Abstract

We describe a method of line narrowing and frequency-locking a diode laser stack to an alkali atomic line for use as a pump module for Diode Pumped Alkali Lasers. The pump module consists of a 600 W antireflection coated diode laser stack configured to lase using an external cavity. The line narrowing and frequency locking is accomplished by introducing a narrowband polarization filter based on magneto-optical Faraday effect into the external cavity, which selectively transmits only the frequencies that are in resonance with the 62S1/2 → 62P3/2 transition of Cs atoms. The resulting pump module has demonstrated that a diode laser stack, which lases with a line width of 3 THz without narrowbanding, can be narrowed to 10 GHz. The line narrowed pump module produced 518 Watts that is 80% of the power generated by the original broadband diode laser stack.

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of supersonic diode pumped alkali lasers

Eyal Yacoby, Karol Waichman, Oren Sadot, Boris D. Barmashenko, and Salman Rosenwaks
J. Opt. Soc. Am. B 32(9) 1824-1833 (2015)

Multimode-diode-pumped gas (alkali-vapor) laser

Ralph H. Page, Raymond J. Beach, V. Keith Kanz, and William F. Krupke
Opt. Lett. 31(3) 353-355 (2006)

References

  • View by:
  • |
  • |
  • |

  1. B. V. Zhdanov and R. J. Knize, “A Review of Alkali Lasers Research and Development,” Opt. Eng. 52(2), 021010 (2013).
  2. N. Zameroski, W. Rudolph, G. Hager, and D. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. At. Mol. Opt. Phys. 42(24), 245401 (2009).
    [Crossref]
  3. T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode Pumped Cesium Laser,” Electron. Lett. 41(7), 47–48 (2005).
    [Crossref]
  4. J. Zweiback and W. F. Krupke, “28W average power hydrocarbon-free rubidium diode pumped alkali laser,” Opt. Express 18(2), 1444–1449 (2010).
    [Crossref] [PubMed]
  5. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Demonstration of a diode pumped continuous wave potassium laser,” Proc. SPIE 7915, 791506 (2011).
  6. G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
  7. B. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  8. Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
    [Crossref]
  9. X. Zhang, J. Feng, B. Xiong, K. Zou, and X. Yuan, “Diffraction of Volume Bragg Gratings under high flux laser irradiation,” Opt. Express 22(7), 8291–8297 (2014).
    [Crossref] [PubMed]
  10. D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).
  11. D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High Power Spectral Beam Combining of Fiber Lasers with Ultra High Spectral Density by Thermal Tuning of Volume Bragg Gratings,” Proc. SPIE 7914, 79141F (2011).
    [Crossref]
  12. D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers,” Appl. Opt. 53(6), 1242–1246 (2014).
    [Crossref] [PubMed]
  13. B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
    [Crossref] [PubMed]
  14. W. Davide Lee and J. Campbell, “Optically stabilized AlxGa1-xAs/GaAs laser using magnetically induced birefringence in Rb Vapor,” Appl. Phys. Lett. 58(10), 995–997 (1991).
    [Crossref]
  15. K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun. 96(4-6), 240–244 (1993).
    [Crossref]
  16. P. Wanninger, E. Valdez, and T. Shay, “Diode-Laser Frequency Stabilization Based on the Resonant Faraday Effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
    [Crossref]
  17. Z. Tao, X. Zhang, D. Pan, M. Chen, C. Zhu, and J. Chen, “Faraday laser using 1.2 km fiber as an extended cavity,” J. Phys. B 49(13), 13LT01 (2016).
    [Crossref]
  18. M. Tetu and M. Breton, “Toward the Realization of a Wavelength Standard at 780 nm Based on a Laser Diode Frequency Locked to Rubidium Vapor,” IEEE Transactions on Inst. Meas. 40(2), 191–195 (1991).
  19. Z. Tao, Y. Hong, B. Luo, J. Chen, and H. Guo, “Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm,” Opt. Lett. 40(18), 4348–4351 (2015).
    [Crossref] [PubMed]
  20. J. Keaveney, W. J. Hamlyn, C. S. Adams, and I. G. Hughes, “A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz,” Rev. Sci. Instrum. 87(9), 095111 (2016).
    [Crossref] [PubMed]
  21. T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D2 Absorption Line,” Jpn. J. App. Phys. 43(5), 2504 (2004).
  22. N. Kostinski, B. Olsen, R. Marsland, B. McGuyer, and W. Happer, “Temperature-insensitive laser frequency locking near absorption lines,” Rev. of Sci. Inst. 82, 033144 (2011).
  23. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
  24. X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
    [Crossref] [PubMed]
  25. P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
    [Crossref] [PubMed]
  26. D. A. Steck, “Cesium D Line Data,” Oregon Center for Optics and Department of Physics, University of Oregon, (2009).
  27. G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D2 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He with comparison to the D1 transition,” Phys. Rev. A 82(4), 042502 (2010).
    [Crossref]
  28. M. D. Rotondaro, B. V. Zhdanov, and R. J. Knize, “Generalized treatment of magneto-optical transmission filters,” J. Opt. Soc. Am. 32(12), 2507–2513 (2015).
  29. T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69(2), 629–642 (1997).
    [Crossref]
  30. E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
    [Crossref] [PubMed]

2017 (1)

P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
[Crossref] [PubMed]

2016 (3)

J. Keaveney, W. J. Hamlyn, C. S. Adams, and I. G. Hughes, “A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz,” Rev. Sci. Instrum. 87(9), 095111 (2016).
[Crossref] [PubMed]

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Z. Tao, X. Zhang, D. Pan, M. Chen, C. Zhu, and J. Chen, “Faraday laser using 1.2 km fiber as an extended cavity,” J. Phys. B 49(13), 13LT01 (2016).
[Crossref]

2015 (3)

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

M. D. Rotondaro, B. V. Zhdanov, and R. J. Knize, “Generalized treatment of magneto-optical transmission filters,” J. Opt. Soc. Am. 32(12), 2507–2513 (2015).

Z. Tao, Y. Hong, B. Luo, J. Chen, and H. Guo, “Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm,” Opt. Lett. 40(18), 4348–4351 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

2011 (5)

N. Kostinski, B. Olsen, R. Marsland, B. McGuyer, and W. Happer, “Temperature-insensitive laser frequency locking near absorption lines,” Rev. of Sci. Inst. 82, 033144 (2011).

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Demonstration of a diode pumped continuous wave potassium laser,” Proc. SPIE 7915, 791506 (2011).

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High Power Spectral Beam Combining of Fiber Lasers with Ultra High Spectral Density by Thermal Tuning of Volume Bragg Gratings,” Proc. SPIE 7914, 79141F (2011).
[Crossref]

2010 (3)

J. Zweiback and W. F. Krupke, “28W average power hydrocarbon-free rubidium diode pumped alkali laser,” Opt. Express 18(2), 1444–1449 (2010).
[Crossref] [PubMed]

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D2 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He with comparison to the D1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

2009 (1)

N. Zameroski, W. Rudolph, G. Hager, and D. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. At. Mol. Opt. Phys. 42(24), 245401 (2009).
[Crossref]

2005 (1)

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode Pumped Cesium Laser,” Electron. Lett. 41(7), 47–48 (2005).
[Crossref]

2004 (1)

T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D2 Absorption Line,” Jpn. J. App. Phys. 43(5), 2504 (2004).

2003 (1)

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref] [PubMed]

1997 (1)

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69(2), 629–642 (1997).
[Crossref]

1993 (1)

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun. 96(4-6), 240–244 (1993).
[Crossref]

1992 (1)

P. Wanninger, E. Valdez, and T. Shay, “Diode-Laser Frequency Stabilization Based on the Resonant Faraday Effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

1991 (2)

M. Tetu and M. Breton, “Toward the Realization of a Wavelength Standard at 780 nm Based on a Laser Diode Frequency Locked to Rubidium Vapor,” IEEE Transactions on Inst. Meas. 40(2), 191–195 (1991).

W. Davide Lee and J. Campbell, “Optically stabilized AlxGa1-xAs/GaAs laser using magnetically induced birefringence in Rb Vapor,” Appl. Phys. Lett. 58(10), 995–997 (1991).
[Crossref]

Adams, C. S.

J. Keaveney, W. J. Hamlyn, C. S. Adams, and I. G. Hughes, “A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz,” Rev. Sci. Instrum. 87(9), 095111 (2016).
[Crossref] [PubMed]

Anderson, L. W.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref] [PubMed]

Andrusyak, O.

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers,” Appl. Opt. 53(6), 1242–1246 (2014).
[Crossref] [PubMed]

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

Babcock, E.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref] [PubMed]

Barmashenko, B.

Breton, M.

M. Tetu and M. Breton, “Toward the Realization of a Wavelength Standard at 780 nm Based on a Laser Diode Frequency Locked to Rubidium Vapor,” IEEE Transactions on Inst. Meas. 40(2), 191–195 (1991).

Campbell, J.

W. Davide Lee and J. Campbell, “Optically stabilized AlxGa1-xAs/GaAs laser using magnetically induced birefringence in Rb Vapor,” Appl. Phys. Lett. 58(10), 995–997 (1991).
[Crossref]

Chang, P.

P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
[Crossref] [PubMed]

Chen, J.

P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
[Crossref] [PubMed]

Z. Tao, X. Zhang, D. Pan, M. Chen, C. Zhu, and J. Chen, “Faraday laser using 1.2 km fiber as an extended cavity,” J. Phys. B 49(13), 13LT01 (2016).
[Crossref]

Z. Tao, Y. Hong, B. Luo, J. Chen, and H. Guo, “Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm,” Opt. Lett. 40(18), 4348–4351 (2015).
[Crossref] [PubMed]

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
[Crossref]

Chen, M.

Z. Tao, X. Zhang, D. Pan, M. Chen, C. Zhu, and J. Chen, “Faraday laser using 1.2 km fiber as an extended cavity,” J. Phys. B 49(13), 13LT01 (2016).
[Crossref]

Chen, Z.

P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
[Crossref] [PubMed]

Choi, K.

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun. 96(4-6), 240–244 (1993).
[Crossref]

Cohanoschi, I.

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

Dang, A.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

Davide Lee, W.

W. Davide Lee and J. Campbell, “Optically stabilized AlxGa1-xAs/GaAs laser using magnetically induced birefringence in Rb Vapor,” Appl. Phys. Lett. 58(10), 995–997 (1991).
[Crossref]

Divliansky, I.

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High Power Spectral Beam Combining of Fiber Lasers with Ultra High Spectral Density by Thermal Tuning of Volume Bragg Gratings,” Proc. SPIE 7914, 79141F (2011).
[Crossref]

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

Drachenberg, D.

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High Power Spectral Beam Combining of Fiber Lasers with Ultra High Spectral Density by Thermal Tuning of Volume Bragg Gratings,” Proc. SPIE 7914, 79141F (2011).
[Crossref]

Drachenberg, D. R.

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers,” Appl. Opt. 53(6), 1242–1246 (2014).
[Crossref] [PubMed]

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

Driehuys, B.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref] [PubMed]

Ehrenreich, T.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode Pumped Cesium Laser,” Electron. Lett. 41(7), 47–48 (2005).
[Crossref]

Feng, J.

Fox, C. D.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D2 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He with comparison to the D1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

Glebov, L.

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High Power Spectral Beam Combining of Fiber Lasers with Ultra High Spectral Density by Thermal Tuning of Volume Bragg Gratings,” Proc. SPIE 7914, 79141F (2011).
[Crossref]

Glebov, L. B.

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers,” Appl. Opt. 53(6), 1242–1246 (2014).
[Crossref] [PubMed]

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

Guild, E. M.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Guo, H.

P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
[Crossref] [PubMed]

Z. Tao, Y. Hong, B. Luo, J. Chen, and H. Guo, “Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm,” Opt. Lett. 40(18), 4348–4351 (2015).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

Hager, G.

N. Zameroski, W. Rudolph, G. Hager, and D. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. At. Mol. Opt. Phys. 42(24), 245401 (2009).
[Crossref]

Hamlyn, W. J.

J. Keaveney, W. J. Hamlyn, C. S. Adams, and I. G. Hughes, “A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz,” Rev. Sci. Instrum. 87(9), 095111 (2016).
[Crossref] [PubMed]

Happer, W.

N. Kostinski, B. Olsen, R. Marsland, B. McGuyer, and W. Happer, “Temperature-insensitive laser frequency locking near absorption lines,” Rev. of Sci. Inst. 82, 033144 (2011).

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69(2), 629–642 (1997).
[Crossref]

Hersman, F. W.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref] [PubMed]

Hong, Y.

Hostutler, D.

N. Zameroski, W. Rudolph, G. Hager, and D. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. At. Mol. Opt. Phys. 42(24), 245401 (2009).
[Crossref]

Hostutler, D. A.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Hua, W.

Hughes, I. G.

J. Keaveney, W. J. Hamlyn, C. S. Adams, and I. G. Hughes, “A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz,” Rev. Sci. Instrum. 87(9), 095111 (2016).
[Crossref] [PubMed]

Ito, S.

T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D2 Absorption Line,” Jpn. J. App. Phys. 43(5), 2504 (2004).

Kadlecek, S.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref] [PubMed]

Keaveney, J.

J. Keaveney, W. J. Hamlyn, C. S. Adams, and I. G. Hughes, “A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz,” Rev. Sci. Instrum. 87(9), 095111 (2016).
[Crossref] [PubMed]

Knize, R. J.

M. D. Rotondaro, B. V. Zhdanov, and R. J. Knize, “Generalized treatment of magneto-optical transmission filters,” J. Opt. Soc. Am. 32(12), 2507–2513 (2015).

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “A Review of Alkali Lasers Research and Development,” Opt. Eng. 52(2), 021010 (2013).

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Demonstration of a diode pumped continuous wave potassium laser,” Proc. SPIE 7915, 791506 (2011).

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode Pumped Cesium Laser,” Electron. Lett. 41(7), 47–48 (2005).
[Crossref]

Korevaar, E.

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun. 96(4-6), 240–244 (1993).
[Crossref]

Kostinski, N.

N. Kostinski, B. Olsen, R. Marsland, B. McGuyer, and W. Happer, “Temperature-insensitive laser frequency locking near absorption lines,” Rev. of Sci. Inst. 82, 033144 (2011).

Krupke, W. F.

Li, Y.

Lu, Q.

Luo, B.

P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
[Crossref] [PubMed]

Z. Tao, Y. Hong, B. Luo, J. Chen, and H. Guo, “Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm,” Opt. Lett. 40(18), 4348–4351 (2015).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

Marsland, R.

N. Kostinski, B. Olsen, R. Marsland, B. McGuyer, and W. Happer, “Temperature-insensitive laser frequency locking near absorption lines,” Rev. of Sci. Inst. 82, 033144 (2011).

Maruyama, T.

T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D2 Absorption Line,” Jpn. J. App. Phys. 43(5), 2504 (2004).

McGuyer, B.

N. Kostinski, B. Olsen, R. Marsland, B. McGuyer, and W. Happer, “Temperature-insensitive laser frequency locking near absorption lines,” Rev. of Sci. Inst. 82, 033144 (2011).

Menders, J.

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun. 96(4-6), 240–244 (1993).
[Crossref]

Miao, X.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

Mokhun, O.

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

Moran, P. J.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Nelson, I.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref] [PubMed]

Nimonji, T.

T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D2 Absorption Line,” Jpn. J. App. Phys. 43(5), 2504 (2004).

Ohkawa, M.

T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D2 Absorption Line,” Jpn. J. App. Phys. 43(5), 2504 (2004).

Olike, B. Q.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Olsen, B.

N. Kostinski, B. Olsen, R. Marsland, B. McGuyer, and W. Happer, “Temperature-insensitive laser frequency locking near absorption lines,” Rev. of Sci. Inst. 82, 033144 (2011).

Pan, D.

Z. Tao, X. Zhang, D. Pan, M. Chen, C. Zhu, and J. Chen, “Faraday laser using 1.2 km fiber as an extended cavity,” J. Phys. B 49(13), 13LT01 (2016).
[Crossref]

Peng, H.

P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
[Crossref] [PubMed]

Perram, G. P.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D2 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He with comparison to the D1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

Phipps, S. P.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode Pumped Cesium Laser,” Electron. Lett. 41(7), 47–48 (2005).
[Crossref]

Pitz, G. A.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D2 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He with comparison to the D1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

Podvyaznyy, A.

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

Rosenwaks, S.

Rotondaro, M. D.

M. D. Rotondaro, B. V. Zhdanov, and R. J. Knize, “Generalized treatment of magneto-optical transmission filters,” J. Opt. Soc. Am. 32(12), 2507–2513 (2015).

Rudolph, W.

N. Zameroski, W. Rudolph, G. Hager, and D. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. At. Mol. Opt. Phys. 42(24), 245401 (2009).
[Crossref]

Sato, T.

T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D2 Absorption Line,” Jpn. J. App. Phys. 43(5), 2504 (2004).

Sawamura, A.

T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D2 Absorption Line,” Jpn. J. App. Phys. 43(5), 2504 (2004).

Searcy, P.

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun. 96(4-6), 240–244 (1993).
[Crossref]

Shaffer, M. K.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Demonstration of a diode pumped continuous wave potassium laser,” Proc. SPIE 7915, 791506 (2011).

Shay, T.

P. Wanninger, E. Valdez, and T. Shay, “Diode-Laser Frequency Stabilization Based on the Resonant Faraday Effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

Smirnov, V.

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers,” Appl. Opt. 53(6), 1242–1246 (2014).
[Crossref] [PubMed]

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High Power Spectral Beam Combining of Fiber Lasers with Ultra High Spectral Density by Thermal Tuning of Volume Bragg Gratings,” Proc. SPIE 7914, 79141F (2011).
[Crossref]

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

Stalnake, D. M.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Takekoshi, T.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode Pumped Cesium Laser,” Electron. Lett. 41(7), 47–48 (2005).
[Crossref]

Tao, Z.

Tetu, M.

M. Tetu and M. Breton, “Toward the Realization of a Wavelength Standard at 780 nm Based on a Laser Diode Frequency Locked to Rubidium Vapor,” IEEE Transactions on Inst. Meas. 40(2), 191–195 (1991).

Townsend, S. W.

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

Valdez, E.

P. Wanninger, E. Valdez, and T. Shay, “Diode-Laser Frequency Stabilization Based on the Resonant Faraday Effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

Venus, G.

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers,” Appl. Opt. 53(6), 1242–1246 (2014).
[Crossref] [PubMed]

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High Power Spectral Beam Combining of Fiber Lasers with Ultra High Spectral Density by Thermal Tuning of Volume Bragg Gratings,” Proc. SPIE 7914, 79141F (2011).
[Crossref]

Venus, G. B.

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

Walker, T. G.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref] [PubMed]

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69(2), 629–642 (1997).
[Crossref]

Wang, H.

Wanninger, P.

P. Wanninger, E. Valdez, and T. Shay, “Diode-Laser Frequency Stabilization Based on the Resonant Faraday Effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

Xiong, B.

Xu, X.

Yang, Z.

Yin, L.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

Yuan, X.

Zameroski, N.

N. Zameroski, W. Rudolph, G. Hager, and D. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. At. Mol. Opt. Phys. 42(24), 245401 (2009).
[Crossref]

Zhang, S.

P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
[Crossref] [PubMed]

Zhang, X.

Zhdanov, B.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode Pumped Cesium Laser,” Electron. Lett. 41(7), 47–48 (2005).
[Crossref]

Zhdanov, B. V.

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

M. D. Rotondaro, B. V. Zhdanov, and R. J. Knize, “Generalized treatment of magneto-optical transmission filters,” J. Opt. Soc. Am. 32(12), 2507–2513 (2015).

B. V. Zhdanov and R. J. Knize, “A Review of Alkali Lasers Research and Development,” Opt. Eng. 52(2), 021010 (2013).

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Demonstration of a diode pumped continuous wave potassium laser,” Proc. SPIE 7915, 791506 (2011).

Zhu, C.

Zhuang, W.

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

Zou, K.

Zweiback, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Davide Lee and J. Campbell, “Optically stabilized AlxGa1-xAs/GaAs laser using magnetically induced birefringence in Rb Vapor,” Appl. Phys. Lett. 58(10), 995–997 (1991).
[Crossref]

Electron. Lett. (1)

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode Pumped Cesium Laser,” Electron. Lett. 41(7), 47–48 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Wanninger, E. Valdez, and T. Shay, “Diode-Laser Frequency Stabilization Based on the Resonant Faraday Effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

IEEE Transactions on Inst. Meas. (1)

M. Tetu and M. Breton, “Toward the Realization of a Wavelength Standard at 780 nm Based on a Laser Diode Frequency Locked to Rubidium Vapor,” IEEE Transactions on Inst. Meas. 40(2), 191–195 (1991).

J. Opt. Soc. Am. (1)

M. D. Rotondaro, B. V. Zhdanov, and R. J. Knize, “Generalized treatment of magneto-optical transmission filters,” J. Opt. Soc. Am. 32(12), 2507–2513 (2015).

J. Opt. Soc. Am. B (2)

J. Phys. At. Mol. Opt. Phys. (1)

N. Zameroski, W. Rudolph, G. Hager, and D. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. At. Mol. Opt. Phys. 42(24), 245401 (2009).
[Crossref]

J. Phys. B (1)

Z. Tao, X. Zhang, D. Pan, M. Chen, C. Zhu, and J. Chen, “Faraday laser using 1.2 km fiber as an extended cavity,” J. Phys. B 49(13), 13LT01 (2016).
[Crossref]

Jpn. J. App. Phys. (1)

T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D2 Absorption Line,” Jpn. J. App. Phys. 43(5), 2504 (2004).

Opt. Commun. (1)

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun. 96(4-6), 240–244 (1993).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “A Review of Alkali Lasers Research and Development,” Opt. Eng. 52(2), 021010 (2013).

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D2 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He with comparison to the D1 transition,” Phys. Rev. A 82(4), 042502 (2010).
[Crossref]

Phys. Rev. Lett. (1)

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref] [PubMed]

Proc. SPIE (4)

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Demonstration of a diode pumped continuous wave potassium laser,” Proc. SPIE 7915, 791506 (2011).

G. A. Pitz, D. M. Stalnake, E. M. Guild, B. Q. Olike, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).

D. R. Drachenberg, O. Andrusyak, I. Cohanoschi, I. Divliansky, O. Mokhun, A. Podvyaznyy, V. Smirnov, G. B. Venus, and L. B. Glebov, “Thermal tuning of volume Bragg gratings for high power spectral beam combining,” Proc. SPIE 7580, 75801U (2010).

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High Power Spectral Beam Combining of Fiber Lasers with Ultra High Spectral Density by Thermal Tuning of Volume Bragg Gratings,” Proc. SPIE 7914, 79141F (2011).
[Crossref]

Rev. Mod. Phys. (1)

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69(2), 629–642 (1997).
[Crossref]

Rev. of Sci. Inst. (1)

N. Kostinski, B. Olsen, R. Marsland, B. McGuyer, and W. Happer, “Temperature-insensitive laser frequency locking near absorption lines,” Rev. of Sci. Inst. 82, 033144 (2011).

Rev. Sci. Instrum. (3)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

J. Keaveney, W. J. Hamlyn, C. S. Adams, and I. G. Hughes, “A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz,” Rev. Sci. Instrum. 87(9), 095111 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, G. Venus, V. Smirnov, L. Glebov, and R. J. Knize, “Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode,” Rev. Sci. Instrum. 86(8), 083104 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

P. Chang, H. Peng, S. Zhang, Z. Chen, B. Luo, J. Chen, and H. Guo, “A Faraday laser lasing on Rb 1529 nm transition,” Sci. Rep. 7(1), 8995 (2017).
[Crossref] [PubMed]

Other (1)

D. A. Steck, “Cesium D Line Data,” Oregon Center for Optics and Department of Physics, University of Oregon, (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Diagram of the narrow-banded DPAL pump module.
Fig. 2
Fig. 2 Spectrum of the diode laser stack emission with and without the Faraday Filter.
Fig. 3
Fig. 3 High resolution spectrum, recorded with a Fabry-Perot interferometer, of the line narrowed diode laser stack reveals a bimodal distribution. Also shown is the calculated D2 pressure broadened line shape with 200 Torr of methane and 400 Torr of helium. The x-axis is centered on the 62S1/2 → 62P3/2 fine structure transition.
Fig. 4
Fig. 4 Low intensity Faraday filter transmission spectrum along with the transmission of the cesium vapor cell without the polarizers. These were calculated using the methodology reported in [28]. The x-axis is centered on the 62S1/2 → 62P3/2 fine structure transition.
Fig. 5
Fig. 5 The triangles indicated the power output of the diode stack in an external cavity without the Faraday filter and the circles show the Narrow-banded pump module output power versus input current. Also included are the linear least squares fit to the data.

Metrics