Abstract

In operational electro-optical systems, infrared focal plane arrays (IR FPA) are integrated in cryocoolers which induce vibrations that may strongly affect their modulation transfer function (MTF). In this paper, we present the MTF measurement of an IR FPA sealed in its cryocooler. The method we use to measure the MTF decorrelates operational constraints and the technological limitations of the IR FPA. The bench is based on the diffraction properties of a continuously self imaging grating (CSIG). The 26 µm pixel size extracted from the MTF measurement is in good agreement with the expected value.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-frame linear regressive filter for the measurement of infrared pixel spatial response and MTF from sparse data

Edouard Huard, Sophie Derelle, Julien Jaeck, Jean Nghiem, Riad Haïdar, and Jérôme Primot
Opt. Express 26(5) 5200-5211 (2018)

Modulation transfer function measurement of an infrared focal plane array by use of the self-imaging property of a canted periodic target

Nicolas Guérineau, Jérôme Primot, Michel Tauvy, and Marcel Caes
Appl. Opt. 38(4) 631-637 (1999)

References

  • View by:
  • |
  • |
  • |

  1. M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
    [Crossref]
  2. E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
    [Crossref]
  3. R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
    [Crossref]
  4. M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
    [Crossref]
  5. M. Delmas, R. Rossignol, J. B. Rodriguez, and P. Christol, “Design of InAs/GaSb superlattice infrared barrier detectors,” Superlattice. Microstruct. 104, 402–414 (2017).
    [Crossref]
  6. L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
    [Crossref]
  7. P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
    [Crossref]
  8. A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54, 136–154 (2011).
    [Crossref]
  9. N. Guérineau and J. Primot, “Nondiffracting array generation using an N-wave interferometer,” J. Opt. Soc. Am. A 16, 293–298 (1999).
    [Crossref]
  10. F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
    [Crossref]
  11. N. Guérineau, B. Harchaoui, J. Primot, and K. Heggarty, “Generation of achromatic and propagation-invariant spot arrays by use of continuously self-imaging gratings,” Opt. Lett. 26, 411–413 (2001).
    [Crossref]
  12. E. Di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a continuously self-imaging grating,” Proc. SPIE 5076, 169–178 (2003).
    [Crossref]
  13. J. E. Greivenkamp and A. E. Lowman, “Modulation transfer function measurement of sparse-array sensors using a self-calibrating fringe pattern,” Appl. Opt. 33(22), 5029–5036 (1994).
    [Crossref] [PubMed]
  14. G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
    [Crossref]
  15. G. Boreman and E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25(1), 148 (1986).
    [Crossref]
  16. A. Daniels, G.D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” J. Opt. Soc. Am. B 34(3), 860–868 (1995).
  17. M. Piponnier, G. Druart, N. Guérineau, J. -L. de Bougrenet, and J. Primot, “Optimal conditions for using the binary approximation of continuously self-imaging gratings,” Opt. Express 19(23) 23054–23066 (2011).
    [Crossref] [PubMed]
  18. J. Primot, G. Rousset, and J. C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. A 7, 1598–1608 (1990).
    [Crossref]

2017 (2)

M. Delmas, R. Rossignol, J. B. Rodriguez, and P. Christol, “Design of InAs/GaSb superlattice infrared barrier detectors,” Superlattice. Microstruct. 104, 402–414 (2017).
[Crossref]

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

2016 (1)

M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
[Crossref]

2014 (4)

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
[Crossref]

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

2012 (1)

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

2011 (2)

2009 (1)

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

2003 (1)

E. Di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a continuously self-imaging grating,” Proc. SPIE 5076, 169–178 (2003).
[Crossref]

2001 (1)

1999 (1)

1995 (1)

A. Daniels, G.D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” J. Opt. Soc. Am. B 34(3), 860–868 (1995).

1994 (1)

1990 (1)

1986 (1)

G. Boreman and E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25(1), 148 (1986).
[Crossref]

Asplund, C.

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

Baier, N.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

Bardou, N.

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Bijjam, P. R.

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

Bogdanov, S.

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

Boreman, G.

G. Boreman and E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25(1), 148 (1986).
[Crossref]

Boreman, G.D.

A. Daniels, G.D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” J. Opt. Soc. Am. B 34(3), 860–868 (1995).

Boulard, F.

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Callewaert, F.

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

Chen, G.

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

Christol, P.

M. Delmas, R. Rossignol, J. B. Rodriguez, and P. Christol, “Design of InAs/GaSb superlattice infrared barrier detectors,” Superlattice. Microstruct. 104, 402–414 (2017).
[Crossref]

M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
[Crossref]

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Costard, E.

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

Crastes, A.

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

Daniels, A.

A. Daniels, G.D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” J. Opt. Soc. Am. B 34(3), 860–868 (1995).

Darvish, S. R.

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

de Bougrenet, J. -L.

de la Barrière, F.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

Delmas, M.

M. Delmas, R. Rossignol, J. B. Rodriguez, and P. Christol, “Design of InAs/GaSb superlattice infrared barrier detectors,” Superlattice. Microstruct. 104, 402–414 (2017).
[Crossref]

M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
[Crossref]

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Derelle, S.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

Dereniak, E. L.

G. Boreman and E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25(1), 148 (1986).
[Crossref]

Destefanis, G.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

Di Mambro, E.

E. Di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a continuously self-imaging grating,” Proc. SPIE 5076, 169–178 (2003).
[Crossref]

Druart, G.

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

M. Piponnier, G. Druart, N. Guérineau, J. -L. de Bougrenet, and J. Primot, “Optimal conditions for using the binary approximation of continuously self-imaging gratings,” Opt. Express 19(23) 23054–23066 (2011).
[Crossref] [PubMed]

Ducharme, A. D.

A. Daniels, G.D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” J. Opt. Soc. Am. B 34(3), 860–868 (1995).

Durand, A.

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

Fleißner, J.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Fontanella, J. C.

Gamfeldt, A.

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

Giard, E.

M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
[Crossref]

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Glozman, A.

P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
[Crossref]

Gravrand, O.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

Greivenkamp, J. E.

Grossman, S.

P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
[Crossref]

Guérineau, N.

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

M. Piponnier, G. Druart, N. Guérineau, J. -L. de Bougrenet, and J. Primot, “Optimal conditions for using the binary approximation of continuously self-imaging gratings,” Opt. Express 19(23) 23054–23066 (2011).
[Crossref] [PubMed]

E. Di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a continuously self-imaging grating,” Proc. SPIE 5076, 169–178 (2003).
[Crossref]

N. Guérineau, B. Harchaoui, J. Primot, and K. Heggarty, “Generation of achromatic and propagation-invariant spot arrays by use of continuously self-imaging gratings,” Opt. Lett. 26, 411–413 (2001).
[Crossref]

N. Guérineau and J. Primot, “Nondiffracting array generation using an N-wave interferometer,” J. Opt. Soc. Am. A 16, 293–298 (1999).
[Crossref]

Haddadi, A.

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

Haïdar, R.

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Harchaoui, B.

Heggarty, K.

Hoang, A. M.

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

Höglund, L.

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

Jaeck, J.

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Kataria, H.

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

Klin, O.

P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
[Crossref]

Klipstein, P. C.

P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
[Crossref]

Lhermet, N.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

Licht, A. S.

M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
[Crossref]

Livneh, Y.

P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
[Crossref]

Lowman, A. E.

Marcks von Würtemberg, R.

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

Martijn, H.

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

McClintock, R.

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

Mugnier, L.

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

Piponnier, M.

Primot, J.

Razeghi, M.

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

Rehm, R.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Ribet-Mohamed, I.

M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
[Crossref]

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

Rodriguez, J. B.

M. Delmas, R. Rossignol, J. B. Rodriguez, and P. Christol, “Design of InAs/GaSb superlattice infrared barrier detectors,” Superlattice. Microstruct. 104, 402–414 (2017).
[Crossref]

Rodriguez, J.-B.

M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
[Crossref]

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Rogalski, A.

A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54, 136–154 (2011).
[Crossref]

Rommeluère, S.

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

Rossignol, R.

M. Delmas, R. Rossignol, J. B. Rodriguez, and P. Christol, “Design of InAs/GaSb superlattice infrared barrier detectors,” Superlattice. Microstruct. 104, 402–414 (2017).
[Crossref]

M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
[Crossref]

Rousset, G.

Rutz, F.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Sapir, E.

A. Daniels, G.D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” J. Opt. Soc. Am. B 34(3), 860–868 (1995).

Scheibner, R.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Schmitz, J.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Smuk, S.

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

Snapi, N.

P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
[Crossref]

Steveler, E.

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Taalat, R.

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Taboury, J.

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

Viale, T.

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

Walther, M.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Weiss, E.

P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
[Crossref]

Ziegler, J.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Appl. Opt. (1)

Infrared Phys. Technol. (3)

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

L. Höglund, C. Asplund, R. Marcks von Würtemberg, H. Kataria, A. Gamfeldt, S. Smuk, H. Martijn, and E. Costard, “Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging,” Infrared Phys. Technol. 84(6), 28–32 (2017).
[Crossref]

A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Phys. Technol. 54, 136–154 (2011).
[Crossref]

J. Appl. Phys. (2)

M. Delmas, J.-B. Rodriguez, R. Rossignol, A. S. Licht, E. Giard, I. Ribet-Mohamed, and P. Christol, “Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector,” J. Appl. Phys. 119(117), 174503 (2016).
[Crossref]

E. Giard, I. Ribet-Mohamed, J. Jaeck, T. Viale, R. Haïdar, R. Taalat, M. Delmas, J.-B. Rodriguez, E. Steveler, N. Bardou, F. Boulard, and P. Christol, “Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors,” J. Appl. Phys. 116(4) 043101 (2014).
[Crossref]

J. Electron. Mater. (3)

M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, P. R. Bijjam, and R. McClintock, “Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems,” J. Electron. Mater. 43, 2802–2807 (2014).
[Crossref]

P. C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, “Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors,” J. Electron. Mater. 43(8), 2984–2990 (2014).
[Crossref]

F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, “Modulation transfer function measurement of infrared focal-plane arrays with small fill factors,” J. Electron. Mater. 41(10) 2730–2737 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

A. Daniels, G.D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” J. Opt. Soc. Am. B 34(3), 860–868 (1995).

Opt. Eng. (1)

G. Boreman and E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25(1), 148 (1986).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

E. Di Mambro, N. Guérineau, and J. Primot, “Modulation transfer function measurement of an infrared focal plane array using a continuously self-imaging grating,” Proc. SPIE 5076, 169–178 (2003).
[Crossref]

G. Druart, S. Rommeluère, T. Viale, N. Guérineau, I. Ribet-Mohamed, A. Crastes, A. Durand, and J. Taboury, “Modulation transfer function measurement of microbolometer focal plane array by Lloyd’s mirror method,” Proc. SPIE 9071, 90710S (2014).
[Crossref]

Superlattice. Microstruct. (1)

M. Delmas, R. Rossignol, J. B. Rodriguez, and P. Christol, “Design of InAs/GaSb superlattice infrared barrier detectors,” Superlattice. Microstruct. 104, 402–414 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Measurement bench using a CSIG. The collimated flux is projected by the CSIG following a pattern with known spatial frequencies. The raw image is recorded and processed in order to extract the pixel MTF.
Fig. 2
Fig. 2 Measured MTF breakdown. The total MTF can be divided into 3 main blocks: the MTFCSIG, the MTFbench and the MTFIDDC A. The MTFbench can be split into MTFpinhole and MTFcollimator. The MTFIDDC A can be divided in MTFvibration and MTFdetector. dx, dy, δx, δy and ϕpinhole are parameters described in the text.
Fig. 3
Fig. 3 Patterns used for oversampling on this bench, the left pattern being reproduced more faithfully by the mechanical stage.
Fig. 4
Fig. 4 IDDCA MTF measurement : on the left, the modulus of the IDDCA MTF as a function of spatial frequency; on the right, the argument of the IDDCA MTF as a function of spatial frequency. The phase shift drawn is only a guide for the eye.
Fig. 5
Fig. 5 On the left : vibrations estimated on each of the 25 positions taken by the CSIG (marked with a number). The bigger dot represents the average position of the 300 averaged images. On the right, the measurements after merging the average positions. Colors were only meant to distinguish acquisitions on different positions.
Fig. 6
Fig. 6 Comparison of the vibrations period with the integration time ti. tframe (16.6 ms) represents the time interval between 2 images. From top to bottom: 0) no vibration 1) low frequency vibration 2) high frequency vibration 3) medium frequency vibration.
Fig. 7
Fig. 7 Vibration spectrum measured on the compressor (left) and on the measurement bench (breadboard, right). X represents the optical axis, Y, Z the FPA plane. On the compressor data, we can see a 31Hz peak and its harmonics (notably one at 62Hz). The bandwidth due to integration time (81Hz) is displayed as well. On the breadboard data, we can see a 50Hz peak that does not appear on the compressor data. We can conclude that the IDDCA is well isolated from the lab environment.
Fig. 8
Fig. 8 Vibration amplitude estimation as a function of integration time on x (left) and y axes (right).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

M T F t o t a l ( v x , v y ) = M T F I D D C A ( v x , v y ) × M T F b e n c h ( v x , v y ) × M T F C S I G ( v x , v y )
M T F C S I G ( v x , v y ) = i = 1 288 c i δ ( v x i , v y i )
M T F I D D C A ( v x , v y ) = M T F d e t e c t o r ( v x , v y ) × M T F v i b r a t i o n s ( v x , v y , δ x , δ y )
M T F v i b r a t i o n s ( v x , v y , δ x , δ y ) = G ( v x , δ x ) G ( v y , δ y ) = e ( π v x δ x ) 2 2 × e ( π v y δ y ) 2 2
M T F d e t e c t o r ( v x , v y ) = M T F i d e a l p i x e l ( v x , v y ) × M T F t e c h ( v x , v y )
M T F i d e a l p i x e l ( v x , v y ) = s i n c ( v x a x p i x ) × s i n c ( v x a y p i x )
M T F t e c h ( v x , v y ) = G ( v x , δ x ) G ( v y , δ y )
v m a x = 2 η a 0
v p i n h o l e = 1.22 ϕ
ϕ = ϕ p i n h o l e d f
M T F t o t a l ( v x , v y ) = M T F p i x e l ( v x , v y ) G ( v , δ x ) G ( v , δ y )
T F ( I m g ( x x 0 , y y 0 ) ) = T F ( I m g ) e 2 i π ( v x x 0 + v y y 0 )
p o s ( t ) = A s i n ( 2 π × t × f v i b )
d m a x = 2 π A × f v i b × t i
M T F v i b p i x ( v x ) = M T F p i x e l ( v x ) × M T F v i b ( v x ) = M T F p i x e l ( v x ) × s i n c ( v x 1.4 μm )
M T F s t a b ( v x ) = e 2 ( π σ s t a b v x ) 2

Metrics