Abstract

This paper reports on the design, fabrication and characterization of an all-organic photonic integrated circuit working as a switching polarizer for visible light (630nm), combining organic waveguides and liquid crystals that can be electrically driven. The device was made in commercially available epoxy by laser direct writing lithography. A device with a 2dB loss and a 20dB extinction ratio for both polarizations, was simulated; the manufactured devices proved the working principle of the design. The results have led to the design of a switching polarization splitter, in which a careful choice of waveguide material and liquid crystal can lead to devices working on a wide range of wavelengths.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides

Daoxin Dai, Zhi Wang, Nick Julian, and John E. Bowers
Opt. Express 18(26) 27404-27415 (2010)

Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited]

G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni
J. Opt. Commun. Netw. 1(3) B111-B119 (2009)

Organic membrane photonic integrated circuits (OMPICs)

Tomohiro Amemiya, Toru Kanazawa, Takuo Hiratani, Daisuke Inoue, Zhichen Gu, Satoshi Yamasaki, Tatsuhiro Urakami, and Shigehisa Arai
Opt. Express 25(16) 18537-18552 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Su, R. P. Scott, C. Ogden, S. T. Thurman, R. L. Kendrick, A. Duncan, R. Yu, and S. Yoo, “Experimental demonstration of interferometric imaging using photonic integrated circuits,” Opt. Express 25, 12653–12665 (2017).
    [Crossref] [PubMed]
  2. S. Feng, C. Qin, K. Shang, S. Pathak, W. Lai, B. Guan, M. Clements, T. Su, G. Liu, H. Lu, R.P. Scott, and S.J. Ben Yoo, “Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits,” Opt. Express 25, 8872–8885 (2017).
    [Crossref] [PubMed]
  3. L. Chang, M. H. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
    [Crossref] [PubMed]
  4. D. Liang and J. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45, 578–581 (2009).
    [Crossref]
  5. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs - A tutorial,” J. Lightwave Technol. 29, 554–570 (2011).
    [Crossref]
  6. Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
    [Crossref]
  7. R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
    [Crossref] [PubMed]
  8. A. La Porta, R. Dangel, D. Jubin, N. Meier, F. Horst, and B. J. Offrein, “Scalable and broadband silicon photonics chip to fiber optical interface using polymer waveguides,” in Proceedings of the IEEE Optical Interconnects Conference (IEEE, 2017) pp. 13–14.
  9. S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed bragg reflector coupling to solid state emitter,” J. Opt. 19, 065203 (2017).
    [Crossref]
  10. S. Chandrasekhar, Liquid crystals, 2nd. ed. (Cambridge University Press, 1992).
    [Crossref]
  11. J. Whinnery, C. Hu, and Y. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
    [Crossref]
  12. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
    [Crossref]
  13. T. M. Leslie and R. G. Lindquist, “Liquid crystal planar non-blocking nxn cross-connect,” (2003). US Patent6,559,921.
  14. J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
    [Crossref]
  15. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low Vπ L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
    [Crossref] [PubMed]
  16. C.-T. Wang, Y.-C. Li, J.-H. Yu, C. Y. Wang, C.-W. Tseng, H.-C. Jau, Y.-J. Chen, and T.-H. Lin, “Electrically tunable high Q-factor micro-ring resonator based on blue phase liquid crystal cladding,” Opt. Express 22, 17776–17781 (2014).
    [Crossref] [PubMed]
  17. Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
    [Crossref]
  18. A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy-and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
    [Crossref]
  19. E. Hecht, Optics2nd edition, (Addison-Wesley Publishing Company, 1987)
  20. P. Cheben, D.X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
    [Crossref] [PubMed]
  21. K. Kaur, A. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of vcsels to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23, 28264–28270 (2015).
    [Crossref] [PubMed]
  22. D. Cuypers, Vertically aligned nematic liquid crystal microdisplays for projection applications, (Ph.D. thesis, Ghent University2005).
  23. E. Otón Martínez, Adaptive liquid-crystal phase-only passive devices, (Ph.D. thesis, E.T.S.I. Telecomunicacion (UPM)2013).

2017 (4)

2016 (1)

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy-and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

2015 (3)

2014 (1)

2013 (1)

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

D. Liang and J. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45, 578–581 (2009).
[Crossref]

2006 (1)

2003 (1)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

1977 (1)

J. Whinnery, C. Hu, and Y. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[Crossref]

Absil, P.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Ako, T.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Alloatti, L.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Baehr-Jones, T.

Baets, R.

K. Kaur, A. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of vcsels to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23, 28264–28270 (2015).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Bauwelinck, J.

Beeckman, J.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Ben Yoo, S.J.

Benight, S.

Bogaerts, W.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Bojko, R.

Bolten, J.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Bosman, E.

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy-and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

Bowers, J.

D. Liang and J. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45, 578–581 (2009).
[Crossref]

Bowers, J. E.

Cardile, P.

Chandrasekhar, S.

S. Chandrasekhar, Liquid crystals, 2nd. ed. (Cambridge University Press, 1992).
[Crossref]

Chang, L.

Cheben, P.

Chen, Y.-J.

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Clements, M.

Coldren, L. A.

Cuypers, D.

D. Cuypers, Vertically aligned nematic liquid crystal microdisplays for projection applications, (Ph.D. thesis, Ghent University2005).

Dai, D.

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

Dalton, L.

Dangel, R.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

A. La Porta, R. Dangel, D. Jubin, N. Meier, F. Horst, and B. J. Offrein, “Scalable and broadband silicon photonics chip to fiber optical interface using polymer waveguides,” in Proceedings of the IEEE Optical Interconnects Conference (IEEE, 2017) pp. 13–14.

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Densmore, A.

Ding, R.

Dinu, R.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Duncan, A.

Elmogi, A.

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy-and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

Fedeli, J.

Fedeli, J. M.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Feng, S.

Fournier, M.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low Vπ L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
[Crossref] [PubMed]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

George, J. P.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Guan, B.

Günter, P.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Guzzon, R. S.

He, S.

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

Hecht, E.

E. Hecht, Optics2nd edition, (Addison-Wesley Publishing Company, 1987)

Hochberg, M.

Hofrichter, J.

Horst, F.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

A. La Porta, R. Dangel, D. Jubin, N. Meier, F. Horst, and B. J. Offrein, “Scalable and broadband silicon photonics chip to fiber optical interface using polymer waveguides,” in Proceedings of the IEEE Optical Interconnects Conference (IEEE, 2017) pp. 13–14.

Hu, C.

J. Whinnery, C. Hu, and Y. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[Crossref]

Huang, S.

Janz, S.

Jau, H.-C.

Jazbinsek, M.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Jen, A.

Johansson, L.

Jubin, D.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

A. La Porta, R. Dangel, D. Jubin, N. Meier, F. Horst, and B. J. Offrein, “Scalable and broadband silicon photonics chip to fiber optical interface using polymer waveguides,” in Proceedings of the IEEE Optical Interconnects Conference (IEEE, 2017) pp. 13–14.

Kaur, K.

Kendrick, R. L.

Kippenberg, T. J.

Knauer, S.

S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed bragg reflector coupling to solid state emitter,” J. Opt. 19, 065203 (2017).
[Crossref]

Koos, C.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Korn, D.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Krishnamachari, U.

Kurz, H.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Kwon, Y.

J. Whinnery, C. Hu, and Y. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[Crossref]

Lai, W.

Lauermann, M.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Lepage, G.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Leslie, T. M.

T. M. Leslie and R. G. Lindquist, “Liquid crystal planar non-blocking nxn cross-connect,” (2003). US Patent6,559,921.

Leuthold, J.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Li, Y.

Li, Y.-C.

Liang, D.

D. Liang and J. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45, 578–581 (2009).
[Crossref]

Lin, T.-H.

Lindquist, R. G.

T. M. Leslie and R. G. Lindquist, “Liquid crystal planar non-blocking nxn cross-connect,” (2003). US Patent6,559,921.

Liu, G.

Liu, Y.

López-García, M.

S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed bragg reflector coupling to solid state emitter,” J. Opt. 19, 065203 (2017).
[Crossref]

Lu, H.

Luo, J.

Manganelli, C. L.

Meier, N.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

A. La Porta, R. Dangel, D. Jubin, N. Meier, F. Horst, and B. J. Offrein, “Scalable and broadband silicon photonics chip to fiber optical interface using polymer waveguides,” in Proceedings of the IEEE Optical Interconnects Conference (IEEE, 2017) pp. 13–14.

Meyer, R.

Missinne, J.

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy-and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

Neyts, K.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Nicholes, S. C.

Norberg, E. J.

Offrein, B. J.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

A. La Porta, R. Dangel, D. Jubin, N. Meier, F. Horst, and B. J. Offrein, “Scalable and broadband silicon photonics chip to fiber optical interface using polymer waveguides,” in Proceedings of the IEEE Optical Interconnects Conference (IEEE, 2017) pp. 13–14.

Ogden, C.

Otón Martínez, E.

E. Otón Martínez, Adaptive liquid-crystal phase-only passive devices, (Ph.D. thesis, E.T.S.I. Telecomunicacion (UPM)2013).

Palmer, R.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Pantouvaki, M.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Pathak, S.

Peters, J. D.

Pfeiffer, M. H.

Pfeifle, J.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Porta, A. La

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

A. La Porta, R. Dangel, D. Jubin, N. Meier, F. Horst, and B. J. Offrein, “Scalable and broadband silicon photonics chip to fiber optical interface using polymer waveguides,” in Proceedings of the IEEE Optical Interconnects Conference (IEEE, 2017) pp. 13–14.

Qin, C.

Rarity, J. G.

S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed bragg reflector coupling to solid state emitter,” J. Opt. 19, 065203 (2017).
[Crossref]

Ristic, S.

Ruocco, A.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Scott, R. P.

Scott, R.P.

Shang, K.

Sheng, Z.

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

Soganci, I. M.

Spiga, S.

Stanton, E. J.

Su, T.

Subramanian, A.

Sullivan, P.

Taillaert, D.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Thurman, S. T.

Tseng, C.-W.

Van Kerrebrouck, J.

Van Steenberge, G.

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy-and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

K. Kaur, A. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of vcsels to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23, 28264–28270 (2015).
[Crossref] [PubMed]

Verheyen, P.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Verplancke, R.

Volet, N.

Wahlbrink, T.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Waldow, M.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Wang, C. Y.

Wang, C.-T.

Wehrli, S.

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Weiss, J.

Whinnery, J.

J. Whinnery, C. Hu, and Y. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[Crossref]

Witzens, J.

Xing, Y.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Xu, D.X.

Yoo, S.

Yu, H.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Yu, J.-H.

Yu, R.

Zervas, M.

Electron. Lett. (1)

D. Liang and J. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45, 578–581 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Whinnery, C. Hu, and Y. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. M. Fedeli, H. Yu, and W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).
[Crossref]

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003).
[Crossref]

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed bragg reflector coupling to solid state emitter,” J. Opt. 19, 065203 (2017).
[Crossref]

Opt. Express (7)

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 4736–4750 (2015).
[Crossref] [PubMed]

T. Su, R. P. Scott, C. Ogden, S. T. Thurman, R. L. Kendrick, A. Duncan, R. Yu, and S. Yoo, “Experimental demonstration of interferometric imaging using photonic integrated circuits,” Opt. Express 25, 12653–12665 (2017).
[Crossref] [PubMed]

S. Feng, C. Qin, K. Shang, S. Pathak, W. Lai, B. Guan, M. Clements, T. Su, G. Liu, H. Lu, R.P. Scott, and S.J. Ben Yoo, “Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits,” Opt. Express 25, 8872–8885 (2017).
[Crossref] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low Vπ L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
[Crossref] [PubMed]

C.-T. Wang, Y.-C. Li, J.-H. Yu, C. Y. Wang, C.-W. Tseng, H.-C. Jau, Y.-J. Chen, and T.-H. Lin, “Electrically tunable high Q-factor micro-ring resonator based on blue phase liquid crystal cladding,” Opt. Express 22, 17776–17781 (2014).
[Crossref] [PubMed]

P. Cheben, D.X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14, 4695–4702 (2006).
[Crossref] [PubMed]

K. Kaur, A. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of vcsels to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23, 28264–28270 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

A. Elmogi, E. Bosman, J. Missinne, and G. Van Steenberge, “Comparison of epoxy-and siloxane-based single-mode optical waveguides defined by direct-write lithography,” Opt. Mater. 52, 26–31 (2016).
[Crossref]

Other (6)

E. Hecht, Optics2nd edition, (Addison-Wesley Publishing Company, 1987)

A. La Porta, R. Dangel, D. Jubin, N. Meier, F. Horst, and B. J. Offrein, “Scalable and broadband silicon photonics chip to fiber optical interface using polymer waveguides,” in Proceedings of the IEEE Optical Interconnects Conference (IEEE, 2017) pp. 13–14.

S. Chandrasekhar, Liquid crystals, 2nd. ed. (Cambridge University Press, 1992).
[Crossref]

D. Cuypers, Vertically aligned nematic liquid crystal microdisplays for projection applications, (Ph.D. thesis, Ghent University2005).

E. Otón Martínez, Adaptive liquid-crystal phase-only passive devices, (Ph.D. thesis, E.T.S.I. Telecomunicacion (UPM)2013).

T. M. Leslie and R. G. Lindquist, “Liquid crystal planar non-blocking nxn cross-connect,” (2003). US Patent6,559,921.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Sketch of the switching polarizer highlighting the two possible switching states of the LC intersection. The LC-filled trench forms an angle α=30° with the waveguides.
Fig. 2
Fig. 2 The displacement of a light beam in a plane-parallel slab.
Fig. 3
Fig. 3 Simulated displacement and reflection produced by the plane-parallel slab as a function of trench angle α. Blue dashed line: displacement (d). Green dotted line: the TM polarized light losses (ΓTM). Red continuous line: the TE polarized light losses (ΓTE).
Fig. 4
Fig. 4 (a) Scheme of the simulated device with approximate aspect ratio. Various simulations were performed, all with a fixed slab height (h) of 20 µm, trench angle α of 30°, waveguides of 3×3 µm. Separation of the waveguides was varied from 3 to 7 µm; (b) Simulation of the total power and TE, TM field distributions in the central waveguide section for switched and unswitched device with 5 µm waveguide separation. Note that the aspect ratio is not preserved in the simulation images.
Fig. 5
Fig. 5 Analytically calculated displacement and reflection produced by the plane-parallel slab as a function of nLC.
Fig. 6
Fig. 6 The basic structure of the developed devices. The input and output ports are indicated.
Fig. 7
Fig. 7 Steps to fabricate the waveguides.
Fig. 8
Fig. 8 a) SEM image of the a waveguide without cladding; b) optical microscope image of a trench with LC between crossed polarizers. c) optical microscope image of the empty trench. d) optical microscope image of the cross section of a trench.
Fig. 9
Fig. 9 TM/TE intensities at the output port for the two different LC switching states. The measured values allowed for an estimation of the effective refractive indices, n e f f T M and n e f f T E, for the on and the off switching states. These derived values were used in in the calculation of the simulated transmission curves. The measured intensities are relative to the power transmitted in a straight waveguide.
Fig. 10
Fig. 10 Simulation of the designed wide wavelength switchable optical polarization splitter. The total power and TE, TM field distributions in the central waveguide section for switched and unswitched device with 6 µm waveguide seperation. The trench size was 20 µm and the LC refractive indeces varies between no=1.58 and ne=1.78.
Fig. 11
Fig. 11 The fundamental design of a switching polarization splitter using the MDA-98-1602. In this case neither of the two output ports can be aligned with the input port since no < nwg.

Tables (1)

Tables Icon

Table 1 Optimized process parameters for the waveguides fabrication.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d = h sin ( θ w g θ L C ) cos ( θ L C ) ; θ L C = sin 1 ( n w g n L C sin ( θ w g ) )
R T M | n w g cos ( θ w g ) n L C cos ( θ L C ) n w g cos ( θ w g ) + n L C cos ( θ L C ) | 2 ; Γ T M = 1 ( 1 R T M ) 2
R T E | n w g cos ( θ L C ) n L C cos ( θ w g ) n w g cos ( θ L C ) + n L C cos ( θ w g ) | 2 ; Γ T E = 1 ( 1 R T E ) 2
n e f f 2 ( θ ) = n e 2 n o 2 n o 2 sin 2 θ + n e 2 cos 2 θ

Metrics