Abstract

A fringe visibility enhanced fiber-optic Fabry-Perot interferometer based ultrasonic sensor is proposed and experimentally demonstrated for seismic physical model imaging. The sensor consists of a graded index multimode fiber collimator and a PTFE (polytetrafluoroethylene) diaphragm to form a Fabry-Perot interferometer. Owing to the increase of the sensor’s spectral sideband slope and the smaller Young’s modulus of the PTFE diaphragm, a high response to both continuous and pulsed ultrasound with a high SNR of 42.92 dB in 300 kHz is achieved when the spectral sideband filter technique is used to interrogate the sensor. The ultrasonic reconstructed images can clearly differentiate the shape of models with a high resolution.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating

Jingjing Guo, Shigui Xue, Qun Zhao, and Changxi Yang
Opt. Express 22(16) 19573-19580 (2014)

High-spatial-resolution ultrasonic sensor using a micro suspended-core fiber

Zhihua Shao, Qiangzhou Rong, Fengyi Chen, and Xueguang Qiao
Opt. Express 26(8) 10820-10832 (2018)

Ultrasound-to-plastic optical fiber coupling as an acoustic source probe

Tingting Gang, Manli Hu, Yongxin Hao, Ruixiang Zhou, Rongxin Tong, Xueguang Qiao, and Qiangzhou Rong
Appl. Opt. 56(24) 6889-6893 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. H. Sherlock, J. A. Mcdonald, and B. J. Evans, “Seismic imaging of sandbox models,” Freien Universität Berlin 11(1), 1371–1374 (1997).
  2. M. S. Vassiliou, M. Abdelgawad, and B. R. Tittmann, “Ultrasonic physical modeling of seismic wave propagation from graben-like structures,” Final Report, 19 Feb. 1985–30 Jun. 1987 Rockwell International Corp. Thousand Oaks, CA.
  3. A. Bakulin, V. Grechka, and I. Tsvankin, “Estimation of fracture parameters from reflection seismic data–Part I: HTI model due to a single 313 fracture set,” Geophysics 65(6), 1788–1802 (2000).
    [Crossref]
  4. S. Park and S. He, “Standing wave brass-PZT square tubular ultrasonic motor,” Ultrasonics 52, 880–889 (2012).
    [Crossref] [PubMed]
  5. K. Toda and A. Sawaguchi, “Ultrasonic imaging system using a leaky surface acoustic wave transducer composed of piezoelectric ceramic and fused quartz,” Journal of Applied Physics 69(1), 103–108 (1991).
    [Crossref]
  6. S. Lin and S. Wang, “Radially composite piezoelectric ceramic tubular transducer in radial vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011.  58, 2492–2498 (2011).
  7. D. Kerseyetal, “Fiber grating sensors,” J.Lightw.Technol. 15(8), 1442–1460 (1997).
  8. Z. X. Li, L. Pei, B. Dong, C. Ma, and A. B. Wang, “Analysis of ultrasonic frequency response of surface attached fiber Bragg grating,” Appl. Opt. 51(20), 4709–4714 (2012).
    [Crossref] [PubMed]
  9. K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
    [Crossref] [PubMed]
  10. Z. Yu, Q. Jiang, H. Zhang, and J. Wang, “Theoretical and experimental investigation of fiber Bragg gratings with different lengths for ultrasonic detection,” Photonic Sensors 6(2), 187–192 (2016).
    [Crossref]
  11. J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Exp. 23(22), 29268–78 (2015).
    [Crossref]
  12. S. Foster and A. Tikhomirov, “A fiber laser hydrophone,” Proceedings of Optical Fiber Sensors 5855, 627–630 (2005).
  13. J. R. Lee and H. Tsuda, “Fiber optic liquid leak detection technique with an ultrasonic actuator and a fiber Bragg grating,” Opt. Lett. 30(24), 3293–3295 (2005).
    [Crossref]
  14. C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, and H. Lamela, “Polymer optical fibre sensors for endoscopic optoacoustic imaging,” Opto-Acoustic Methods and Applications in Biophotonics II 9539, 953907 (2015).
    [Crossref]
  15. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  16. J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Exp. 22(16), 19573 (2014).
    [Crossref]
  17. R. Wang, Z. Liu, and X. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensors and Actuators, B: Chemical 234, 498–502 (2016).
    [Crossref]
  18. F. Xu, J. Shi, K. Gong, H. Li, R. Hui, and B. Yu, “Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaphragm,” Opt. Lett. 39(10), 2838 (2014).
    [Crossref] [PubMed]
  19. P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer,” Applied Optics 35(4), 663–675 (1996).
    [Crossref] [PubMed]
  20. Q. Y. Wang and Q. X. Yu, “Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor,” Chinese Optics Letters 8(3), 266–269 (2010).
    [Crossref]
  21. W. Jo, O. C. Akkaya, O. Solgaard, and M. J. F. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal membrane,” Optical Fiber Technology 19(6 PART B), 785–792 (2013).
    [Crossref]
  22. J. Ma, H. Xuan, H. L. Ho, and W. Jin, “Fiber-optic fabry-perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technology Letters 25(10), 932–935 (2013).
    [Crossref]
  23. A. Bar-Zion, C. Tremblay-Darveau, O. Solomon, A. Dan, and Y. C. Eldar, “Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection,” IEEE Transactions on Medical Imaging 36(1), 169–180 (2016).
    [Crossref] [PubMed]

2016 (3)

Z. Yu, Q. Jiang, H. Zhang, and J. Wang, “Theoretical and experimental investigation of fiber Bragg gratings with different lengths for ultrasonic detection,” Photonic Sensors 6(2), 187–192 (2016).
[Crossref]

R. Wang, Z. Liu, and X. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensors and Actuators, B: Chemical 234, 498–502 (2016).
[Crossref]

A. Bar-Zion, C. Tremblay-Darveau, O. Solomon, A. Dan, and Y. C. Eldar, “Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection,” IEEE Transactions on Medical Imaging 36(1), 169–180 (2016).
[Crossref] [PubMed]

2015 (2)

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, and H. Lamela, “Polymer optical fibre sensors for endoscopic optoacoustic imaging,” Opto-Acoustic Methods and Applications in Biophotonics II 9539, 953907 (2015).
[Crossref]

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Exp. 23(22), 29268–78 (2015).
[Crossref]

2014 (3)

J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Exp. 22(16), 19573 (2014).
[Crossref]

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

F. Xu, J. Shi, K. Gong, H. Li, R. Hui, and B. Yu, “Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaphragm,” Opt. Lett. 39(10), 2838 (2014).
[Crossref] [PubMed]

2013 (2)

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. F. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal membrane,” Optical Fiber Technology 19(6 PART B), 785–792 (2013).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, and W. Jin, “Fiber-optic fabry-perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technology Letters 25(10), 932–935 (2013).
[Crossref]

2012 (2)

2011 (2)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

S. Lin and S. Wang, “Radially composite piezoelectric ceramic tubular transducer in radial vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011.  58, 2492–2498 (2011).

2010 (1)

Q. Y. Wang and Q. X. Yu, “Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor,” Chinese Optics Letters 8(3), 266–269 (2010).
[Crossref]

2005 (2)

S. Foster and A. Tikhomirov, “A fiber laser hydrophone,” Proceedings of Optical Fiber Sensors 5855, 627–630 (2005).

J. R. Lee and H. Tsuda, “Fiber optic liquid leak detection technique with an ultrasonic actuator and a fiber Bragg grating,” Opt. Lett. 30(24), 3293–3295 (2005).
[Crossref]

2000 (1)

A. Bakulin, V. Grechka, and I. Tsvankin, “Estimation of fracture parameters from reflection seismic data–Part I: HTI model due to a single 313 fracture set,” Geophysics 65(6), 1788–1802 (2000).
[Crossref]

1997 (2)

D. H. Sherlock, J. A. Mcdonald, and B. J. Evans, “Seismic imaging of sandbox models,” Freien Universität Berlin 11(1), 1371–1374 (1997).

D. Kerseyetal, “Fiber grating sensors,” J.Lightw.Technol. 15(8), 1442–1460 (1997).

1996 (1)

P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer,” Applied Optics 35(4), 663–675 (1996).
[Crossref] [PubMed]

1991 (1)

K. Toda and A. Sawaguchi, “Ultrasonic imaging system using a leaky surface acoustic wave transducer composed of piezoelectric ceramic and fused quartz,” Journal of Applied Physics 69(1), 103–108 (1991).
[Crossref]

Abdelgawad, M.

M. S. Vassiliou, M. Abdelgawad, and B. R. Tittmann, “Ultrasonic physical modeling of seismic wave propagation from graben-like structures,” Final Report, 19 Feb. 1985–30 Jun. 1987 Rockwell International Corp. Thousand Oaks, CA.

Akkaya, O. C.

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. F. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal membrane,” Optical Fiber Technology 19(6 PART B), 785–792 (2013).
[Crossref]

Bakulin, A.

A. Bakulin, V. Grechka, and I. Tsvankin, “Estimation of fracture parameters from reflection seismic data–Part I: HTI model due to a single 313 fracture set,” Geophysics 65(6), 1788–1802 (2000).
[Crossref]

Bang, O.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, and H. Lamela, “Polymer optical fibre sensors for endoscopic optoacoustic imaging,” Opto-Acoustic Methods and Applications in Biophotonics II 9539, 953907 (2015).
[Crossref]

Bar-Zion, A.

A. Bar-Zion, C. Tremblay-Darveau, O. Solomon, A. Dan, and Y. C. Eldar, “Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection,” IEEE Transactions on Medical Imaging 36(1), 169–180 (2016).
[Crossref] [PubMed]

Beard, P. C.

P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer,” Applied Optics 35(4), 663–675 (1996).
[Crossref] [PubMed]

Broadway, C.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, and H. Lamela, “Polymer optical fibre sensors for endoscopic optoacoustic imaging,” Opto-Acoustic Methods and Applications in Biophotonics II 9539, 953907 (2015).
[Crossref]

Dan, A.

A. Bar-Zion, C. Tremblay-Darveau, O. Solomon, A. Dan, and Y. C. Eldar, “Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection,” IEEE Transactions on Medical Imaging 36(1), 169–180 (2016).
[Crossref] [PubMed]

Digonnet, M. J. F.

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. F. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal membrane,” Optical Fiber Technology 19(6 PART B), 785–792 (2013).
[Crossref]

Dong, B.

Eldar, Y. C.

A. Bar-Zion, C. Tremblay-Darveau, O. Solomon, A. Dan, and Y. C. Eldar, “Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection,” IEEE Transactions on Medical Imaging 36(1), 169–180 (2016).
[Crossref] [PubMed]

Evans, B. J.

D. H. Sherlock, J. A. Mcdonald, and B. J. Evans, “Seismic imaging of sandbox models,” Freien Universität Berlin 11(1), 1371–1374 (1997).

Foster, S.

S. Foster and A. Tikhomirov, “A fiber laser hydrophone,” Proceedings of Optical Fiber Sensors 5855, 627–630 (2005).

Gallego, D.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, and H. Lamela, “Polymer optical fibre sensors for endoscopic optoacoustic imaging,” Opto-Acoustic Methods and Applications in Biophotonics II 9539, 953907 (2015).
[Crossref]

Gong, K.

Grechka, V.

A. Bakulin, V. Grechka, and I. Tsvankin, “Estimation of fracture parameters from reflection seismic data–Part I: HTI model due to a single 313 fracture set,” Geophysics 65(6), 1788–1802 (2000).
[Crossref]

Guo, J.

J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Exp. 22(16), 19573 (2014).
[Crossref]

He, S.

S. Park and S. He, “Standing wave brass-PZT square tubular ultrasonic motor,” Ultrasonics 52, 880–889 (2012).
[Crossref] [PubMed]

Ho, H. L.

J. Ma, H. Xuan, H. L. Ho, and W. Jin, “Fiber-optic fabry-perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technology Letters 25(10), 932–935 (2013).
[Crossref]

Hui, R.

Jiang, Q.

Z. Yu, Q. Jiang, H. Zhang, and J. Wang, “Theoretical and experimental investigation of fiber Bragg gratings with different lengths for ultrasonic detection,” Photonic Sensors 6(2), 187–192 (2016).
[Crossref]

Jin, W.

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Exp. 23(22), 29268–78 (2015).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, and W. Jin, “Fiber-optic fabry-perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technology Letters 25(10), 932–935 (2013).
[Crossref]

Jo, W.

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. F. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal membrane,” Optical Fiber Technology 19(6 PART B), 785–792 (2013).
[Crossref]

Kerseyetal, D.

D. Kerseyetal, “Fiber grating sensors,” J.Lightw.Technol. 15(8), 1442–1460 (1997).

Kim, K. S.

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

Lamela, H.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, and H. Lamela, “Polymer optical fibre sensors for endoscopic optoacoustic imaging,” Opto-Acoustic Methods and Applications in Biophotonics II 9539, 953907 (2015).
[Crossref]

Lee, J. R.

Li, H.

Li, Z. X.

Lin, S.

S. Lin and S. Wang, “Radially composite piezoelectric ceramic tubular transducer in radial vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011.  58, 2492–2498 (2011).

Liu, Z.

R. Wang, Z. Liu, and X. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensors and Actuators, B: Chemical 234, 498–502 (2016).
[Crossref]

Ma, C.

Ma, J.

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Exp. 23(22), 29268–78 (2015).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, and W. Jin, “Fiber-optic fabry-perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technology Letters 25(10), 932–935 (2013).
[Crossref]

Mcdonald, J. A.

D. H. Sherlock, J. A. Mcdonald, and B. J. Evans, “Seismic imaging of sandbox models,” Freien Universität Berlin 11(1), 1371–1374 (1997).

Mills, T. N.

P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer,” Applied Optics 35(4), 663–675 (1996).
[Crossref] [PubMed]

Mizuno, Y.

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

Nakamura, K.

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

Ntziachristos, V.

Park, S.

S. Park and S. He, “Standing wave brass-PZT square tubular ultrasonic motor,” Ultrasonics 52, 880–889 (2012).
[Crossref] [PubMed]

Pei, L.

Pospori, A.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, and H. Lamela, “Polymer optical fibre sensors for endoscopic optoacoustic imaging,” Opto-Acoustic Methods and Applications in Biophotonics II 9539, 953907 (2015).
[Crossref]

Qiao, X.

R. Wang, Z. Liu, and X. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensors and Actuators, B: Chemical 234, 498–502 (2016).
[Crossref]

Razansky, D.

Rosenthal, A.

Sawaguchi, A.

K. Toda and A. Sawaguchi, “Ultrasonic imaging system using a leaky surface acoustic wave transducer composed of piezoelectric ceramic and fused quartz,” Journal of Applied Physics 69(1), 103–108 (1991).
[Crossref]

Sherlock, D. H.

D. H. Sherlock, J. A. Mcdonald, and B. J. Evans, “Seismic imaging of sandbox models,” Freien Universität Berlin 11(1), 1371–1374 (1997).

Shi, J.

Solgaard, O.

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. F. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal membrane,” Optical Fiber Technology 19(6 PART B), 785–792 (2013).
[Crossref]

Solomon, O.

A. Bar-Zion, C. Tremblay-Darveau, O. Solomon, A. Dan, and Y. C. Eldar, “Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection,” IEEE Transactions on Medical Imaging 36(1), 169–180 (2016).
[Crossref] [PubMed]

Tikhomirov, A.

S. Foster and A. Tikhomirov, “A fiber laser hydrophone,” Proceedings of Optical Fiber Sensors 5855, 627–630 (2005).

Tittmann, B. R.

M. S. Vassiliou, M. Abdelgawad, and B. R. Tittmann, “Ultrasonic physical modeling of seismic wave propagation from graben-like structures,” Final Report, 19 Feb. 1985–30 Jun. 1987 Rockwell International Corp. Thousand Oaks, CA.

Toda, K.

K. Toda and A. Sawaguchi, “Ultrasonic imaging system using a leaky surface acoustic wave transducer composed of piezoelectric ceramic and fused quartz,” Journal of Applied Physics 69(1), 103–108 (1991).
[Crossref]

Tremblay-Darveau, C.

A. Bar-Zion, C. Tremblay-Darveau, O. Solomon, A. Dan, and Y. C. Eldar, “Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection,” IEEE Transactions on Medical Imaging 36(1), 169–180 (2016).
[Crossref] [PubMed]

Tsuda, H.

Tsvankin, I.

A. Bakulin, V. Grechka, and I. Tsvankin, “Estimation of fracture parameters from reflection seismic data–Part I: HTI model due to a single 313 fracture set,” Geophysics 65(6), 1788–1802 (2000).
[Crossref]

Vassiliou, M. S.

M. S. Vassiliou, M. Abdelgawad, and B. R. Tittmann, “Ultrasonic physical modeling of seismic wave propagation from graben-like structures,” Final Report, 19 Feb. 1985–30 Jun. 1987 Rockwell International Corp. Thousand Oaks, CA.

Wang, A. B.

Wang, J.

Z. Yu, Q. Jiang, H. Zhang, and J. Wang, “Theoretical and experimental investigation of fiber Bragg gratings with different lengths for ultrasonic detection,” Photonic Sensors 6(2), 187–192 (2016).
[Crossref]

Wang, Q. Y.

Q. Y. Wang and Q. X. Yu, “Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor,” Chinese Optics Letters 8(3), 266–269 (2010).
[Crossref]

Wang, R.

R. Wang, Z. Liu, and X. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensors and Actuators, B: Chemical 234, 498–502 (2016).
[Crossref]

Wang, S.

S. Lin and S. Wang, “Radially composite piezoelectric ceramic tubular transducer in radial vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011.  58, 2492–2498 (2011).

Woyessa, G.

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, and H. Lamela, “Polymer optical fibre sensors for endoscopic optoacoustic imaging,” Opto-Acoustic Methods and Applications in Biophotonics II 9539, 953907 (2015).
[Crossref]

Xu, F.

Xuan, H.

J. Ma, H. Xuan, H. L. Ho, and W. Jin, “Fiber-optic fabry-perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technology Letters 25(10), 932–935 (2013).
[Crossref]

Xue, S.

J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Exp. 22(16), 19573 (2014).
[Crossref]

Yang, C.

J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Exp. 22(16), 19573 (2014).
[Crossref]

Yu, B.

Yu, Q. X.

Q. Y. Wang and Q. X. Yu, “Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor,” Chinese Optics Letters 8(3), 266–269 (2010).
[Crossref]

Yu, Y.

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Exp. 23(22), 29268–78 (2015).
[Crossref]

Yu, Z.

Z. Yu, Q. Jiang, H. Zhang, and J. Wang, “Theoretical and experimental investigation of fiber Bragg gratings with different lengths for ultrasonic detection,” Photonic Sensors 6(2), 187–192 (2016).
[Crossref]

Zhang, H.

Z. Yu, Q. Jiang, H. Zhang, and J. Wang, “Theoretical and experimental investigation of fiber Bragg gratings with different lengths for ultrasonic detection,” Photonic Sensors 6(2), 187–192 (2016).
[Crossref]

Zhao, Q.

J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Exp. 22(16), 19573 (2014).
[Crossref]

Appl. Opt. (1)

Applied Optics (1)

P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer,” Applied Optics 35(4), 663–675 (1996).
[Crossref] [PubMed]

Chinese Optics Letters (1)

Q. Y. Wang and Q. X. Yu, “Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor,” Chinese Optics Letters 8(3), 266–269 (2010).
[Crossref]

Freien Universität Berlin (1)

D. H. Sherlock, J. A. Mcdonald, and B. J. Evans, “Seismic imaging of sandbox models,” Freien Universität Berlin 11(1), 1371–1374 (1997).

Geophysics (1)

A. Bakulin, V. Grechka, and I. Tsvankin, “Estimation of fracture parameters from reflection seismic data–Part I: HTI model due to a single 313 fracture set,” Geophysics 65(6), 1788–1802 (2000).
[Crossref]

IEEE Photonics Technology Letters (1)

J. Ma, H. Xuan, H. L. Ho, and W. Jin, “Fiber-optic fabry-perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technology Letters 25(10), 932–935 (2013).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011 (1)

S. Lin and S. Wang, “Radially composite piezoelectric ceramic tubular transducer in radial vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011.  58, 2492–2498 (2011).

IEEE Transactions on Medical Imaging (1)

A. Bar-Zion, C. Tremblay-Darveau, O. Solomon, A. Dan, and Y. C. Eldar, “Fast vascular ultrasound imaging with enhanced spatial resolution and background rejection,” IEEE Transactions on Medical Imaging 36(1), 169–180 (2016).
[Crossref] [PubMed]

J.Lightw.Technol. (1)

D. Kerseyetal, “Fiber grating sensors,” J.Lightw.Technol. 15(8), 1442–1460 (1997).

Journal of Applied Physics (1)

K. Toda and A. Sawaguchi, “Ultrasonic imaging system using a leaky surface acoustic wave transducer composed of piezoelectric ceramic and fused quartz,” Journal of Applied Physics 69(1), 103–108 (1991).
[Crossref]

Opt. Exp. (2)

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Exp. 23(22), 29268–78 (2015).
[Crossref]

J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Exp. 22(16), 19573 (2014).
[Crossref]

Opt. Lett. (3)

Optical Fiber Technology (1)

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. F. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal membrane,” Optical Fiber Technology 19(6 PART B), 785–792 (2013).
[Crossref]

Opto-Acoustic Methods and Applications in Biophotonics II (1)

C. Broadway, D. Gallego, G. Woyessa, A. Pospori, O. Bang, and H. Lamela, “Polymer optical fibre sensors for endoscopic optoacoustic imaging,” Opto-Acoustic Methods and Applications in Biophotonics II 9539, 953907 (2015).
[Crossref]

Photonic Sensors (1)

Z. Yu, Q. Jiang, H. Zhang, and J. Wang, “Theoretical and experimental investigation of fiber Bragg gratings with different lengths for ultrasonic detection,” Photonic Sensors 6(2), 187–192 (2016).
[Crossref]

Proceedings of Optical Fiber Sensors (1)

S. Foster and A. Tikhomirov, “A fiber laser hydrophone,” Proceedings of Optical Fiber Sensors 5855, 627–630 (2005).

Sensors and Actuators, B: Chemical (1)

R. Wang, Z. Liu, and X. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sensors and Actuators, B: Chemical 234, 498–502 (2016).
[Crossref]

Ultrasonics (2)

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

S. Park and S. He, “Standing wave brass-PZT square tubular ultrasonic motor,” Ultrasonics 52, 880–889 (2012).
[Crossref] [PubMed]

Other (1)

M. S. Vassiliou, M. Abdelgawad, and B. R. Tittmann, “Ultrasonic physical modeling of seismic wave propagation from graben-like structures,” Final Report, 19 Feb. 1985–30 Jun. 1987 Rockwell International Corp. Thousand Oaks, CA.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Beam collimation. (b) Schematic diagram of the precise cleaving setup.
Fig. 2
Fig. 2 (a) Schematic diagram of the sensor. (b) Image of the packaged sensor.
Fig. 3
Fig. 3 (a) Interference spectrum of the proposed sensor. (b) Comparison of spectral sideband slope. (c) Spatial frequency spectrum.
Fig. 4
Fig. 4 Schematic diagram of the ultrasonic imaging system.
Fig. 5
Fig. 5 (a) Sensor’s response to a continuous sinusoidal signal. (b) Frequency spectrum.
Fig. 6
Fig. 6 (a) Sensor’s response to a pulse ultrasound signal. (b) Frequency spectrum.
Fig. 7
Fig. 7 (a) Picture of the rectangular Plexiglas block. (b) Reconstructed ultrasonic image.
Fig. 8
Fig. 8 (a) Physical picture of the sunken block. (b) Reconstructed ultrasonic image.
Fig. 9
Fig. 9 (a) Physical picture of the semi-cylindrical block. (b) Reconstructed ultrasonic image.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V = I max I min I max + I min
d P 0 d P = d P 0 d λ d λ d Φ d Φ d P
d P 0 d λ = G P 1
d Φ d P = 4 n π λ ( d l d P + d h d P )
Δ l = 3 r 4 ( 1 μ 2 ) P 16 E h 3
d l = 0 h P T E d x
R = ν τ 2