Abstract

The tunable plasmonic induced transparency has been theoretically investigated based on graphene patterns/SiO2/Si/polymer multilayer structure in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that obvious Fano peak can be observed and efficiently modulated because of the strong coupling between incident light and graphene pattern structures. As Fermi level increases, the peak amplitude of Fano resonance increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 40% on condition that the Fermi level changes in the scope of 0.2-1.0 eV. With the distance between cut wire and double semi-circular patterns increases, the peak amplitude and figure of merit increases. The results are very helpful to develop novel graphene plasmonic devices (e.g. sensors, modulators, and antenna) and find potential applications in the fields of biomedical sensing and wireless communications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure

Pei-ren Tang, Jiang Li, Liang-hui Du, Qiao Liu, Qi-xian Peng, Jian-heng Zhao, Bing Zhu, Ze-ren Li, and Li-guo Zhu
Opt. Express 26(23) 30655-30666 (2018)

Investigation of graphene-supported tunable asymmetric terahertz metamaterials

Chenyuyi Shi, Xiaoyong He, Feng Liu, Fangting Lin, and Hao Zhang
J. Opt. Soc. Am. B 35(3) 575-581 (2018)

Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide

Lin Wang, Wei Li, and Xunya Jiang
Opt. Lett. 40(10) 2325-2328 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
    [Crossref]
  2. C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
    [Crossref]
  3. W. J. Wan, H. Li, and J. C. Cao, “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation,” Opt. Express 26(2), 980–989 (2018).
    [Crossref] [PubMed]
  4. S. Zhang, Z. Jin, X. Liu, W. Zhao, X. Lin, C. Jing, and G. Ma, “Photoinduced terahertz radiation and negative conductivity dynamics in Heusler alloy Co2MnSn film,” Opt. Lett. 42(16), 3080–3083 (2017).
    [Crossref] [PubMed]
  5. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  6. Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
    [Crossref] [PubMed]
  7. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  8. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  9. C. Argyropoulos, P. Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
    [Crossref] [PubMed]
  10. X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
    [Crossref] [PubMed]
  11. N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
    [Crossref] [PubMed]
  12. X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82(1), 229–237 (2015).
    [Crossref]
  13. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
    [Crossref] [PubMed]
  14. J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
    [Crossref] [PubMed]
  15. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  16. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  17. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
    [Crossref] [PubMed]
  18. P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
    [Crossref] [PubMed]
  19. Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
    [Crossref] [PubMed]
  20. M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
    [Crossref] [PubMed]
  21. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  22. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
    [Crossref]
  23. X. Liu, Z. Zhang, X. Lin, K. Zhang, Z. Jin, Z. Cheng, and G. Ma, “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Opt. Express 24(23), 26618–26628 (2016).
    [Crossref] [PubMed]
  24. H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
    [Crossref] [PubMed]
  25. M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
    [Crossref] [PubMed]
  26. F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
    [Crossref] [PubMed]
  27. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
    [Crossref] [PubMed]
  28. H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “Electromagnetically induced transparency based on cascaded pi-shaped graphene nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
    [Crossref]
  29. P. C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S. Y. Lan, “Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium,” Nat. Commun. 7, 13030 (2016).
    [Crossref] [PubMed]
  30. W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
    [Crossref]
  31. M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
    [Crossref] [PubMed]
  32. L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
    [Crossref]
  33. O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
    [Crossref]
  34. D. N. Basov, M. M. Fogler, and F. J. García de Abajo, “Polaritons in van der Waals materials,” Science 354(6309), aag1992 (2016).
    [Crossref] [PubMed]
  35. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  36. X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
    [Crossref]
  37. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  38. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
    [Crossref] [PubMed]
  39. C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
    [Crossref] [PubMed]
  40. A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
    [Crossref]
  41. A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103(20), 207401 (2009).
    [Crossref] [PubMed]
  42. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  43. A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
    [Crossref]
  44. X. He, Z. Y. Zhao, and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40(2), 178–181 (2015).
    [Crossref] [PubMed]
  45. N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
    [Crossref] [PubMed]
  46. W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
    [Crossref]
  47. D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
    [Crossref]
  48. Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
    [Crossref] [PubMed]
  49. Z. Y. Tan, T. Zhou, J. C. Cao, and H. C. Liu, “Terahertz imaging with quantum-cascade laser and quantum-well photodetector,” IEEE Photonics Technol. Lett. 25(14), 1344–1346 (2013).
    [Crossref]
  50. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
    [Crossref]
  51. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref] [PubMed]
  52. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
    [Crossref]

2018 (1)

2017 (6)

S. Zhang, Z. Jin, X. Liu, W. Zhao, X. Lin, C. Jing, and G. Ma, “Photoinduced terahertz radiation and negative conductivity dynamics in Heusler alloy Co2MnSn film,” Opt. Lett. 42(16), 3080–3083 (2017).
[Crossref] [PubMed]

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “Electromagnetically induced transparency based on cascaded pi-shaped graphene nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

2016 (10)

D. N. Basov, M. M. Fogler, and F. J. García de Abajo, “Polaritons in van der Waals materials,” Science 354(6309), aag1992 (2016).
[Crossref] [PubMed]

P. C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S. Y. Lan, “Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium,” Nat. Commun. 7, 13030 (2016).
[Crossref] [PubMed]

X. Liu, Z. Zhang, X. Lin, K. Zhang, Z. Jin, Z. Cheng, and G. Ma, “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Opt. Express 24(23), 26618–26628 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

2015 (6)

X. He, Z. Y. Zhao, and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40(2), 178–181 (2015).
[Crossref] [PubMed]

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82(1), 229–237 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

2014 (8)

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

C. Argyropoulos, P. Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

2013 (4)

Z. Y. Tan, T. Zhou, J. C. Cao, and H. C. Liu, “Terahertz imaging with quantum-cascade laser and quantum-well photodetector,” IEEE Photonics Technol. Lett. 25(14), 1344–1346 (2013).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

2012 (2)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

2011 (4)

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2010 (2)

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

2009 (3)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103(20), 207401 (2009).
[Crossref] [PubMed]

2008 (2)

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

2007 (2)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

1985 (1)

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Adams, C. S.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Alexander, R. W.

Al-Naib, I.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Alù, A.

C. Argyropoulos, P. Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
[Crossref] [PubMed]

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Amann, M. C.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

Argyropoulos, C.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

C. Argyropoulos, P. Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
[Crossref] [PubMed]

Avouris, P.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Azad, A. K.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Badolato, A.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Barbour, R.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Basov, D. N.

D. N. Basov, M. M. Fogler, and F. J. García de Abajo, “Polaritons in van der Waals materials,” Science 354(6309), aag1992 (2016).
[Crossref] [PubMed]

Belkin, M. A.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Bell, R. J.

Bettiol, A. A.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Biedermann, B.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Boehm, G.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Bolotin, K. I.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Boltasseva, A.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Boudouris, B. W.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Briggs, D. P.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Brongersma, M. L.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Cao, J. C.

W. J. Wan, H. Li, and J. C. Cao, “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation,” Opt. Express 26(2), 980–989 (2018).
[Crossref] [PubMed]

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Z. Y. Tan, T. Zhou, J. C. Cao, and H. C. Liu, “Terahertz imaging with quantum-cascade laser and quantum-well photodetector,” IEEE Photonics Technol. Lett. 25(14), 1344–1346 (2013).
[Crossref]

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103(20), 207401 (2009).
[Crossref] [PubMed]

Cao, W.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Cao, Y. Y.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “Electromagnetically induced transparency based on cascaded pi-shaped graphene nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Casanova, F.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Centeno, A.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Chan, W. S.

P. C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S. Y. Lan, “Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium,” Nat. Commun. 7, 13030 (2016).
[Crossref] [PubMed]

Chen, C. F.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Chen, D.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Chen, H. Y.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Chen, J. Q.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Chen, P. Y.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

C. Argyropoulos, P. Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
[Crossref] [PubMed]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Chen, Y. P.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Cheng, Z.

Chiam, S. Y.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Chung, T. F.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Cong, L.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Crommie, M. F.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Cui, H.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Cunnane, D.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

D’Aguanno, G.

de Marzi, G.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

de Melo, N. R.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Demmerle, F.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Du, L.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Emani, N. K.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, P.

P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Fan, S.

P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Fang, N.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Fleischhauer, M.

P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Fogler, M. M.

D. N. Basov, M. M. Fogler, and F. J. García de Abajo, “Polaritons in van der Waals materials,” Science 354(6309), aag1992 (2016).
[Crossref] [PubMed]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Fu, Z. L.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

García de Abajo, F. J.

D. N. Basov, M. M. Fogler, and F. J. García de Abajo, “Polaritons in van der Waals materials,” Science 354(6309), aag1992 (2016).
[Crossref] [PubMed]

Gaspare, A. D.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

Geng, B.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Gerardot, B. D.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Giessen, H.

P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Giliberti, V.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

Giorgianni, F.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

Girit, C.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Gonzalez, P. A.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Govorov, A. O.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Gu, J.

Gu, L. L.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Guinea, F.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Guo, X. G.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Han, J.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Hartsfield, T.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

He, X.

He, X. Y.

X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82(1), 229–237 (2015).
[Crossref]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Horng, J.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Hu, C.

Huang, C.

P. C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S. Y. Lan, “Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium,” Nat. Commun. 7, 13030 (2016).
[Crossref] [PubMed]

Huang, X.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Hueso, L. E.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jackson, J.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Jin, Z.

Jin, Z. M.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Jing, C.

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Karrai, K.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Khanikaev, A. B.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Kildishev, A. V.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kivshar, Y. S.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Klots, A.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Kondo, J. M.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Koppens, F. H. L.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Koschny, T.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

Kosen, S.

P. C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S. Y. Lan, “Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium,” Nat. Commun. 7, 13030 (2016).
[Crossref] [PubMed]

Kravchenko, I. I.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Kroner, M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Kuan, P. C.

P. C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S. Y. Lan, “Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium,” Nat. Commun. 7, 13030 (2016).
[Crossref] [PubMed]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

Lan, S. Y.

P. C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S. Y. Lan, “Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium,” Nat. Commun. 7, 13030 (2016).
[Crossref] [PubMed]

Le, K. Q.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Lederer, F.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Lee, J.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Li, H.

Li, Q.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Li, T.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Li, W.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Li, X.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Li, Y.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “Electromagnetically induced transparency based on cascaded pi-shaped graphene nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Limaj, O.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

Lin, X.

Liu, H. C.

Z. Y. Tan, T. Zhou, J. C. Cao, and H. C. Liu, “Terahertz imaging with quantum-cascade laser and quantum-well photodetector,” IEEE Photonics Technol. Lett. 25(14), 1344–1346 (2013).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, X.

Liu, X. K.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Liu, X. X.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Liu, Y. Z.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “Electromagnetically induced transparency based on cascaded pi-shaped graphene nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Long, L. L.

Louie, S. G.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Low, T.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Lu, F.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Lupi, S.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

Lv, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Ma, G.

Ma, G. H.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Manjappa, M.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

Mastel, S.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Miroshnichenko, A. E.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Monticone, F.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Moran, B.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Ordal, M. A.

Ortolani, M.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

Ouyang, C.

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Park, C. H.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Pesquera, A.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Petroff, P. M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Pfau, T.

P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Plum, E.

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Querry, M. R.

Remi, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Rockstuhl, C.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Rodriguez, N.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Roy, P.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

Segalman, R. A.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Seidl, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Shafiei, F.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Shao, D. X.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Shi, W.

Sibalic, N.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Singh, R.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Smirnova, D. A.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Smith, W.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Soukoulis, C. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

Spadaccini, C. M.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Srivastava, Y. K.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Su, X.

Tan, Z. Y.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Z. Y. Tan, T. Zhou, J. C. Cao, and H. C. Liu, “Terahertz imaging with quantum-cascade laser and quantum-well photodetector,” IEEE Photonics Technol. Lett. 25(14), 1344–1346 (2013).
[Crossref]

Tassin, P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Tian, Z.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Tonouchi, M.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Tymchenko, M.

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Valentine, J.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Velez, S.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

Wade, C. G.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Wan, W. J.

W. J. Wan, H. Li, and J. C. Cao, “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation,” Opt. Express 26(2), 980–989 (2018).
[Crossref] [PubMed]

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Wang, F.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, W.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Warburton, R. J.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Weatherill, K. J.

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Weisgraber, T.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Wright, A. R.

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103(20), 207401 (2009).
[Crossref] [PubMed]

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xi, X.

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

Xia, F.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

Xia, F. N.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xing, X.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Xu, J. H.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Xu, N.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Xu, Q.

Yan, H.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Yang, Y.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Ye, J.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Yu, Y.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Yu, Z.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Zeng, B.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zettl, A.

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Zhang, C.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103(20), 207401 (2009).
[Crossref] [PubMed]

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, H. Y.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “Electromagnetically induced transparency based on cascaded pi-shaped graphene nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Zhang, K.

Zhang, K. L.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Zhang, L.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

Zhang, R.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Zhang, S.

Zhang, W.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Zhang, W. L.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Zhang, X.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y.

Q. Xu, X. Su, C. Ouyang, N. Xu, W. Cao, Y. Zhang, Q. Li, C. Hu, J. Gu, Z. Tian, A. K. Azad, J. Han, and W. Zhang, “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials,” Opt. Lett. 41(19), 4562–4565 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Zhang, Y. P.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “Electromagnetically induced transparency based on cascaded pi-shaped graphene nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Zhang, Z.

Zhang, Z. Y.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Zhao, L. T.

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Zhao, W.

Zhao, Z. Y.

Zheludev, N. I.

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Zheng, X.

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

Zhou, T.

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Z. Y. Tan, T. Zhou, J. C. Cao, and H. C. Liu, “Terahertz imaging with quantum-cascade laser and quantum-well photodetector,” IEEE Photonics Technol. Lett. 25(14), 1344–1346 (2013).
[Crossref]

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Zurutuza, A.

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

ACS Photonics (1)

O. Limaj, F. Giorgianni, A. D. Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, and S. Lupi, “Superconductivity induced transparency in terahertz metamaterials,” ACS Photonics 1(7), 570–575 (2014).
[Crossref]

Adv. Mater. (2)

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency,” Appl. Phys. Lett. 97(24), 241904 (2010).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. L. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Carbon (1)

X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82(1), 229–237 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Y. Tan, T. Zhou, J. C. Cao, and H. C. Liu, “Terahertz imaging with quantum-cascade laser and quantum-well photodetector,” IEEE Photonics Technol. Lett. 25(14), 1344–1346 (2013).
[Crossref]

J. Phys. Chem. C (1)

X. Xing, L. T. Zhao, Z. Y. Zhang, X. K. Liu, K. L. Zhang, Y. Yu, X. Lin, H. Y. Chen, J. Q. Chen, Z. M. Jin, J. H. Xu, and G. H. Ma, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

J. Phys. Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Nano Lett. (2)

N. K. Emani, T. F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

Nanoscale (2)

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

P. C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S. Y. Lan, “Large Fizeau’s light-dragging effect in a moving electromagnetically induced transparent medium,” Nat. Commun. 7, 13030 (2016).
[Crossref] [PubMed]

Nat. Mater. (4)

P. Fan, Z. Yu, S. Fan, M. L. Brongersma, M. Fleischhauer, T. Pfau, and H. Giessen, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C. M. Spadaccini, “Multiscale metallic metamaterials,” Nat. Mater. 15(10), 1100–1106 (2016).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Nat. Photonics (5)

A. Y. Nikitin, P. A. Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, and F. H. L. Koppens, “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators,” Nat. Photonics 10(4), 239–243 (2016).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

C. G. Wade, N. Sibalic, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Nature (3)

J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (5)

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

Phys. Rev. Lett. (4)

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103(20), 207401 (2009).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Plasmonics (1)

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “Electromagnetically induced transparency based on cascaded pi-shaped graphene nanostructure,” Plasmonics 12(6), 1833–1839 (2017).
[Crossref]

Sci. Rep. (2)

Z. L. Fu, L. L. Gu, X. G. Guo, Z. Y. Tan, W. J. Wan, T. Zhou, D. X. Shao, R. Zhang, and J. C. Cao, “Frequency up-conversion photon-type terahertz imager,” Sci. Rep. 6(1), 25383 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Science (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

D. N. Basov, M. M. Fogler, and F. J. García de Abajo, “Polaritons in van der Waals materials,” Science 354(6309), aag1992 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The side view of the graphene MMs structure,the unit cell structure deposited on the SiO2/Si layers, the thickness of the dielectric layer is 30 nm, the doped Si layer is used to apply the gate voltage. The sol-gel layer deposits on graphene MMs to apply the bias voltage. The substrate is made from the polymer layer with the thickness of 2 μm. Figure 1(b) The top views of geometry and dimensions of graphene MMs unit cell structures. The periodic length along x and y directions are both 160 μm and 120 μm. The length and width of graphene ribbon are 108 μm and 30 μm, respectively.
Fig. 2
Fig. 2 (a) Shows the transmission curves of the CW, DSC and CWDSC graphene MMs structures. Figure 2(b) depicts the transmission resonant curves of CWDSC graphene structure at different Fermi levels. Figures 2(c)-2(d) show the graphene permittivity versus frequency at different Fermi levels. The length and width of graphene ribbons are 108 μm and 30 μm, respectively. The period lengths along x and y directions are both 160 μm. The radii of circular graphene ribbon are 32 μm and 16 μm, respectively. The gap distance between graphene ribbon and circular is 15 μm.
Fig. 3
Fig. 3 The transmission curves of CWDSC graphene ribbon at different Fermi levels. The solid and dashed curves are for the simulation and fitting results. The Fermi levels are 0.3 eV, 0.5 eV, 0.8 eV, and 1.0 eV, respectively. The gap distance between graphene ribbon and circular is 15 μm. The period lengths along x and y directions are both 160 μm. The radii of circular graphene ribbon are 32 μm and 16 μm, respectively. The length and width of graphene ribbons are 108 μm and 30 μm, respectively.
Fig. 4
Fig. 4 (a)-4(c) The transmission, reflection, and absorption of the graphene ribbon unit cell structure versus frequency at different distances. Figure 4(d) The Q-factor and FOM of transmission curve versus distance. The gap distances are 1, 2, 3, 5, 8, 10, 15, and 30 μm, respectively. The Fermi level of the graphene ribbon is 1.0 eV. The length and width of graphene ribbon are 108 μm and 30 μm, respectively. The period lengths along x and y directions are 160 μm and 120 μm. The radii of circular graphene ribbon are 32 μm and 16 μm, respectively.
Fig. 5
Fig. 5 (a)-(c) Show the transmission, reflection, and absorption curves of the graphene-metal hybrid ribbon unit cell structure at different Fermi levels. Figure 5(d) The Q-factor and FOM of the graphene ribbon versus Fermi levels. The length and width of graphene ribbon are 108 μm and 30 μm, respectively. The period lengths along x and y directions are both 160 μm. The radii of circular graphene ribbon are 32 μm and 16 μm, respectively. The gap distance between graphene ribbon and circular is 15 μm.
Fig. 6
Fig. 6 (a)-(c) Show the transmission, reflection, and absorption curves of the graphene CWDSC patter structures at different period number. The inset in Fig. 6(b) shows the sketch of stacked graphene-dielectrics super-lattice structure in the active region. Figure 6(d) The Q-factor and FOM of the graphene ribbon versus different number. The length and width of graphene ribbon are 108 μm and 30 μm, respectively. The period lengths along x and y directions are both 160 μm. The radii of circular graphene ribbons are 32 μm and 16 μm, respectively.
Fig. 7
Fig. 7 Shows the surface current density and magnetic fields of Hz for the graphene CWDSC structures. The according resonant frequencies are 0.7935, 0.9816, and 1.5022 THz. The polarization direction of incident light is along y direction. The Fermi level of graphene is 1.0 eV. The length and width of graphene ribbons are 108 μm and 30 μm, respectively. The period lengths along x and y directions are both 160 μm. The radii of circular graphene ribbon are 32 μm and 16 μm, respectively. The gap distance between graphene ribbon and circular is 15 μm.
Fig. 8
Fig. 8 The surface current density and magnetic fields of Hz for the graphene ring structures. The according resonant frequencies are 0.9152, 0.9569, and 0.9816 THz. The polarization direction of the incident light is along y direction. The Fermi levels of graphene are 0.3, 0.5, and 1.0 eV, respectively. The length and width of graphene ribbons are 108 μm and 30 μm, respectively. The period lengths along x and y directions are both 160 μm. The radii of circular graphene ribbon are 32 μm and 16 μm, respectively. The gap distance between graphene ribbon and circular is 15 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ g = j ω+j/τ e 2 2 k B T π 2 ln[ 2cosh μ c 2 k B T ] + e 2 4 2 [ G( ω 2 )+j 4ω π 0 G( ξ )G( ω/2 ) ( ω ) 2 4 ξ 2 dξ ]
G( ξ )= sinh( ξ/ k B T ) cosh( ξ/ k B T )+cosh( μ c / k B T )
ε g =1+j σ g ω ε 0 Δ
ε( ω )= ε ω p 2 ω( ω+i ω τ ) ,
T= T bg + T 0 ( χ+q ) 2 1+ χ 2
Q= f res FWHM

Metrics