “Sub-50 fs pulses around 2070 nm from a synchronously-pumped, degenerate OPO,” Opt. Express 20(25), 27589–27595 (2012).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
[Crossref] [PubMed]

S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
[Crossref]

S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
[Crossref] [PubMed]

R. L. Byer, “Nonlinear Optical Phenomena and Materials,” Annu. Rev. Mater. Sci. 4(1), 147–190 (1974).
[Crossref]

Clivati, C.

Coddington, I.

Creeden, D. J.

Cromer, C.

Crystal, S.

D’Ambrosio, D.

Del’Haye, P.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Digonnet, M.

Dvoyrin, V. V.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

Eyres, L. A.

Fejer, M. M.

Fermann, M.

Fermann, M. E.

Gerard, B.

Giorgetta, F. R.

Gohle, C.

Guelachvili, G.

Haakestad, M. W.

Hamerly, R.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal Simultons in Optical Parametric Oscillators,” Phys. Rev. Lett. 120(5), 053904 (2018).
[Crossref] [PubMed]

Hänsch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Harris, J. S.

Hartl, I.

Heckl, O. H.

Herr, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref] [PubMed]

Ingold, K. A.

Insero, G.

Ito, R.

Jacquet, P.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Jankowski, M.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal Simultons in Optical Parametric Oscillators,” Phys. Rev. Lett. 120(5), 053904 (2018).
[Crossref] [PubMed]

A. Marandi, K. A. Ingold, M. Jankowski, and R. L. Byer, “Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared,” Optica 3(3), 324–327 (2016).
[Crossref]

Jiang, J.

Keilmann, F.

Kippenberg, T. J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Kitamoto, A.

Kofler, J.

Kondo, T.

Lallier, E.

Lamour, T. P.

Lee, K. F.

Leindecker, N.

Leindecker, N. C.

Levi, O.

Liu, J.

Loparo, Z. E.

Maidment, L.

Maier, R. R. J.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

Mandon, J.

Marandi, A.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal Simultons in Optical Parametric Oscillators,” Phys. Rev. Lett. 120(5), 053904 (2018).
[Crossref] [PubMed]

A. Marandi, K. A. Ingold, M. Jankowski, and R. L. Byer, “Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared,” Optica 3(3), 324–327 (2016).
[Crossref]

M. W. Haakestad, T. P. Lamour, N. Leindecker, A. Marandi, and K. L. Vodopyanov, “Intracavity trace molecular detection with a broadband mid-IR frequency comb source,” J. Opt. Soc. Am. B 30(3), 631–640 (2013).
[Crossref]

A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express 20(7), 7255–7262 (2012).
[Crossref] [PubMed]

C. W. Rudy, A. Marandi, K. A. Ingold, S. J. Wolf, K. L. Vodopyanov, R. L. Byer, L. Yang, P. Wan, and J. Liu, “Sub-50 fs pulses around 2070 nm from a synchronously-pumped, degenerate OPO,” Opt. Express 20(25), 27589–27595 (2012).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
[Crossref] [PubMed]

McNaghten, E. D.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

Miller, R. C.

R. C. Miller, “Optical Second Harmonic Generation In Piezoelectric Crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
[Crossref]

Mirov, S. B.

Mohr, C.

Natale, P.

Newbury, N. R.

Pervak, V.

Petron, G.

Phillips, C. R.

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal Simultons in Optical Parametric Oscillators,” Phys. Rev. Lett. 120(5), 053904 (2018).
[Crossref] [PubMed]

Picque, N.

Picqué, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Pinguet, T. J.

Plettner, T.

Pomeranz, L. A.

Porat, G.

Reid, D. T.

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
[Crossref] [PubMed]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

Rieker, G. B.

Ru, Q.

Rudy, C. W.

Santambrogio, G.

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Schober, A.

Schunemann, P. G.

Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser,” Opt. Lett. 42(22), 4756–4759 (2017).
[Crossref] [PubMed]

O. H. Heckl, B. J. Bjork, G. Winkler, P. Bryan Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41(22), 5405–5408 (2016).
[Crossref] [PubMed]

G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
[Crossref] [PubMed]

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
[Crossref]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
[Crossref] [PubMed]

K. F. Lee, C. Mohr, J. Jiang, P. G. Schunemann, K. L. Vodopyanov, and M. E. Fermann, “Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator,” Opt. Express 23(20), 26596–26603 (2015).
[Crossref] [PubMed]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
[Crossref] [PubMed]

Shirane, M.

Shoji, I.

Sinclair, L. C.

Skauli, T.

Smolski, V. O.

Sorokin, E.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
[Crossref] [PubMed]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picque, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15(25), 16540–16545 (2007).
[Crossref] [PubMed]

Sorokina, I. T.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
[Crossref] [PubMed]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picque, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15(25), 16540–16545 (2007).
[Crossref] [PubMed]

Spaun, B.

Swann, W. C.

Sweeney, C.

Tans, P. P.

Thon, R.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Tillman, K. A.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

Tolstik, N.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

Urbanek, K.

Vasilyev, S.

Vasu, S.

Vodopyanov, K. L.

Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser,” Opt. Lett. 42(22), 4756–4759 (2017).
[Crossref] [PubMed]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
[Crossref] [PubMed]

K. F. Lee, C. Mohr, J. Jiang, P. G. Schunemann, K. L. Vodopyanov, and M. E. Fermann, “Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator,” Opt. Express 23(20), 26596–26603 (2015).
[Crossref] [PubMed]

M. W. Haakestad, T. P. Lamour, N. Leindecker, A. Marandi, and K. L. Vodopyanov, “Intracavity trace molecular detection with a broadband mid-IR frequency comb source,” J. Opt. Soc. Am. B 30(3), 631–640 (2013).
[Crossref]

A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express 20(7), 7255–7262 (2012).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

C. W. Rudy, A. Marandi, K. A. Ingold, S. J. Wolf, K. L. Vodopyanov, R. L. Byer, L. Yang, P. Wan, and J. Liu, “Sub-50 fs pulses around 2070 nm from a synchronously-pumped, degenerate OPO,” Opt. Express 20(25), 27589–27595 (2012).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
[Crossref] [PubMed]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
[Crossref] [PubMed]

S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
[Crossref]

S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
[Crossref] [PubMed]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27(8), 628–630 (2002).
[Crossref] [PubMed]

Wan, P.

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Winkler, G.

Wolf, S. J.

Wong, S. T.

Yang, L.

Ye, J.

Zawilski, K. T.

Zhang, X.

Zolot, A. M.

Zondy, J.-J.

Annu. Rev. Mater. Sci. (1)

R. L. Byer, “Nonlinear Optical Phenomena and Materials,” Annu. Rev. Mater. Sci. 4(1), 147–190 (1974).
[Crossref]

Appl. Phys. B (1)

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Appl. Phys. Lett. (1)

R. C. Miller, “Optical Second Harmonic Generation In Piezoelectric Crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

J. Opt. Soc. Am. B (4)

Nat. Commun. (1)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (9)

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref] [PubMed]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
[Crossref] [PubMed]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
[Crossref] [PubMed]

Q. Ru, Z. E. Loparo, X. Zhang, S. Crystal, S. Vasu, P. G. Schunemann, and K. L. Vodopyanov, “Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser,” Opt. Lett. 42(22), 4756–4759 (2017).
[Crossref] [PubMed]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
[Crossref] [PubMed]

O. H. Heckl, B. J. Bjork, G. Winkler, P. Bryan Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41(22), 5405–5408 (2016).
[Crossref] [PubMed]

S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett. 33(16), 1896–1898 (2008).
[Crossref] [PubMed]

G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
[Crossref] [PubMed]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27(8), 628–630 (2002).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. Lett. (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

M. Jankowski, A. Marandi, C. R. Phillips, R. Hamerly, K. A. Ingold, R. L. Byer, and M. M. Fejer, “Temporal Simultons in Optical Parametric Oscillators,” Phys. Rev. Lett. 120(5), 053904 (2018).
[Crossref] [PubMed]

Other (3)

E. Sorokin, A. Marandi, P. G. Schunemann, M. Fejer, I. T. Sorokina, R. L. Byer, “Three-optical-cycle frequency comb centered around 4.2 μm using OP-GaP-based half-harmonic generation,” in High Brightness Sources and Light-Driven Interactions, OSA Technical Digest (Optical Society of America, 2016), paper MS3C.2.

V. Smolski, S. Vasilyev, I. Moskalev, M. Mirov, A. Muraviev, S. Mirov, K. Vodopyanov, and V. Gapontsev, “Sub-Watt Femtosecond Laser Source with the Spectrum Spanning 3-8 μm,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), AM4A.6.
[Crossref]

V. Tassev, M. Snure, R. Petterson, K. L. Schepler, R. G. Bedford, J. M. Mann, S. Vangala, W. Goodhue, A. Lin, J. S. Harris, M. Fejer, P. G. Schunemann, “Recent Progress in Development Orientation-Patterned GaP for Next-Generation Frequency Conversion Devices,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JM4K.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experiment comprising two half-harmonic OPOs. OC, pellicle-type output coupler. Si, ZnS and KBr denote Brewster-angled dispersion compensating elements.
Fig. 2
Fig. 2 Intracavity round-trip dispersion.
Fig. 3
Fig. 3 Optical spectrum in linear and log scale (a), autocorrelation trace (b, black: interferometric, red: intensity), output spectrum as a function of cavity length (c), and output power (d) of the of the 0.5-mm OP-GaP OPO.
Fig. 4
Fig. 4 Output power (a,c) and output spectrum as a function of cavity length (b,d) of the of the 0.5-mm OP-GaP OPO with different round-trip dispersions.

Tables (2)

Tables Icon

Table 1 Optical parameters of LiNbO3, GaAs and GaP

Tables Icon

Table 2 Summary of the experimental results.

Metrics