Abstract

We propose an optical frequency comb (OFC)-based strain sensing method, namely OFC sensing cavity, which is capable of radio-frequency (RF)-based strain measurement. We developed a null-method-based strain sensing system with a comb-spacing-stabilized OFC generator. We realized strain measurement from 1.83 µε to 1800 µε with a sensing fiber length of 20 mm. The measurable strain frequency range of the developed strain sensing system was from 0 to 310 Hz. Owing to the use of RF-based strain measurement, our approach would be a useful and powerful tool for sensing of strain or other physical quantities, and the concept of the OFC sensing cavity is a new aspect of OFC technology.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor

Ryo Oe, Shuji Taue, Takeo Minamikawa, Kosuke Nagai, Kyuki Shibuya, Takahiko Mizuno, Masatomo Yamagiwa, Yasuhiro Mizutani, Hirotsugu Yamamoto, Tetsuo Iwata, Hideki Fukano, Yoshiaki Nakajima, Kaoru Minoshima, and Takeshi Yasui
Opt. Express 26(15) 19694-19706 (2018)

Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy

Naoya Kuse, Akira Ozawa, and Yohei Kobayashi
Opt. Express 21(9) 11141-11149 (2013)

Displacement metrology with sub-pm resolution in air based on a fs-comb wavelength synthesizer

T. R. Schibli, K. Minoshima, Y. Bitou, F.-L. Hong, H. Inaba, A. Onae, and H. Matsumoto
Opt. Express 14(13) 5984-5993 (2006)

References

  • View by:
  • |
  • |
  • |

  1. K. Hoffmann, “An introduction to stress analysis and transducer design using strain gauges,” HBM Test Measurement (2012).
  2. C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
    [Crossref]
  3. I. Yamaguchi, “A laser-speckle strain gauge,” J. Phys. Educ. 14, 1270 (1981).
  4. Y. Y. Hung, “Shearography: a new optical method for strain measurement and nondestructive testing,” Opt. Eng. 21, 213391 (1982).
  5. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  6. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649–659 (2016).
    [Crossref]
  7. K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14(2), 179–181 (2002).
    [Crossref]
  8. Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
    [Crossref] [PubMed]
  9. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
    [Crossref] [PubMed]
  10. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13(7), 1243–1249 (1995).
    [Crossref]
  11. S. Liu, Z. Yin, L. Zhang, L. Gao, X. Chen, and J. Cheng, “Multilongitudinal mode fiber laser for strain measurement,” Opt. Lett. 35(6), 835–837 (2010).
    [Crossref] [PubMed]
  12. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
    [Crossref] [PubMed]
  13. O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
    [Crossref] [PubMed]
  14. Y. N. Tan, Y. Zhang, L. Jin, and B. O. Guan, “Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement,” Opt. Express 19(21), 20650–20656 (2011).
    [Crossref] [PubMed]
  15. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
    [Crossref] [PubMed]
  16. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  17. T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
    [Crossref] [PubMed]
  18. S. Wang, P. Lu, H. Liao, L. Zhang, D. M. Liu, and J. S. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1893–1898 (2013).
    [Crossref]
  19. H. Inaba, Y. Daimon, F. L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
    [Crossref] [PubMed]
  20. K. Peters, “Polymer optical fiber sensors-a review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [Crossref]
  21. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [Crossref] [PubMed]
  22. P. Bhatia and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications,” Sens. Actuators B Chem. 161(1), 434–438 (2012).
    [Crossref]
  23. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  24. Y. Yamaoka, Y. Harada, M. Sakakura, T. Minamikawa, S. Nishino, S. Maehara, S. Hamano, H. Tanaka, and T. Takamatsu, “Photoacoustic microscopy using ultrashort pulses with two different pulse durations,” Opt. Express 22(14), 17063–17072 (2014).
    [Crossref] [PubMed]
  25. X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
    [Crossref]
  26. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]

2017 (1)

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (3)

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

S. Wang, P. Lu, H. Liao, L. Zhang, D. M. Liu, and J. S. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1893–1898 (2013).
[Crossref]

2012 (2)

P. Bhatia and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications,” Sens. Actuators B Chem. 161(1), 434–438 (2012).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

2006 (1)

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14(2), 179–181 (2002).
[Crossref]

2001 (1)

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

1999 (1)

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

1995 (1)

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13(7), 1243–1249 (1995).
[Crossref]

1982 (1)

Y. Y. Hung, “Shearography: a new optical method for strain measurement and nondestructive testing,” Opt. Eng. 21, 213391 (1982).

1981 (1)

I. Yamaguchi, “A laser-speckle strain gauge,” J. Phys. Educ. 14, 1270 (1981).

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bang, O.

Bao, X. Y.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Bhatia, P.

P. Bhatia and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications,” Sens. Actuators B Chem. 161(1), 434–438 (2012).
[Crossref]

Chen, R. T.

Chen, X.

Cheng, J.

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Daimon, Y.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Fasano, A.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Gao, L.

Ghandehari, M.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Guan, B. O.

Gupta, B. D.

P. Bhatia and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications,” Sens. Actuators B Chem. 161(1), 434–438 (2012).
[Crossref]

Habel, W.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Hadeler, O.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hamano, S.

Hansch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Harada, Y.

Hase, E.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Hirano, M.

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hong, F. L.

Hosaka, K.

Hosseini, A.

Hotate, K.

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14(2), 179–181 (2002).
[Crossref]

Hsieh, Y.-D.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Hung, Y. Y.

Y. Y. Hung, “Shearography: a new optical method for strain measurement and nondestructive testing,” Opt. Eng. 21, 213391 (1982).

Ibsen, M.

Imai, M.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Inaba, H.

Inaudi, D.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Ip, E.

Iwata, T.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Jen, A. K. Y.

Jin, L.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Kaneoka, Y.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Katsuyama, T.

Kawato, S.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13(7), 1243–1249 (1995).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Kobayashi, T.

Kohno, T.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13(7), 1243–1249 (1995).
[Crossref]

Krebber, K.

Laming, R. I.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Leung, C. K. Y.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Liao, H.

S. Wang, P. Lu, H. Liao, L. Zhang, D. M. Liu, and J. S. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1893–1898 (2013).
[Crossref]

Liu, D. M.

S. Wang, P. Lu, H. Liao, L. Zhang, D. M. Liu, and J. S. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1893–1898 (2013).
[Crossref]

Liu, S.

Lu, P.

S. Wang, P. Lu, H. Liao, L. Zhang, D. M. Liu, and J. S. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1893–1898 (2013).
[Crossref]

Luo, J.

Maehara, S.

Markos, C.

Matsumoto, H.

Minamikawa, T.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Y. Yamaoka, Y. Harada, M. Sakakura, T. Minamikawa, S. Nishino, S. Maehara, S. Hamano, H. Tanaka, and T. Takamatsu, “Photoacoustic microscopy using ultrashort pulses with two different pulse durations,” Opt. Express 22(14), 17063–17072 (2014).
[Crossref] [PubMed]

Minoshima, K.

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Mizutani, Y.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Nakajima, Y.

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Nakazawa, M.

Nielsen, K.

Nishino, S.

Okubo, S.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Okuno, T.

Onae, A.

Onishi, M.

Ou, J. P.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Pan, Z.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Peters, K.

K. Peters, “Polymer optical fiber sensors-a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Rasmussen, H. K.

Rønnekleiv, E.

Sakakura, M.

Schibli, T. R.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Shibuya, K.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Stajanca, P.

Stefani, A.

Subbaraman, H.

Takamatsu, T.

Tan, Y. N.

Tanaka, H.

Tanaka, M.

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14(2), 179–181 (2002).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Wada, Y.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Wan, K. T.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Wang, S.

Wang, T.

Weng, Y.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Woyessa, G.

Wu, H. C.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Yamaguchi, I.

I. Yamaguchi, “A laser-speckle strain gauge,” J. Phys. Educ. 14, 1270 (1981).

Yamamoto, H.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Yamaoka, Y.

Yasuda, M.

Yasui, T.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Yin, Z.

Zervas, M. N.

Zhan, Q.

Zhang, J. S.

S. Wang, P. Lu, H. Liao, L. Zhang, D. M. Liu, and J. S. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1893–1898 (2013).
[Crossref]

Zhang, L.

S. Wang, P. Lu, H. Liao, L. Zhang, D. M. Liu, and J. S. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1893–1898 (2013).
[Crossref]

S. Liu, Z. Yin, L. Zhang, L. Gao, X. Chen, and J. Cheng, “Multilongitudinal mode fiber laser for strain measurement,” Opt. Lett. 35(6), 835–837 (2010).
[Crossref] [PubMed]

Zhang, X.

Zhang, Y.

Zhou, Z.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (1)

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14(2), 179–181 (2002).
[Crossref]

J. Lightwave Technol. (3)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13(7), 1243–1249 (1995).
[Crossref]

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

J. Mod. Opt. (1)

S. Wang, P. Lu, H. Liao, L. Zhang, D. M. Liu, and J. S. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1893–1898 (2013).
[Crossref]

J. Phys. Educ. (1)

I. Yamaguchi, “A laser-speckle strain gauge,” J. Phys. Educ. 14, 1270 (1981).

Mater. Struct. (1)

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Nat. Commun. (1)

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Nature (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Eng. (1)

Y. Y. Hung, “Shearography: a new optical method for strain measurement and nondestructive testing,” Opt. Eng. 21, 213391 (1982).

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5(1), 11388 (2015).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

P. Bhatia and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications,” Sens. Actuators B Chem. 161(1), 434–438 (2012).
[Crossref]

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors-a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Other (1)

K. Hoffmann, “An introduction to stress analysis and transducer design using strain gauges,” HBM Test Measurement (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Strain sensing system with OFC. (a) Optical setup of OFC-based strain sensing system with comb-spacing stabilization. (b) Schematic strategy of the null method-based strain sensing with OFC. EDF, erbium-doped fiber; PD, photo detector; IWDM, wavelength division multiplexer with isolator; OC, optical coupler; DBM, double balanced mixer; SPF, short frequency pass filter; and PZT, piezoelectric transducer.
Fig. 2
Fig. 2 Allan deviation of the repetition rate of the OFC generator.
Fig. 3
Fig. 3 Relationship between compensation signal VPZT and applied displacement in static strain sensing. The solid line indicates the linear least-squares fit to the experimental data (solid circles).
Fig. 4
Fig. 4 Frequency response of compensation signal VPZT. A displacement of 150 nm, or a strain of 7.90 µε over a 20 mm-long sensing region, was applied to the strain sensing region.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f rep = c nL ,
V PZT =CΔL,
V PZT =CLε,
δ( nL )=Lδn+nδL =( α n +n α f )LδT

Metrics