Abstract

Suspensions of plasmonic nanoparticles can diffract optical beams due to the combination of thermal lensing and self-phase modulation. Here, we demonstrate extremely efficient optical continuous wave (CW) beam switching across the visible range in optimized suspensions of 5-nm Au and Ag nanoparticles in non-polar solvents, such as hexane and decane. On-axis modulation of greater than 30 dB is achieved at incident beam intensities as low as 100 W/cm2 with response times under 200 μs, at initial solution transparency above 70%. No evidence of laser-induced degradation is observed for the highest intensities used. Numerical modeling of experimental data reveals thermo-optic coefficients of up to −1.3 × 10−3 /K, which, to our knowledge, is the highest observed to date in such nanoparticle suspensions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG

Ryo Yasuhara, Hoshiteru Nozawa, Takagimi Yanagitani, Shinji Motokoshi, and Junji Kawanaka
Opt. Express 21(25) 31443-31452 (2013)

All-silicon Fabry–Perot modulator based on the thermo-optic effect

Giuseppe Cocorullo, Mario Iodice, and Ivo Rendina
Opt. Lett. 19(6) 420-422 (1994)

Thermo-optic properties of ceramic YAG at high temperatures

Hiroaki Furuse, Ryo Yasuhara, and Keijiro Hiraga
Opt. Mater. Express 4(9) 1794-1799 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
    [Crossref]
  2. K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57(13), 2434–2436 (1985).
    [Crossref]
  3. Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13(5), 055707 (2011).
    [Crossref]
  4. B. Palpant, M. Rashidi-Huyeh, G. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett. 90(22), 223105 (2007).
    [Crossref]
  5. M. Rashidi Huyeh, M. Shirdel Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
    [Crossref]
  6. H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour, “Thermo-optical properties of colloids enhanced by gold nanoparticles,” Jpn. J. Appl. Phys. 49(8), 085002 (2010).
    [Crossref]
  7. R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
    [Crossref]
  8. L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2303–2310 (2010).
    [Crossref]
  9. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [Crossref] [PubMed]
  10. M. Mashayekh and D. Dorranian, “Size-dependent nonlinear optical properties and thermal lens in silver nanoparticles,” Optik (Stuttg.) 125(19), 5612–5617 (2014).
    [Crossref]
  11. K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
    [Crossref]
  12. L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A, Pure Appl. Opt. 7(8), 409–415 (2005).
    [Crossref]
  13. M. Zhengle, Q. Lingling, H. Fei, L. Yang, W. Chen, and C. Ya, “Thermal-induced nonlinear optical characteristics of ethanol solution doped with silver nanoparticles,” Chin. Opt. Lett. 7(10), 949–952 (2009).
    [Crossref]
  14. V. Pilla, G. G. G. Costa, and T. Catunda, “Applications of Fresnel-Kirchhoff diffraction integral in linear and nonlinear optics: a didactic introduction,” Proc. SPIE 4419, 728–731 (2001).
    [Crossref]
  15. V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A, Pure Appl. Opt. 11(10), 105201 (2009).
    [Crossref]
  16. S. E. Bialkowski, “Photothermal spectroscopy methods for chemical analysis,” in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, J. D. Winefordner, ed., (John Wiley & Sons, Inc., 1996), Vol. 134.
  17. G. A. López-Muñoz, J. A. Pescador-Rojas, J. Ortega-Lopez, J. S. Salazar, and J. A. Balderas-López, “Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations,” Nanoscale Res. Lett. 7(1), 423 (2012).
    [Crossref] [PubMed]
  18. P. Laven, “MiePlot: a computer program for scattering of light from a sphere using Mie theory & the Debye series, http://www.philiplaven.com/mieplot.htm , 2017.
  19. D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
    [Crossref]
  20. J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring Agglomerate Size Distribution and Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle Agglomerate Size Using Analytical Ultracentrifugation,” ACS Nano 5(10), 8070–8079 (2011).
    [Crossref] [PubMed]
  21. A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
    [Crossref] [PubMed]
  22. S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014).
    [Crossref] [PubMed]
  23. J. Jung and T. G. Pedersen, “Polarizability of supported metal nanoparticles: Mehler-Fock approach,” J. Appl. Phys. 112(6), 064312 (2012).
    [Crossref]
  24. M. C. Frare, R. Signorini, V. Weber, and R. Bozio, “Gold nanoparticles as optical limiting materials against CW lasers,” Proc. SPIE 8901, 890113 (2013).
    [Crossref]

2014 (3)

M. Mashayekh and D. Dorranian, “Size-dependent nonlinear optical properties and thermal lens in silver nanoparticles,” Optik (Stuttg.) 125(19), 5612–5617 (2014).
[Crossref]

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014).
[Crossref] [PubMed]

2013 (1)

M. C. Frare, R. Signorini, V. Weber, and R. Bozio, “Gold nanoparticles as optical limiting materials against CW lasers,” Proc. SPIE 8901, 890113 (2013).
[Crossref]

2012 (3)

J. Jung and T. G. Pedersen, “Polarizability of supported metal nanoparticles: Mehler-Fock approach,” J. Appl. Phys. 112(6), 064312 (2012).
[Crossref]

G. A. López-Muñoz, J. A. Pescador-Rojas, J. Ortega-Lopez, J. S. Salazar, and J. A. Balderas-López, “Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations,” Nanoscale Res. Lett. 7(1), 423 (2012).
[Crossref] [PubMed]

M. Rashidi Huyeh, M. Shirdel Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

2011 (2)

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13(5), 055707 (2011).
[Crossref]

J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring Agglomerate Size Distribution and Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle Agglomerate Size Using Analytical Ultracentrifugation,” ACS Nano 5(10), 8070–8079 (2011).
[Crossref] [PubMed]

2010 (3)

H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour, “Thermo-optical properties of colloids enhanced by gold nanoparticles,” Jpn. J. Appl. Phys. 49(8), 085002 (2010).
[Crossref]

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
[Crossref]

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2303–2310 (2010).
[Crossref]

2009 (2)

M. Zhengle, Q. Lingling, H. Fei, L. Yang, W. Chen, and C. Ya, “Thermal-induced nonlinear optical characteristics of ethanol solution doped with silver nanoparticles,” Chin. Opt. Lett. 7(10), 949–952 (2009).
[Crossref]

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A, Pure Appl. Opt. 11(10), 105201 (2009).
[Crossref]

2007 (1)

B. Palpant, M. Rashidi-Huyeh, G. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett. 90(22), 223105 (2007).
[Crossref]

2005 (2)

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A, Pure Appl. Opt. 7(8), 409–415 (2005).
[Crossref]

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[Crossref] [PubMed]

2004 (1)

D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[Crossref]

2001 (1)

V. Pilla, G. G. G. Costa, and T. Catunda, “Applications of Fresnel-Kirchhoff diffraction integral in linear and nonlinear optics: a didactic introduction,” Proc. SPIE 4419, 728–731 (2001).
[Crossref]

1992 (1)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

1989 (1)

1985 (1)

K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57(13), 2434–2436 (1985).
[Crossref]

Aleali, H.

H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour, “Thermo-optical properties of colloids enhanced by gold nanoparticles,” Jpn. J. Appl. Phys. 49(8), 085002 (2010).
[Crossref]

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2303–2310 (2010).
[Crossref]

Balderas-López, J. A.

G. A. López-Muñoz, J. A. Pescador-Rojas, J. Ortega-Lopez, J. S. Salazar, and J. A. Balderas-López, “Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations,” Nanoscale Res. Lett. 7(1), 423 (2012).
[Crossref] [PubMed]

Betsis, S. C.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Bozio, R.

M. C. Frare, R. Signorini, V. Weber, and R. Bozio, “Gold nanoparticles as optical limiting materials against CW lasers,” Proc. SPIE 8901, 890113 (2013).
[Crossref]

Brus, L. E.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[Crossref] [PubMed]

Catunda, T.

V. Pilla, G. G. G. Costa, and T. Catunda, “Applications of Fresnel-Kirchhoff diffraction integral in linear and nonlinear optics: a didactic introduction,” Proc. SPIE 4419, 728–731 (2001).
[Crossref]

Chen, W.

Chen, Z.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014).
[Crossref] [PubMed]

Chenot, S.

B. Palpant, M. Rashidi-Huyeh, G. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett. 90(22), 223105 (2007).
[Crossref]

Christodoulides, D. N.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014).
[Crossref] [PubMed]

Chumanov, G.

D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[Crossref]

Costa, G. G. G.

V. Pilla, G. G. G. Costa, and T. Catunda, “Applications of Fresnel-Kirchhoff diffraction integral in linear and nonlinear optics: a didactic introduction,” Proc. SPIE 4419, 728–731 (2001).
[Crossref]

Deng, L.

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A, Pure Appl. Opt. 7(8), 409–415 (2005).
[Crossref]

Dorranian, D.

M. Mashayekh and D. Dorranian, “Size-dependent nonlinear optical properties and thermal lens in silver nanoparticles,” Optik (Stuttg.) 125(19), 5612–5617 (2014).
[Crossref]

Eslamifar, M.

H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour, “Thermo-optical properties of colloids enhanced by gold nanoparticles,” Jpn. J. Appl. Phys. 49(8), 085002 (2010).
[Crossref]

Evanoff, D. D.

D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[Crossref]

Fagan, J.

J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring Agglomerate Size Distribution and Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle Agglomerate Size Using Analytical Ultracentrifugation,” ACS Nano 5(10), 8070–8079 (2011).
[Crossref] [PubMed]

Fardad, S.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014).
[Crossref] [PubMed]

Fei, H.

Fisson, S.

B. Palpant, M. Rashidi-Huyeh, G. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett. 90(22), 223105 (2007).
[Crossref]

Frare, M. C.

M. C. Frare, R. Signorini, V. Weber, and R. Bozio, “Gold nanoparticles as optical limiting materials against CW lasers,” Proc. SPIE 8901, 890113 (2013).
[Crossref]

Gallas, G.

B. Palpant, M. Rashidi-Huyeh, G. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett. 90(22), 223105 (2007).
[Crossref]

Geints, Y. E.

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13(5), 055707 (2011).
[Crossref]

Gesualdi, M. R. R.

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A, Pure Appl. Opt. 11(10), 105201 (2009).
[Crossref]

Hallock, A. J.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[Crossref] [PubMed]

Harris, J. M.

K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57(13), 2434–2436 (1985).
[Crossref]

He, K.

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A, Pure Appl. Opt. 7(8), 409–415 (2005).
[Crossref]

Heinrich, M.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014).
[Crossref] [PubMed]

Hloupis, G.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Jansen, K. L.

K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57(13), 2434–2436 (1985).
[Crossref]

Jung, J.

J. Jung and T. G. Pedersen, “Polarizability of supported metal nanoparticles: Mehler-Fock approach,” J. Appl. Phys. 112(6), 064312 (2012).
[Crossref]

Karimzadeh, R.

H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour, “Thermo-optical properties of colloids enhanced by gold nanoparticles,” Jpn. J. Appl. Phys. 49(8), 085002 (2010).
[Crossref]

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
[Crossref]

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2303–2310 (2010).
[Crossref]

Keene, A. M.

J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring Agglomerate Size Distribution and Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle Agglomerate Size Using Analytical Ultracentrifugation,” ACS Nano 5(10), 8070–8079 (2011).
[Crossref] [PubMed]

Li, C.

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A, Pure Appl. Opt. 7(8), 409–415 (2005).
[Crossref]

Lingling, Q.

López-Muñoz, G. A.

G. A. López-Muñoz, J. A. Pescador-Rojas, J. Ortega-Lopez, J. S. Salazar, and J. A. Balderas-López, “Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations,” Nanoscale Res. Lett. 7(1), 423 (2012).
[Crossref] [PubMed]

Lowe, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

Maccuspie, R. I.

J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring Agglomerate Size Distribution and Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle Agglomerate Size Using Analytical Ultracentrifugation,” ACS Nano 5(10), 8070–8079 (2011).
[Crossref] [PubMed]

Mansour, N.

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2303–2310 (2010).
[Crossref]

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
[Crossref]

H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour, “Thermo-optical properties of colloids enhanced by gold nanoparticles,” Jpn. J. Appl. Phys. 49(8), 085002 (2010).
[Crossref]

Mashayekh, M.

M. Mashayekh and D. Dorranian, “Size-dependent nonlinear optical properties and thermal lens in silver nanoparticles,” Optik (Stuttg.) 125(19), 5612–5617 (2014).
[Crossref]

Moutzouris, K.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Munin, E.

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A, Pure Appl. Opt. 11(10), 105201 (2009).
[Crossref]

Ortega-Lopez, J.

G. A. López-Muñoz, J. A. Pescador-Rojas, J. Ortega-Lopez, J. S. Salazar, and J. A. Balderas-López, “Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations,” Nanoscale Res. Lett. 7(1), 423 (2012).
[Crossref] [PubMed]

Palpant, B.

M. Rashidi Huyeh, M. Shirdel Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

B. Palpant, M. Rashidi-Huyeh, G. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett. 90(22), 223105 (2007).
[Crossref]

Panamarev, N. S.

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13(5), 055707 (2011).
[Crossref]

Papamichael, M.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Pedersen, T. G.

J. Jung and T. G. Pedersen, “Polarizability of supported metal nanoparticles: Mehler-Fock approach,” J. Appl. Phys. 112(6), 064312 (2012).
[Crossref]

Pescador-Rojas, J. A.

G. A. López-Muñoz, J. A. Pescador-Rojas, J. Ortega-Lopez, J. S. Salazar, and J. A. Balderas-López, “Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations,” Nanoscale Res. Lett. 7(1), 423 (2012).
[Crossref] [PubMed]

Pilla, V.

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A, Pure Appl. Opt. 11(10), 105201 (2009).
[Crossref]

V. Pilla, G. G. G. Costa, and T. Catunda, “Applications of Fresnel-Kirchhoff diffraction integral in linear and nonlinear optics: a didactic introduction,” Proc. SPIE 4419, 728–731 (2001).
[Crossref]

Rashidi Huyeh, M.

M. Rashidi Huyeh, M. Shirdel Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

Rashidi-Huyeh, M.

B. Palpant, M. Rashidi-Huyeh, G. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett. 90(22), 223105 (2007).
[Crossref]

Rastogi, V.

J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring Agglomerate Size Distribution and Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle Agglomerate Size Using Analytical Ultracentrifugation,” ACS Nano 5(10), 8070–8079 (2011).
[Crossref] [PubMed]

Redmond, P. L.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[Crossref] [PubMed]

Said, A. A.

Salandrino, A.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014).
[Crossref] [PubMed]

Salazar, J. S.

G. A. López-Muñoz, J. A. Pescador-Rojas, J. Ortega-Lopez, J. S. Salazar, and J. A. Balderas-López, “Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations,” Nanoscale Res. Lett. 7(1), 423 (2012).
[Crossref] [PubMed]

Sarkhosh, L.

H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour, “Thermo-optical properties of colloids enhanced by gold nanoparticles,” Jpn. J. Appl. Phys. 49(8), 085002 (2010).
[Crossref]

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2303–2310 (2010).
[Crossref]

Sheik-Bahae, M.

Shen, J.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

Shirdel Havar, M.

M. Rashidi Huyeh, M. Shirdel Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

Signorini, R.

M. C. Frare, R. Signorini, V. Weber, and R. Bozio, “Gold nanoparticles as optical limiting materials against CW lasers,” Proc. SPIE 8901, 890113 (2013).
[Crossref]

Snook, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

Stavrakas, I.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Triantis, D.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Van Stryland, E. W.

Weber, V.

M. C. Frare, R. Signorini, V. Weber, and R. Bozio, “Gold nanoparticles as optical limiting materials against CW lasers,” Proc. SPIE 8901, 890113 (2013).
[Crossref]

Ya, C.

Yang, L.

Zemlyanov, A. A.

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13(5), 055707 (2011).
[Crossref]

Zhang, P.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014).
[Crossref] [PubMed]

Zhengle, M.

Zhou, T.

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A, Pure Appl. Opt. 7(8), 409–415 (2005).
[Crossref]

Zook, J. M.

J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring Agglomerate Size Distribution and Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle Agglomerate Size Using Analytical Ultracentrifugation,” ACS Nano 5(10), 8070–8079 (2011).
[Crossref] [PubMed]

ACS Nano (1)

J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring Agglomerate Size Distribution and Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle Agglomerate Size Using Analytical Ultracentrifugation,” ACS Nano 5(10), 8070–8079 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57(13), 2434–2436 (1985).
[Crossref]

Appl. Phys. B (1)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Appl. Phys. Lett. (1)

B. Palpant, M. Rashidi-Huyeh, G. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett. 90(22), 223105 (2007).
[Crossref]

Chem. Phys. (1)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

Chin. Opt. Lett. (1)

J. Appl. Phys. (2)

M. Rashidi Huyeh, M. Shirdel Havar, and B. Palpant, “Thermo-optical properties of embedded silver nanoparticles,” J. Appl. Phys. 112(10), 103101 (2012).
[Crossref]

J. Jung and T. G. Pedersen, “Polarizability of supported metal nanoparticles: Mehler-Fock approach,” J. Appl. Phys. 112(6), 064312 (2012).
[Crossref]

J. Opt. (1)

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13(5), 055707 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A, Pure Appl. Opt. 7(8), 409–415 (2005).
[Crossref]

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A, Pure Appl. Opt. 11(10), 105201 (2009).
[Crossref]

J. Phys. Chem. B (1)

D. D. Evanoff and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour, “Thermo-optical properties of colloids enhanced by gold nanoparticles,” Jpn. J. Appl. Phys. 49(8), 085002 (2010).
[Crossref]

Nano Lett. (1)

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett. 14(5), 2498–2504 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

G. A. López-Muñoz, J. A. Pescador-Rojas, J. Ortega-Lopez, J. S. Salazar, and J. A. Balderas-López, “Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations,” Nanoscale Res. Lett. 7(1), 423 (2012).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42(5), 783–789 (2010).
[Crossref]

Opt. Lett. (1)

Optik (Stuttg.) (1)

M. Mashayekh and D. Dorranian, “Size-dependent nonlinear optical properties and thermal lens in silver nanoparticles,” Optik (Stuttg.) 125(19), 5612–5617 (2014).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2303–2310 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U.S.A. 102(5), 1280–1284 (2005).
[Crossref] [PubMed]

Proc. SPIE (2)

M. C. Frare, R. Signorini, V. Weber, and R. Bozio, “Gold nanoparticles as optical limiting materials against CW lasers,” Proc. SPIE 8901, 890113 (2013).
[Crossref]

V. Pilla, G. G. G. Costa, and T. Catunda, “Applications of Fresnel-Kirchhoff diffraction integral in linear and nonlinear optics: a didactic introduction,” Proc. SPIE 4419, 728–731 (2001).
[Crossref]

Other (2)

P. Laven, “MiePlot: a computer program for scattering of light from a sphere using Mie theory & the Debye series, http://www.philiplaven.com/mieplot.htm , 2017.

S. E. Bialkowski, “Photothermal spectroscopy methods for chemical analysis,” in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, J. D. Winefordner, ed., (John Wiley & Sons, Inc., 1996), Vol. 134.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A. Time-dependent measurement of beam blocking. Representative temporal shape of the incident beam is shown in the inset. B. Beam profiling of the incident laser beam in the far field. LA = Laser beam, L = lens, C = cuvette, A = aperture, D = detector, O = oscilloscope, S = screen, IM = imaging camera.
Fig. 2
Fig. 2 A. Experimental spectral absorbance per cm of NP suspensions tested. Dashed vertical lines indicate wavelength positions of the incident lasers used. B. Computed ratio of scattering over absorption cross-sections of Ag and Au nanoparticles in hexane as a function of particle size at respective resonances.
Fig. 3
Fig. 3 633-nm beam imaged in the far field by a high-speed camera, after it passes through a cuvette containing 5-nm nanoparticle suspension. A. The cuvette is placed 2 cm in front of focus. B. The cuvette is placed near focus. C. The cuvette is placed 2 cm past focus.
Fig. 4
Fig. 4 Far-field beam profiles for 5-nm Au NP suspension in hexane, irradiated with a 405-nm laser.A-D are experimental measurements, while E-H are diffraction simulations from Eq. (3) (see text for details). The beam waist inside the cuvette is 60 µm and the beam power, from left to right, across each row is 0.3, 1.7, 2.9 and 5.0 mW, respectively.
Fig. 5
Fig. 5 Predicted laser-induced temperature rise, according to Eq. (1) vs. radial distance from beam center after 0.01, 01 and 1 sec (numbers next to the curves). Calculations are performed for 5-nm Au NP suspensions in hexane, irradiated with a 405-nm laser beam at 5 mW.
Fig. 6
Fig. 6 Far field divergence vs. incident power density for Au and Ag 5-nm NPs in hexane, irradiated at 405-nm, 633-nm and 785-nm wavelengths. Numbers next to the curves indicate incident wavelengths. For the 633-nm irradiation, Au and Ag NP data follow different trends; thus, NP material is indicated as well. The lines are linear regression fits to the data, according to the prediction from Eq. (5).
Fig. 7
Fig. 7 Time dependent measurements of on-axis laser beam intensity, modulated by an AOM shutter. A. Four cycles of AOM 405-nm 5mW laser modulation (“trigger”) and the transmission response (“signal”) of the laser through the 5-nm Au NP hexane suspension. B. Transient response of a 405-nm 5 mW laser through a suspension of 5 nm Ag NPs in hexane (orange trace) and H2O (blue trace). C. 405-nm beam at various incident power (number labels next to curves) incident on a 5-nm Au NP hexane suspension. D 633-nm beam at various incident power (number labels next to curves) incident on a 5-nm Au NP hexane suspension. For both C and D, symbols are experimental data and solid lines are diffraction theory, based on Eqs. (1-3).
Fig. 8
Fig. 8 Comparison of the thermo-optic coefficients from the literature for benzene [11] (solid orange line) and hexane [16] (gray triangles) vs. 5-nm Au (yellow cirles) and Ag (blue diamond) NP suspensions in hexane measured in this study. The dashed lines for the experimental data are drawn to guide the eye.
Fig. 9
Fig. 9 A. T50 on-axis thermal-lensing decay times for Au and Ag NP suspensions for three different wavelengths as a function of incident power density, obtained from experimental decay curves.. The dashed lines are inverse power law fit, as suggested by Eq. (4). B. On-axis attenuation of the laser beam for the same conditions as in A. Lines are drawn to guide the eye. For both figures, labes next to the curves indicate NP material and incident laser wavelength.
Fig. 10
Fig. 10 System implementation of thermo-optic effect for high-power beam rejection. A. a low power beam is brought to an intermediate focus in the cuvette and, then, passes through an aperture and is recollimated by a second lens. B. A high power beam is focused onto a cuvette, but then diverges, due to the thermal lensing effect, and then is blocked by an exit aperture. L1, L2 – lenses. C – Cuvette, A- apeture.

Tables (3)

Tables Icon

Table 1 Definition of Terms Used in Equations throughout the Manuscript

Tables Icon

Table 2 Nanoparticle concentration, interparticle spacing and volume fraction, derived from computed per-particle cross-sections and experimental data presented in Fig. 2(a).

Tables Icon

Table 3 Thermal Properties of NP Solvents used in the Experiments [16]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔT(r,t)= P 0 α 4πκ [ E i ( r 2 ω 2 ) E i ( r 2 ω 2 ( 1+ 4Dt ω 2 ) ) ]
Δφ(r,t)= 2π λ L dn dT ( λ )ΔT(r,t)
I(r,t)= | i2π λd exp[ i2π λd ( d+ r 2 2d ) ] 0 exp( iπ r 1 2 λd ) E 0 exp( r 1 2 ω 2 )exp( iΔφ ) J 0 ( 2πr r 1 λd ) r 1 d r 1 | 2
I(t) I(0) = [ 1 P 0 ( 1 e αL ) 2λκ dn dT tan 1 ( 2V ω 2 8Dt [ 9+ V 2 ]+3+ V 2 ) ] 2
θ max 0.3 P 0 ( 1 e αL ) πωκ | dn dT |
P cr 1.7λκ | dn dT | f a

Metrics