Abstract

We demonstrate an optical trapping technique that integrates the light guiding of an optical fiber with the field localization of a nanoaperture in a gold film. A key innovation of our technique is to use template-stripping for easy planar fabrication without the need for nanofabrication on the tip itself. As a proof of principle, we demonstrate the trapping of 20 nm and 30 nm polystyrene nanoparticles in solution, as observed by a jump in the transmitted laser intensity through the aperture. We use the finite difference time domain technique to simulate this intensity jump with the addition of a nanoparticle in the aperture, showing reasonable agreement with the experimental data. This simple nano-aperture optical fiber tip eliminates the need for a microscope setup while allowing for trapping nanoparticles, so it is anticipated to have applications in biology (e.g. viruses), biophysics (e.g. protein interactions), physics (e.g. quantum emitters), and chemistry (e.g. colloidal particles).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers

Amr A. E. Saleh, Sassan Sheikhoelislami, Steven Gastelum, and Jennifer A. Dionne
Opt. Express 24(18) 20593-20603 (2016)

An optical tweezer actuated, nanoaperture-grid based Optofluidic Microscope implementation method

Xin Heng, Edward Hsiao, Demetri Psaltis, and Changhuei Yang
Opt. Express 15(25) 16367-16375 (2007)

Single and dual fiber nano-tip optical tweezers: trapping and analysis

Jean-Baptiste Decombe, Serge Huant, and Jochen Fick
Opt. Express 21(25) 30521-30531 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288 (1986).
    [Crossref] [PubMed]
  2. K. Taguchi, M. Tanaka, and M. Ikeda, “Optical Fiber Trapping in Space,” Opt. Rev. 8(3), 156–158 (2001).
    [Crossref]
  3. J.-B. Decombe, S. Huant, and J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 30521–30531 (2013).
    [Crossref] [PubMed]
  4. J. B. Decombe, S. K. Mondal, D. Kumbhakar, S. S. Pal, and J. Fick, “Single and multiple microparticle trapping using non-gaussian beams from optical fiber nanoantennas,” IEEE J. Sel. Top. Quantum Electron. 21(4), 247–252 (2015).
    [Crossref]
  5. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
    [Crossref] [PubMed]
  6. P. Savaliya and A. Dhawan, “Tapered fiber nanoprobes: plasmonic nanopillars on tapered optical fiber tips for large EM enhancement,” Opt. Lett. 41(19), 4582–4585 (2016).
    [Crossref] [PubMed]
  7. C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
    [Crossref] [PubMed]
  8. C. Ti, G. M. Thomas, Y. Ren, R. Zhang, Q. Wen, and Y. Liu, “Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment,” Biomed. Opt. Express 6(7), 2325–2336 (2015).
    [Crossref] [PubMed]
  9. R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
    [Crossref]
  10. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  11. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  12. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
    [Crossref] [PubMed]
  13. T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
    [Crossref] [PubMed]
  14. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
    [Crossref] [PubMed]
  15. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
    [Crossref] [PubMed]
  16. A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
    [Crossref] [PubMed]
  17. A. Zehtabi-Oskuie, A. A. Zinck, R. M. Gelfand, and R. Gordon, “Template stripped double nanohole in a gold film for nano-optical tweezers,” Nanotechnology 25(49), 495301 (2014).
    [Crossref] [PubMed]
  18. R. Regmi, A. A. Al Balushi, H. Rigneault, R. Gordon, and J. Wenger, “Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture,” Sci. Rep. 5(1), 15852 (2015).
    [Crossref] [PubMed]
  19. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
    [Crossref] [PubMed]
  20. A. A. Al Balushi, A. Kotnala, S. Wheaton, R. M. Gelfand, Y. Rajashekara, and R. Gordon, “Label-free free-solution nanoaperture optical tweezers for single molecule protein studies,” Analyst (Lond.) 140(14), 4760–4778 (2015).
    [Crossref] [PubMed]
  21. A. A. Al Balushi and R. Gordon, “Label-Free Free-Solution Single-Molecule Protein-Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping,” ACS Photonics 1(5), 389–393 (2014).
    [Crossref]
  22. A. El Eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre, D. Nedeljkovic, E. Atie, S. Bole, and T. Grosjean, “Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip,” Opt. Express 22(8), 10072–10080 (2014).
    [Crossref] [PubMed]
  23. A. Singh, J. T. Hugall, G. Calbris, and N. F. Van Hulst, “Fiber-based optical nanoantennas for single-molecule imaging and sensing,” J. Lightwave Technol. 33(12), 2371–2377 (2015).
    [Crossref]
  24. J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
    [Crossref] [PubMed]
  25. E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).
  26. N. M. Hameed, A. El Eter, T. Grosjean, and F. I. Baida, “Stand-Alone Three-Dimensional Optical Tweezers Based on Fibred Bowtie Nanoaperture,” IEEE Photonics J. 6(4), 1–10 (2014).
    [Crossref]
  27. G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
    [Crossref] [PubMed]
  28. J.-C. Tinguely, M. Ding, G. Brambilla, A. Hohenau, J. R. Krenn, and O. G. Hellesø, “Nanostructured fibre tip for trapping of nanoparticles,” Proc. SPIE 8999, 89991D (2014).
    [Crossref]
  29. A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
    [Crossref]
  30. M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J. Y. Rauch, R. Salut, and T. Grosjean, “Bowtie nano-aperture as interface between near-fields and a single-mode fiber,” Opt. Express 18(15), 15964–15974 (2010).
    [Crossref] [PubMed]
  31. Y. Liu, F. Stief, and M. Yu, “Subwavelength optical trapping with a fiber-based surface plasmonic lens,” Opt. Lett. 38(5), 721–723 (2013).
    [Crossref] [PubMed]
  32. J. Chen, Z. Kang, S. K. Kong, and H.-P. Ho, “Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles,” Opt. Lett. 40(17), 3926–3929 (2015).
    [Crossref] [PubMed]
  33. N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. H. Oh, “Tip-based plasmonics: Squeezing light with metallic nanoprobes,” Laser Photonics Rev. 7(4), 453–477 (2013).
    [Crossref]
  34. S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
    [Crossref] [PubMed]
  35. D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S. H. Oh, “Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates,” ACS Nano 9(11), 10647–10654 (2015).
    [Crossref] [PubMed]
  36. T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
    [Crossref] [PubMed]
  37. A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2(1), 966 (2012).
    [Crossref] [PubMed]
  38. M. N. Polyanskiy, “Refractive index database,” https://refractiveindex.info .
  39. S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
    [Crossref]
  40. A. D. Yaghjian, “An Overview of Near-Field Antenna Measurements,” IEEE Trans. Antenn. Propag. 34(1), 30–45 (1986).
    [Crossref]
  41. T. K. Sarkar and A. Taaghol, “Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antenn. Propag. 47(3), 566–573 (1999).
    [Crossref]
  42. F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “Far-Field Pattern Reconstruction from a Nonredundant Plane-Polar Near-Field Sampling Arrangement: Experimental Testing,” IEEE Antennas Wirel. Propag. Lett. 15, 1345–1348 (2016).
    [Crossref]
  43. M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
    [Crossref]

2017 (3)

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref] [PubMed]

2016 (3)

F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “Far-Field Pattern Reconstruction from a Nonredundant Plane-Polar Near-Field Sampling Arrangement: Experimental Testing,” IEEE Antennas Wirel. Propag. Lett. 15, 1345–1348 (2016).
[Crossref]

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

P. Savaliya and A. Dhawan, “Tapered fiber nanoprobes: plasmonic nanopillars on tapered optical fiber tips for large EM enhancement,” Opt. Lett. 41(19), 4582–4585 (2016).
[Crossref] [PubMed]

2015 (8)

C. Ti, G. M. Thomas, Y. Ren, R. Zhang, Q. Wen, and Y. Liu, “Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment,” Biomed. Opt. Express 6(7), 2325–2336 (2015).
[Crossref] [PubMed]

A. Singh, J. T. Hugall, G. Calbris, and N. F. Van Hulst, “Fiber-based optical nanoantennas for single-molecule imaging and sensing,” J. Lightwave Technol. 33(12), 2371–2377 (2015).
[Crossref]

J. Chen, Z. Kang, S. K. Kong, and H.-P. Ho, “Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles,” Opt. Lett. 40(17), 3926–3929 (2015).
[Crossref] [PubMed]

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S. H. Oh, “Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

J. B. Decombe, S. K. Mondal, D. Kumbhakar, S. S. Pal, and J. Fick, “Single and multiple microparticle trapping using non-gaussian beams from optical fiber nanoantennas,” IEEE J. Sel. Top. Quantum Electron. 21(4), 247–252 (2015).
[Crossref]

E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).

R. Regmi, A. A. Al Balushi, H. Rigneault, R. Gordon, and J. Wenger, “Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture,” Sci. Rep. 5(1), 15852 (2015).
[Crossref] [PubMed]

A. A. Al Balushi, A. Kotnala, S. Wheaton, R. M. Gelfand, Y. Rajashekara, and R. Gordon, “Label-free free-solution nanoaperture optical tweezers for single molecule protein studies,” Analyst (Lond.) 140(14), 4760–4778 (2015).
[Crossref] [PubMed]

2014 (8)

A. A. Al Balushi and R. Gordon, “Label-Free Free-Solution Single-Molecule Protein-Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping,” ACS Photonics 1(5), 389–393 (2014).
[Crossref]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

N. M. Hameed, A. El Eter, T. Grosjean, and F. I. Baida, “Stand-Alone Three-Dimensional Optical Tweezers Based on Fibred Bowtie Nanoaperture,” IEEE Photonics J. 6(4), 1–10 (2014).
[Crossref]

J.-C. Tinguely, M. Ding, G. Brambilla, A. Hohenau, J. R. Krenn, and O. G. Hellesø, “Nanostructured fibre tip for trapping of nanoparticles,” Proc. SPIE 8999, 89991D (2014).
[Crossref]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, A. A. Zinck, R. M. Gelfand, and R. Gordon, “Template stripped double nanohole in a gold film for nano-optical tweezers,” Nanotechnology 25(49), 495301 (2014).
[Crossref] [PubMed]

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

A. El Eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre, D. Nedeljkovic, E. Atie, S. Bole, and T. Grosjean, “Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip,” Opt. Express 22(8), 10072–10080 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (4)

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2(1), 966 (2012).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

2010 (1)

2009 (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

2008 (2)

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

2007 (1)

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

2006 (2)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
[Crossref] [PubMed]

2001 (1)

K. Taguchi, M. Tanaka, and M. Ikeda, “Optical Fiber Trapping in Space,” Opt. Rev. 8(3), 156–158 (2001).
[Crossref]

1999 (1)

T. K. Sarkar and A. Taaghol, “Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antenn. Propag. 47(3), 566–573 (1999).
[Crossref]

1986 (2)

Acimovic, S. S.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Al Balushi, A. A.

A. A. Al Balushi, A. Kotnala, S. Wheaton, R. M. Gelfand, Y. Rajashekara, and R. Gordon, “Label-free free-solution nanoaperture optical tweezers for single molecule protein studies,” Analyst (Lond.) 140(14), 4760–4778 (2015).
[Crossref] [PubMed]

R. Regmi, A. A. Al Balushi, H. Rigneault, R. Gordon, and J. Wenger, “Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture,” Sci. Rep. 5(1), 15852 (2015).
[Crossref] [PubMed]

A. A. Al Balushi and R. Gordon, “Label-Free Free-Solution Single-Molecule Protein-Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping,” ACS Photonics 1(5), 389–393 (2014).
[Crossref]

Allen, F. I.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Ashkin, A.

Atie, E.

Atie, E. M.

E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).

Baida, F.

Baida, F. I.

E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).

N. M. Hameed, A. El Eter, T. Grosjean, and F. I. Baida, “Stand-Alone Three-Dimensional Optical Tweezers Based on Fibred Bowtie Nanoaperture,” IEEE Photonics J. 6(4), 1–10 (2014).
[Crossref]

A. El Eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre, D. Nedeljkovic, E. Atie, S. Bole, and T. Grosjean, “Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip,” Opt. Express 22(8), 10072–10080 (2014).
[Crossref] [PubMed]

Beams, R.

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
[Crossref] [PubMed]

Bergeron, J. G.

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2(1), 966 (2012).
[Crossref] [PubMed]

Berthelot, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Bjorkholm, J. E.

Bole, S.

Borghs, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Borys, N. J.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Brambilla, G.

J.-C. Tinguely, M. Ding, G. Brambilla, A. Hohenau, J. R. Krenn, and O. G. Hellesø, “Nanostructured fibre tip for trapping of nanoparticles,” Proc. SPIE 8999, 89991D (2014).
[Crossref]

Burr, G. W.

Cabrini, S.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Calafiore, G.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Calbris, G.

Cantarella, G.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Charraut, D.

Chen, C.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Chen, J.

Chen, X.

N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. H. Oh, “Tip-based plasmonics: Squeezing light with metallic nanoprobes,” Laser Photonics Rev. 7(4), 453–477 (2013).
[Crossref]

Cherukulappurath, S.

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S. H. Oh, “Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. H. Oh, “Tip-based plasmonics: Squeezing light with metallic nanoprobes,” Laser Photonics Rev. 7(4), 453–477 (2013).
[Crossref]

Chu, S.

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

D’Agostino, F.

F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “Far-Field Pattern Reconstruction from a Nonredundant Plane-Polar Near-Field Sampling Arrangement: Experimental Testing,” IEEE Antennas Wirel. Propag. Lett. 15, 1345–1348 (2016).
[Crossref]

Darlington, T. P.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Decombe, J. B.

J. B. Decombe, S. K. Mondal, D. Kumbhakar, S. S. Pal, and J. Fick, “Single and multiple microparticle trapping using non-gaussian beams from optical fiber nanoantennas,” IEEE J. Sel. Top. Quantum Electron. 21(4), 247–252 (2015).
[Crossref]

Decombe, J.-B.

Dhawan, A.

P. Savaliya and A. Dhawan, “Tapered fiber nanoprobes: plasmonic nanopillars on tapered optical fiber tips for large EM enhancement,” Opt. Lett. 41(19), 4582–4585 (2016).
[Crossref] [PubMed]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

Ding, M.

J.-C. Tinguely, M. Ding, G. Brambilla, A. Hohenau, J. R. Krenn, and O. G. Hellesø, “Nanostructured fibre tip for trapping of nanoparticles,” Proc. SPIE 8999, 89991D (2014).
[Crossref]

Dragnea, B.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

DuFort, C. C.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Dziedzic, J. M.

Edel, J. B.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

El Eter, A.

E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).

N. M. Hameed, A. El Eter, T. Grosjean, and F. I. Baida, “Stand-Alone Three-Dimensional Optical Tweezers Based on Fibred Bowtie Nanoaperture,” IEEE Photonics J. 6(4), 1–10 (2014).
[Crossref]

A. El Eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre, D. Nedeljkovic, E. Atie, S. Bole, and T. Grosjean, “Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip,” Opt. Express 22(8), 10072–10080 (2014).
[Crossref] [PubMed]

Ferrara, F.

F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “Far-Field Pattern Reconstruction from a Nonredundant Plane-Polar Near-Field Sampling Arrangement: Experimental Testing,” IEEE Antennas Wirel. Propag. Lett. 15, 1345–1348 (2016).
[Crossref]

Fick, J.

J. B. Decombe, S. K. Mondal, D. Kumbhakar, S. S. Pal, and J. Fick, “Single and multiple microparticle trapping using non-gaussian beams from optical fiber nanoantennas,” IEEE J. Sel. Top. Quantum Electron. 21(4), 247–252 (2015).
[Crossref]

J.-B. Decombe, S. Huant, and J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 30521–30531 (2013).
[Crossref] [PubMed]

Filiatre, C.

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

Gelfand, R. M.

A. A. Al Balushi, A. Kotnala, S. Wheaton, R. M. Gelfand, Y. Rajashekara, and R. Gordon, “Label-free free-solution nanoaperture optical tweezers for single molecule protein studies,” Analyst (Lond.) 140(14), 4760–4778 (2015).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, A. A. Zinck, R. M. Gelfand, and R. Gordon, “Template stripped double nanohole in a gold film for nano-optical tweezers,” Nanotechnology 25(49), 495301 (2014).
[Crossref] [PubMed]

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Gennarelli, C.

F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “Far-Field Pattern Reconstruction from a Nonredundant Plane-Polar Near-Field Sampling Arrangement: Experimental Testing,” IEEE Antennas Wirel. Propag. Lett. 15, 1345–1348 (2016).
[Crossref]

Gerhold, M. D.

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

Ghorbanzadeh, M.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Girard, C.

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

Gordon, R.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

R. Regmi, A. A. Al Balushi, H. Rigneault, R. Gordon, and J. Wenger, “Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture,” Sci. Rep. 5(1), 15852 (2015).
[Crossref] [PubMed]

A. A. Al Balushi, A. Kotnala, S. Wheaton, R. M. Gelfand, Y. Rajashekara, and R. Gordon, “Label-free free-solution nanoaperture optical tweezers for single molecule protein studies,” Analyst (Lond.) 140(14), 4760–4778 (2015).
[Crossref] [PubMed]

A. A. Al Balushi and R. Gordon, “Label-Free Free-Solution Single-Molecule Protein-Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping,” ACS Photonics 1(5), 389–393 (2014).
[Crossref]

A. Zehtabi-Oskuie, A. A. Zinck, R. M. Gelfand, and R. Gordon, “Template stripped double nanohole in a gold film for nano-optical tweezers,” Nanotechnology 25(49), 495301 (2014).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2(1), 966 (2012).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Grosjean, T.

Guerriero, R.

F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “Far-Field Pattern Reconstruction from a Nonredundant Plane-Polar Near-Field Sampling Arrangement: Experimental Testing,” IEEE Antennas Wirel. Propag. Lett. 15, 1345–1348 (2016).
[Crossref]

Guo, C.

Hameed, N. M.

Hellesø, O. G.

J.-C. Tinguely, M. Ding, G. Brambilla, A. Hohenau, J. R. Krenn, and O. G. Hellesø, “Nanostructured fibre tip for trapping of nanoparticles,” Proc. SPIE 8999, 89991D (2014).
[Crossref]

Ho, H.-P.

Hohenau, A.

J.-C. Tinguely, M. Ding, G. Brambilla, A. Hohenau, J. R. Krenn, and O. G. Hellesø, “Nanostructured fibre tip for trapping of nanoparticles,” Proc. SPIE 8999, 89991D (2014).
[Crossref]

Ho-Thanh, M.-T.

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref] [PubMed]

Huant, S.

Hugall, J. T.

Ibrahim, I. A.

Ikeda, M.

K. Taguchi, M. Tanaka, and M. Ikeda, “Optical Fiber Trapping in Space,” Opt. Rev. 8(3), 156–158 (2001).
[Crossref]

Johnson, T. W.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S. H. Oh, “Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. H. Oh, “Tip-based plasmonics: Squeezing light with metallic nanoprobes,” Laser Photonics Rev. 7(4), 453–477 (2013).
[Crossref]

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
[Crossref] [PubMed]

Jones, S.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Jose, J.

N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. H. Oh, “Tip-based plasmonics: Squeezing light with metallic nanoprobes,” Laser Photonics Rev. 7(4), 453–477 (2013).
[Crossref]

Juan, M. L.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Kang, Z.

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

Kong, S. K.

Koshelev, A.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Kotnala, A.

A. A. Al Balushi, A. Kotnala, S. Wheaton, R. M. Gelfand, Y. Rajashekara, and R. Gordon, “Label-free free-solution nanoaperture optical tweezers for single molecule protein studies,” Analyst (Lond.) 140(14), 4760–4778 (2015).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

Krenn, J. R.

J.-C. Tinguely, M. Ding, G. Brambilla, A. Hohenau, J. R. Krenn, and O. G. Hellesø, “Nanostructured fibre tip for trapping of nanoparticles,” Proc. SPIE 8999, 89991D (2014).
[Crossref]

Kreuzer, M. P.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Kumar, S.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

Kumbhakar, D.

J. B. Decombe, S. K. Mondal, D. Kumbhakar, S. S. Pal, and J. Fick, “Single and multiple microparticle trapping using non-gaussian beams from optical fiber nanoantennas,” IEEE J. Sel. Top. Quantum Electron. 21(4), 247–252 (2015).
[Crossref]

Lapin, Z. J.

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
[Crossref] [PubMed]

Li, Y.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Lindquist, N. C.

N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. H. Oh, “Tip-based plasmonics: Squeezing light with metallic nanoprobes,” Laser Photonics Rev. 7(4), 453–477 (2013).
[Crossref]

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Long, N. J.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

Lum, P.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Maes, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Melli, M.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Migliozzi, M.

F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “Far-Field Pattern Reconstruction from a Nonredundant Plane-Polar Near-Field Sampling Arrangement: Experimental Testing,” IEEE Antennas Wirel. Propag. Lett. 15, 1345–1348 (2016).
[Crossref]

Mivelle, M.

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

Mondal, S. K.

J. B. Decombe, S. K. Mondal, D. Kumbhakar, S. S. Pal, and J. Fick, “Single and multiple microparticle trapping using non-gaussian beams from optical fiber nanoantennas,” IEEE J. Sel. Top. Quantum Electron. 21(4), 247–252 (2015).
[Crossref]

Moravvej-Farshi, M. K.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Munechika, K.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Muth, J. F.

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

Nedeljkovic, D.

E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).

A. El Eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre, D. Nedeljkovic, E. Atie, S. Bole, and T. Grosjean, “Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip,” Opt. Express 22(8), 10072–10080 (2014).
[Crossref] [PubMed]

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J. Y. Rauch, R. Salut, and T. Grosjean, “Bowtie nano-aperture as interface between near-fields and a single-mode fiber,” Opt. Express 18(15), 15964–15974 (2010).
[Crossref] [PubMed]

Norris, D. J.

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S. H. Oh, “Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

Novotny, L.

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
[Crossref] [PubMed]

Oh, S. H.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S. H. Oh, “Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. H. Oh, “Tip-based plasmonics: Squeezing light with metallic nanoprobes,” Laser Photonics Rev. 7(4), 453–477 (2013).
[Crossref]

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
[Crossref] [PubMed]

Onuta, T. D.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Otto, L. M.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

Pal, S. S.

J. B. Decombe, S. K. Mondal, D. Kumbhakar, S. S. Pal, and J. Fick, “Single and multiple microparticle trapping using non-gaussian beams from optical fiber nanoantennas,” IEEE J. Sel. Top. Quantum Electron. 21(4), 247–252 (2015).
[Crossref]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Polyakov, A.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Qu, T.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

Quidant, R.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

Rajashekara, Y.

A. A. Al Balushi, A. Kotnala, S. Wheaton, R. M. Gelfand, Y. Rajashekara, and R. Gordon, “Label-free free-solution nanoaperture optical tweezers for single molecule protein studies,” Analyst (Lond.) 140(14), 4760–4778 (2015).
[Crossref] [PubMed]

Rauch, J. Y.

Regmi, R.

R. Regmi, A. A. Al Balushi, H. Rigneault, R. Gordon, and J. Wenger, “Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture,” Sci. Rep. 5(1), 15852 (2015).
[Crossref] [PubMed]

Ren, Y.

Renger, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rigneault, H.

R. Regmi, A. A. Al Balushi, H. Rigneault, R. Gordon, and J. Wenger, “Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture,” Sci. Rep. 5(1), 15852 (2015).
[Crossref] [PubMed]

Rodrigo, S. G.

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
[Crossref] [PubMed]

Salut, R.

E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).

A. El Eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre, D. Nedeljkovic, E. Atie, S. Bole, and T. Grosjean, “Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip,” Opt. Express 22(8), 10072–10080 (2014).
[Crossref] [PubMed]

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J. Y. Rauch, R. Salut, and T. Grosjean, “Bowtie nano-aperture as interface between near-fields and a single-mode fiber,” Opt. Express 18(15), 15964–15974 (2010).
[Crossref] [PubMed]

Sarkar, T. K.

T. K. Sarkar and A. Taaghol, “Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antenn. Propag. 47(3), 566–573 (1999).
[Crossref]

Sassolini, S.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Savaliya, P.

Schaich, W. L.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Schuck, P. J.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

Shaver, J.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

Singh, A.

Stief, F.

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

Taaghol, A.

T. K. Sarkar and A. Taaghol, “Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antenn. Propag. 47(3), 566–573 (1999).
[Crossref]

Taguchi, K.

K. Taguchi, M. Tanaka, and M. Ikeda, “Optical Fiber Trapping in Space,” Opt. Rev. 8(3), 156–158 (2001).
[Crossref]

Tanaka, M.

K. Taguchi, M. Tanaka, and M. Ikeda, “Optical Fiber Trapping in Space,” Opt. Rev. 8(3), 156–158 (2001).
[Crossref]

Tannous, T.

E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).

Thomas, G. M.

Ti, C.

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref] [PubMed]

C. Ti, G. M. Thomas, Y. Ren, R. Zhang, Q. Wen, and Y. Liu, “Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment,” Biomed. Opt. Express 6(7), 2325–2336 (2015).
[Crossref] [PubMed]

Tinguely, J.-C.

J.-C. Tinguely, M. Ding, G. Brambilla, A. Hohenau, J. R. Krenn, and O. G. Hellesø, “Nanostructured fibre tip for trapping of nanoparticles,” Proc. SPIE 8999, 89991D (2014).
[Crossref]

Van Dorpe, P.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Van Hulst, N. F.

Victora, R. H.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

Waegele, M.

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Weber-Bargioni, A.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Wen, Q.

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref] [PubMed]

C. Ti, G. M. Thomas, Y. Ren, R. Zhang, Q. Wen, and Y. Liu, “Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment,” Biomed. Opt. Express 6(7), 2325–2336 (2015).
[Crossref] [PubMed]

Wenger, J.

R. Regmi, A. A. Al Balushi, H. Rigneault, R. Gordon, and J. Wenger, “Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture,” Sci. Rep. 5(1), 15852 (2015).
[Crossref] [PubMed]

Wheaton, S.

A. A. Al Balushi, A. Kotnala, S. Wheaton, R. M. Gelfand, Y. Rajashekara, and R. Gordon, “Label-free free-solution nanoaperture optical tweezers for single molecule protein studies,” Analyst (Lond.) 140(14), 4760–4778 (2015).
[Crossref] [PubMed]

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Wittenberg, N. J.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

Wong, E.

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

Wood, C. K.

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

Xie, Z.

E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).

Yaghjian, A. D.

A. D. Yaghjian, “An Overview of Near-Field Antenna Measurements,” IEEE Trans. Antenn. Propag. 34(1), 30–45 (1986).
[Crossref]

Yang, J.

Yoo, D.

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S. H. Oh, “Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

Yu, M.

Yuan, L.

Zehtabi-Oskuie, A.

A. Zehtabi-Oskuie, A. A. Zinck, R. M. Gelfand, and R. Gordon, “Template stripped double nanohole in a gold film for nano-optical tweezers,” Nanotechnology 25(49), 495301 (2014).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2(1), 966 (2012).
[Crossref] [PubMed]

Zhang, R.

Zinck, A. A.

A. Zehtabi-Oskuie, A. A. Zinck, R. M. Gelfand, and R. Gordon, “Template stripped double nanohole in a gold film for nano-optical tweezers,” Nanotechnology 25(49), 495301 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Kumar, T. W. Johnson, C. K. Wood, T. Qu, N. J. Wittenberg, L. M. Otto, J. Shaver, N. J. Long, R. H. Victora, J. B. Edel, and S. H. Oh, “Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing,” ACS Appl. Mater. Interfaces 8(14), 9319–9326 (2016).
[Crossref] [PubMed]

ACS Nano (2)

D. Yoo, T. W. Johnson, S. Cherukulappurath, D. J. Norris, and S. H. Oh, “Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates,” ACS Nano 9(11), 10647–10654 (2015).
[Crossref] [PubMed]

T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, “Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids,” ACS Nano 6(10), 9168–9174 (2012).
[Crossref] [PubMed]

ACS Photonics (2)

A. A. Al Balushi and R. Gordon, “Label-Free Free-Solution Single-Molecule Protein-Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping,” ACS Photonics 1(5), 389–393 (2014).
[Crossref]

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Analyst (Lond.) (1)

A. A. Al Balushi, A. Kotnala, S. Wheaton, R. M. Gelfand, Y. Rajashekara, and R. Gordon, “Label-free free-solution nanoaperture optical tweezers for single molecule protein studies,” Analyst (Lond.) 140(14), 4760–4778 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

E. M. Atie, Z. Xie, A. El Eter, R. Salut, D. Nedeljkovic, T. Tannous, and F. I. Baida, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-fi,” Appl. Phys. Lett. 106, 151104 (2015).

Biomed. Opt. Express (1)

IEEE Antennas Wirel. Propag. Lett. (1)

F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “Far-Field Pattern Reconstruction from a Nonredundant Plane-Polar Near-Field Sampling Arrangement: Experimental Testing,” IEEE Antennas Wirel. Propag. Lett. 15, 1345–1348 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. B. Decombe, S. K. Mondal, D. Kumbhakar, S. S. Pal, and J. Fick, “Single and multiple microparticle trapping using non-gaussian beams from optical fiber nanoantennas,” IEEE J. Sel. Top. Quantum Electron. 21(4), 247–252 (2015).
[Crossref]

IEEE Photonics J. (1)

N. M. Hameed, A. El Eter, T. Grosjean, and F. I. Baida, “Stand-Alone Three-Dimensional Optical Tweezers Based on Fibred Bowtie Nanoaperture,” IEEE Photonics J. 6(4), 1–10 (2014).
[Crossref]

IEEE Sens. J. (1)

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

A. D. Yaghjian, “An Overview of Near-Field Antenna Measurements,” IEEE Trans. Antenn. Propag. 34(1), 30–45 (1986).
[Crossref]

T. K. Sarkar and A. Taaghol, “Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antenn. Propag. 47(3), 566–573 (1999).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (2)

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. H. Oh, “Tip-based plasmonics: Squeezing light with metallic nanoprobes,” Laser Photonics Rev. 7(4), 453–477 (2013).
[Crossref]

Nano Lett. (6)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006).
[Crossref] [PubMed]

T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

A. Zehtabi-Oskuie, A. A. Zinck, R. M. Gelfand, and R. Gordon, “Template stripped double nanohole in a gold film for nano-optical tweezers,” Nanotechnology 25(49), 495301 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nat. Photonics 9(1), 68–72 (2014).
[Crossref]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Rev. (1)

K. Taguchi, M. Tanaka, and M. Ikeda, “Optical Fiber Trapping in Space,” Opt. Rev. 8(3), 156–158 (2001).
[Crossref]

Proc. SPIE (1)

J.-C. Tinguely, M. Ding, G. Brambilla, A. Hohenau, J. R. Krenn, and O. G. Hellesø, “Nanostructured fibre tip for trapping of nanoparticles,” Proc. SPIE 8999, 89991D (2014).
[Crossref]

Sci. Rep. (4)

G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika, “Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber,” Sci. Rep. 7(1), 1651 (2017).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2(1), 966 (2012).
[Crossref] [PubMed]

R. Regmi, A. A. Al Balushi, H. Rigneault, R. Gordon, and J. Wenger, “Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture,” Sci. Rep. 5(1), 15852 (2015).
[Crossref] [PubMed]

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref] [PubMed]

Other (1)

M. N. Polyanskiy, “Refractive index database,” https://refractiveindex.info .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Scanning electron microscope (SEM) image of the integrated NAFT. The inset shows the plasmonic aperture milled at the center of the NAFT; the scale-bar is 0.5 µm. (b) Schematic diagram of the integrated NAFT (not to scale). The epoxy used is the Norland optical adhesive 61 (NOA 61); a photopolymer liquid that cures when exposed to ultraviolet light.
Fig. 2
Fig. 2 (a) Schematics for the different NAFT integration steps. 1: evaporated 100 nm gold (Au) film on an optically transparent, glass, substrate sample (no adhesion material). 2: single structure (a 125 µm ring plus the central nanoaperture) milled on the Au sample. 3: multiple structures on one Au sample. 4: an ultra-violet curable epoxy immersed single mode fiber aligned with the nanohole in the Au film. 5: strip-off the Au film, and 6: shows the integrated NAFT fixed within a protection plastic cone. (b) SEM image of a 100 nm Au film after being milled using the FIB, the ring inner radius is 125 µm and the outer radius is 132.5 µm. (c) SEM image for the plasmonic aperture. The aperture gap is ~70 nm along the y-axis. The black arrow shows the optimum polarization for maximum field confinement and transmission. (d) Schematic for the setup used to integrate the NAFT. LD is laser source (980 nm), EAC is azimuthal and elevation angle controller, LDM is long distance microscope, UV is ultra-violet light source, CL is collimator, MMF is multimode fiber, and OSA is optical spectrum analyzer.
Fig. 3
Fig. 3 (a) Schematic of the experimental setup used for trapping 20 nm and 30 nm polystyrene nanospheres, where I(λ) (red pulse) represents laser signal and v(t) (purple waveform) represents output voltage. (b) 20 nm particle trapping signal record. Trapping event in this time-window occurred after 13.585 seconds from turning on the laser. The inset is just an enlarged view of the trapping jump. (c) 30 nm particle trapping signal record. Trapping event in this time-window occurred after 44.175 seconds from turning on the laser. The inset is an enlarged view of the trapping jump. (d) 30 nm particle release signature in response to turning off the laser power. More about power dependence of trapping can be found in [37].
Fig. 4
Fig. 4 x-plane (blue lines) and y-plane (red lines) far-field normalized power for the no-particle (dash-dot lines) and with-particle (solid lines) cases. Patterns are FDTD calculated 50 mm away from the nanoaperture for a half-cone-angle of 0.63° dictated by a photodetector aperture’s diameter of 1.1 mm. Inset (a) shows an enlarged view of a central part of the yz-plane (x = 0 plane) of the 3D simulation region with the 25 nm particle located in the tapered aperture. Insets (b), (c), and (d) show the no particle (NP), with particle (WP), and the difference (Diff.) in electric near field intensity at 2.5 nm away from the aperture water-side surface.

Metrics