Abstract

Improving the axial resolution for multiparticle three-dimensional (3D) holographic tracking is crucial but challenging. Here we study the impacts of incident light power, uniformity of the illumination as well as image pixel size on the axial tracking resolution for digital holographic microscopy (DHM). We demonstrate that the resolution highly depends on the image pixel size and the uniformity of the illumination. A 3D localization algorithm based on local-intensity-maxima searching and a Gaussian fit to the integrated intensity of the reconstructed lateral images along the axial direction proves a robust strategy to enhance the axial resolution for colloids and bacteria within a wide depth of field over several tens of micrometers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Line-scanning hyperspectral imaging based on structured illumination optical sectioning

Yu John Hsu, Chih-Chiang Chen, Chien-Hsiang Huang, Chia-Hua Yeh, Li-Ying Liu, and Szu-Yu Chen
Biomed. Opt. Express 8(6) 3005-3016 (2017)

Human iris three-dimensional imaging at micron resolution by a micro-plenoptic camera

Hao Chen, Maria A. Woodward, David T. Burke, V. Swetha E. Jeganathan, Hakan Demirci, and Volker Sick
Biomed. Opt. Express 8(10) 4514-4522 (2017)

Chromophore decomposition in multispectral time-resolved diffuse optical tomography

Judy Zouaoui, Laura Di Sieno, Lionel Hervé, Antonio Pifferi, Andrea Farina, Alberto Dalla Mora, Jacques Derouard, and Jean-Marc Dinten
Biomed. Opt. Express 8(10) 4772-4787 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. Prasad, D. Semwogerere, and E. R. Weeks, “Confocal microscopy of colloids,” J. Phys. Condens. Matter 19(11), 113102 (2007).
    [Crossref]
  2. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41(25), 5367–5375 (2002).
    [Crossref] [PubMed]
  3. Y. S. Choi and S. J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48(16), 2983–2990 (2009).
    [Crossref] [PubMed]
  4. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
    [Crossref] [PubMed]
  5. J. W. Goodman, Introduction to Fourier Optics (Mc Graw-Hill, 2005).
  6. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [Crossref] [PubMed]
  7. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
    [Crossref] [PubMed]
  8. K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, “High-throughput 3D tracking of bacteria on a standard phase contrast microscope,” Nat. Commun. 6(1), 8776 (2015).
    [Crossref] [PubMed]
  9. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14(13), 5895–5908 (2006).
    [Crossref] [PubMed]
  10. L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A, Pure Appl. Opt. 6(4), 396–400 (2004).
    [Crossref]
  11. S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15(26), 18275–18282 (2007).
    [Crossref] [PubMed]
  12. A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19(7), 6684–6698 (2011).
    [Crossref] [PubMed]
  13. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett. 33(14), 1626–1628 (2008).
    [Crossref] [PubMed]
  14. J. Sheng, E. Malkiel, and J. Katz, “Single beam two-views holographic particle image velocimetry,” Appl. Opt. 42(2), 235–250 (2003).
    [Crossref] [PubMed]
  15. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
    [Crossref] [PubMed]
  16. M. Qi, X. Gong, B. Wu, and G. Zhang, “Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties,” Langmuir 33(14), 3525–3533 (2017).
    [Crossref] [PubMed]
  17. M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, and X. Gong, “Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers,” Langmuir 33(45), 13098–13104 (2017).
    [Crossref] [PubMed]
  18. Y. S. Bae, J. I. Song, and D. Y. Kim, “Volumetric reconstruction of Brownian motion of a micrometer-size bead in water,” Opt. Commun. 309, 291–297 (2013).
    [Crossref]
  19. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
    [Crossref] [PubMed]
  20. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise Nanometer Localization Analysis for Individual Fluorescent Probes,” Biophys. J. 82(5), 2775–2783 (2002).
    [Crossref] [PubMed]
  21. Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11(3), 2575–2585 (2017).
    [Crossref] [PubMed]
  22. F. Soulez, L. Denis, C. Fournier, E. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24(4), 1164–1171 (2007).
    [Crossref] [PubMed]
  23. F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24(12), 3708–3716 (2007).
    [Crossref] [PubMed]
  24. A. Kusumi, Y. Sako, and M. Yamamoto, “Confined Lateral Diffusion of Membrane Receptors as Studied by Single Particle Tracking (Nanovid Microscopy). Effects of Calcium-Induced Differentiation in Cultured Epithelial Cells,” Biophys. J. 65(5), 2021–2040 (1993).
    [Crossref] [PubMed]
  25. Y. H. Lin, W. L. Chang, and C. L. Hsieh, “Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds,” Opt. Express 22(8), 9159–9170 (2014).
    [Crossref] [PubMed]

2017 (3)

M. Qi, X. Gong, B. Wu, and G. Zhang, “Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties,” Langmuir 33(14), 3525–3533 (2017).
[Crossref] [PubMed]

M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, and X. Gong, “Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers,” Langmuir 33(45), 13098–13104 (2017).
[Crossref] [PubMed]

Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11(3), 2575–2585 (2017).
[Crossref] [PubMed]

2015 (1)

K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, “High-throughput 3D tracking of bacteria on a standard phase contrast microscope,” Nat. Commun. 6(1), 8776 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

Y. S. Bae, J. I. Song, and D. Y. Kim, “Volumetric reconstruction of Brownian motion of a micrometer-size bead in water,” Opt. Commun. 309, 291–297 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

2007 (4)

2006 (2)

2004 (1)

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A, Pure Appl. Opt. 6(4), 396–400 (2004).
[Crossref]

2003 (3)

2002 (2)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise Nanometer Localization Analysis for Individual Fluorescent Probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41(25), 5367–5375 (2002).
[Crossref] [PubMed]

1994 (1)

1993 (1)

A. Kusumi, Y. Sako, and M. Yamamoto, “Confined Lateral Diffusion of Membrane Receptors as Studied by Single Particle Tracking (Nanovid Microscopy). Effects of Calcium-Induced Differentiation in Cultured Epithelial Cells,” Biophys. J. 65(5), 2021–2040 (1993).
[Crossref] [PubMed]

Antkowiak, M.

Bae, Y. S.

Y. S. Bae, J. I. Song, and D. Y. Kim, “Volumetric reconstruction of Brownian motion of a micrometer-size bead in water,” Opt. Commun. 309, 291–297 (2013).
[Crossref]

Callens, N.

Chang, W.

Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11(3), 2575–2585 (2017).
[Crossref] [PubMed]

Chang, W. L.

Cheong, F. C.

Choi, Y. S.

Chou, C. Y.

Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11(3), 2575–2585 (2017).
[Crossref] [PubMed]

Denis, L.

Dubois, F.

El Mallahi, A.

Forkey, J. N.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[Crossref] [PubMed]

Fournier, C.

Goepfert, C.

Goldman, Y. E.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[Crossref] [PubMed]

Gong, X.

M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, and X. Gong, “Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers,” Langmuir 33(45), 13098–13104 (2017).
[Crossref] [PubMed]

M. Qi, X. Gong, B. Wu, and G. Zhang, “Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties,” Langmuir 33(14), 3525–3533 (2017).
[Crossref] [PubMed]

Grier, D. G.

Gude, S.

K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, “High-throughput 3D tracking of bacteria on a standard phase contrast microscope,” Nat. Commun. 6(1), 8776 (2015).
[Crossref] [PubMed]

Ha, T.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[Crossref] [PubMed]

Hsieh, C. L.

Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11(3), 2575–2585 (2017).
[Crossref] [PubMed]

Y. H. Lin, W. L. Chang, and C. L. Hsieh, “Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds,” Opt. Express 22(8), 9159–9170 (2014).
[Crossref] [PubMed]

Huang, Y. F.

Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11(3), 2575–2585 (2017).
[Crossref] [PubMed]

Jericho, M. H.

Jin, H.

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A, Pure Appl. Opt. 6(4), 396–400 (2004).
[Crossref]

Jüptner, W.

Katz, J.

Kim, D. Y.

Y. S. Bae, J. I. Song, and D. Y. Kim, “Volumetric reconstruction of Brownian motion of a micrometer-size bead in water,” Opt. Commun. 309, 291–297 (2013).
[Crossref]

Kim, S. H.

Kreuzer, H. J.

Krishnatreya, B. J.

Kusumi, A.

A. Kusumi, Y. Sako, and M. Yamamoto, “Confined Lateral Diffusion of Membrane Receptors as Studied by Single Particle Tracking (Nanovid Microscopy). Effects of Calcium-Induced Differentiation in Cultured Epithelial Cells,” Biophys. J. 65(5), 2021–2040 (1993).
[Crossref] [PubMed]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise Nanometer Localization Analysis for Individual Fluorescent Probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Lee, S. H.

Lee, S. J.

Li, Y.

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A, Pure Appl. Opt. 6(4), 396–400 (2004).
[Crossref]

Lin, C. H.

Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11(3), 2575–2585 (2017).
[Crossref] [PubMed]

Lin, Y. H.

Ma, C.

M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, and X. Gong, “Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers,” Langmuir 33(45), 13098–13104 (2017).
[Crossref] [PubMed]

Ma, L.

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A, Pure Appl. Opt. 6(4), 396–400 (2004).
[Crossref]

Malkiel, E.

McKinney, S. A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[Crossref] [PubMed]

Meinertzhagen, I. A.

Prasad, V.

V. Prasad, D. Semwogerere, and E. R. Weeks, “Confocal microscopy of colloids,” J. Phys. Condens. Matter 19(11), 113102 (2007).
[Crossref]

Qi, M.

M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, and X. Gong, “Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers,” Langmuir 33(45), 13098–13104 (2017).
[Crossref] [PubMed]

M. Qi, X. Gong, B. Wu, and G. Zhang, “Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties,” Langmuir 33(14), 3525–3533 (2017).
[Crossref] [PubMed]

Roichman, Y.

Sako, Y.

A. Kusumi, Y. Sako, and M. Yamamoto, “Confined Lateral Diffusion of Membrane Receptors as Studied by Single Particle Tracking (Nanovid Microscopy). Effects of Calcium-Induced Differentiation in Cultured Epithelial Cells,” Biophys. J. 65(5), 2021–2040 (1993).
[Crossref] [PubMed]

Schnars, U.

Schockaert, C.

Selvin, P. R.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[Crossref] [PubMed]

Semwogerere, D.

V. Prasad, D. Semwogerere, and E. R. Weeks, “Confocal microscopy of colloids,” J. Phys. Condens. Matter 19(11), 113102 (2007).
[Crossref]

Sheng, J.

Shimizu, T. S.

K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, “High-throughput 3D tracking of bacteria on a standard phase contrast microscope,” Nat. Commun. 6(1), 8776 (2015).
[Crossref] [PubMed]

Song, J. I.

Y. S. Bae, J. I. Song, and D. Y. Kim, “Volumetric reconstruction of Brownian motion of a micrometer-size bead in water,” Opt. Commun. 309, 291–297 (2013).
[Crossref]

Song, Q.

M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, and X. Gong, “Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers,” Langmuir 33(45), 13098–13104 (2017).
[Crossref] [PubMed]

Soulez, F.

Tans, S. J.

K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, “High-throughput 3D tracking of bacteria on a standard phase contrast microscope,” Nat. Commun. 6(1), 8776 (2015).
[Crossref] [PubMed]

Taute, K. M.

K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, “High-throughput 3D tracking of bacteria on a standard phase contrast microscope,” Nat. Commun. 6(1), 8776 (2015).
[Crossref] [PubMed]

Thiébaut, E.

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise Nanometer Localization Analysis for Individual Fluorescent Probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

van Blaaderen, A.

van Oostrum, P.

Wang, H.

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A, Pure Appl. Opt. 6(4), 396–400 (2004).
[Crossref]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise Nanometer Localization Analysis for Individual Fluorescent Probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Weeks, E. R.

V. Prasad, D. Semwogerere, and E. R. Weeks, “Confocal microscopy of colloids,” J. Phys. Condens. Matter 19(11), 113102 (2007).
[Crossref]

Wu, B.

M. Qi, X. Gong, B. Wu, and G. Zhang, “Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties,” Langmuir 33(14), 3525–3533 (2017).
[Crossref] [PubMed]

Xu, W.

Yamamoto, M.

A. Kusumi, Y. Sako, and M. Yamamoto, “Confined Lateral Diffusion of Membrane Receptors as Studied by Single Particle Tracking (Nanovid Microscopy). Effects of Calcium-Induced Differentiation in Cultured Epithelial Cells,” Biophys. J. 65(5), 2021–2040 (1993).
[Crossref] [PubMed]

Yang, S. M.

Yi, G. R.

Yildiz, A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[Crossref] [PubMed]

Yourassowsky, C.

Zhang, G.

M. Qi, X. Gong, B. Wu, and G. Zhang, “Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties,” Langmuir 33(14), 3525–3533 (2017).
[Crossref] [PubMed]

M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, and X. Gong, “Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers,” Langmuir 33(45), 13098–13104 (2017).
[Crossref] [PubMed]

Zhao, J.

M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, and X. Gong, “Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers,” Langmuir 33(45), 13098–13104 (2017).
[Crossref] [PubMed]

Zhuo, G. Y.

Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11(3), 2575–2585 (2017).
[Crossref] [PubMed]

ACS Nano (1)

Y. F. Huang, G. Y. Zhuo, C. Y. Chou, C. H. Lin, W. Chang, and C. L. Hsieh, “Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells,” ACS Nano 11(3), 2575–2585 (2017).
[Crossref] [PubMed]

Appl. Opt. (5)

Biophys. J. (2)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise Nanometer Localization Analysis for Individual Fluorescent Probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

A. Kusumi, Y. Sako, and M. Yamamoto, “Confined Lateral Diffusion of Membrane Receptors as Studied by Single Particle Tracking (Nanovid Microscopy). Effects of Calcium-Induced Differentiation in Cultured Epithelial Cells,” Biophys. J. 65(5), 2021–2040 (1993).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A, Pure Appl. Opt. 6(4), 396–400 (2004).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. Condens. Matter (1)

V. Prasad, D. Semwogerere, and E. R. Weeks, “Confocal microscopy of colloids,” J. Phys. Condens. Matter 19(11), 113102 (2007).
[Crossref]

Langmuir (2)

M. Qi, X. Gong, B. Wu, and G. Zhang, “Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties,” Langmuir 33(14), 3525–3533 (2017).
[Crossref] [PubMed]

M. Qi, Q. Song, J. Zhao, C. Ma, G. Zhang, and X. Gong, “Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers,” Langmuir 33(45), 13098–13104 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

K. M. Taute, S. Gude, S. J. Tans, and T. S. Shimizu, “High-throughput 3D tracking of bacteria on a standard phase contrast microscope,” Nat. Commun. 6(1), 8776 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. S. Bae, J. I. Song, and D. Y. Kim, “Volumetric reconstruction of Brownian motion of a micrometer-size bead in water,” Opt. Commun. 309, 291–297 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Science (1)

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300(5628), 2061–2065 (2003).
[Crossref] [PubMed]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (Mc Graw-Hill, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Reconstructed images of 0.8 μm PLPs at various defocus distances (z) and their intensity profiles in x direction. A Gaussian function was adopted to fit the intensity profile in a selected region. (b) The integrated intensities (Iint) of the selected lateral regions (ROI) at z ranging from 10.25 to 16.75 μm (zi = 13.5 μm) are well fit by the Gaussian function, and the refined value zr is 12.9 μm.
Fig. 2
Fig. 2 The axial resolution of DHM for multiparticle tracking. Holograms of 0.8 μm PLPs were recorded by DHM equipped with a 40 × objective and the light source S1. (a) Mean reconstructed distance of a PLP from the focal plane (zi) as a function of the objective displacement (d). The error bars show the standard deviation of 100 particles. The dash line denotes zi = d. (b) The localization errors (zi - d, blue) ± standard deviation (cyan) plotted against d with a binned width of 1 μm. (c) The root mean square (rms) localization errors plotted against d. In the range of 0 < z ≤ 40 μm, the axial resolution is 476 nm for 0.8 μm PLPs. In practice, 8 < z < 28 μm is the observation range for experiments, where the axial resolution is 416 nm.
Fig. 3
Fig. 3 Incident intensity profiles of two light sources (S1 and S2) in (a) the lateral and (b) the axial direction. It is shown that the intensity is uniform in the axial direction, but nonuniform in the lateral plane. For S1: the mean intensity (IA) is 20707, the standard deviation of the intensity (σI) is 1459; For S2: IA = 52611, σI = 2444. (c) Root mean square (rms) localization error plotted against δd = d-d0, d0 denotes the smallest defocused distance to the focal plane in the range of interest. Holograms of 0.8 μm PLPs were recorded using S2 and a 40 × objective. The axial resolution is 328 nm.
Fig. 4
Fig. 4 (a) Reconstructed images of an E. coli cell and its intensity profile in the lateral plane at different z, where zi = 32.7 μm is the candidate axial location determined by searching the local intensity maximum of the reconstructed volume. (b) Intensity profiles in the lateral plane at zi = 32.7 μm (red line) was well fitted by a Gaussian function (blue line). (c) Iint of lateral ROI (10 × 10 pixel2) at various z agrees with the Gaussian function.
Fig. 5
Fig. 5 The reconstructed images of E. coli under 40 × objective in ROI with a dimension of 40 × 40, 20 × 20, 10 × 10 and 5 × 5 pixel2 and their integrated intensity profiles (Iint).
Fig. 6
Fig. 6 (a) Background-free holograms and reconstructed images of swimming E. coli at various orientations and (b-d) their integrated intensity profiles (Iint). Iint were well modeled by a Gaussian function.
Fig. 7
Fig. 7 The axial resolution of DHM for holographic tracking of 0.8 μm PLPs (Δz) and that refined by Gaussian fitting (Δz’) in dependence of (a) incident light power, (b) illumination uniformity and (c) objective magnification. The error bars show the standard deviations of ~20 positions. (d) The optimized axial resolution of DHM for different samples. The error bars show the standard deviation of 80-100 locations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Es( r,z )=Es( r,0 )h( r,-z )
h( r,-z )= 1 2π z e ikR R
Is( r )= | Es( r,z ) | 2

Metrics